
Logical Specification of Real-Time Granular Systems 
in an Object Oriented Language 

Emanuele Ciapessoni, Edoardo Corsetti, Manlio Migliorati, Elena Ratto 

CISE - Tecnologie Innovative -spa- via Reggio Emil ia 39, Segrate (Mi) -Italy 
edoardo@sia.cise.it 

Abstract* 

This paper presents the semantics of TRIO*, an 
object oriented language devoted to specify real-
time systems referring to different time 
granularities. Time granularity allows to describe 
the behavior and the properties of a system and its 
environment with respect to different time scales. 
TRIO* semantics is expressed by translation into a 
logical framework supporting the notion of time 
granularity. Such a semantics provides the 
executability of object oriented specifications. 

1. Introduction 

The aim of the paper is to present the semantics of 
TRIO*, an object oriented language, devoted to specify 
real-time systems, in which several temporal granularities 
can be referred. The semantics is provided by means of 
translation into a logical framework supporting the notion 
of time granularity [Ciapessoni,92], and this paper focuses 
on the translation of temporal aspects. This allows to get 
both a formal semantics and the logical executability of the 
object oriented framework. The logical language supports 
the specification of granular real-time systems. It is a 
revision of previous time granularity formalization 
proposals [Corsetti,91a/91b], based on a metric temporal 
logic named TRIO [Ghezzi,90]. Temporal granularity is a 
significant issue in A I , both in a theoretical and applicative 
perspective. From a theoretical point of view, dealing with 
time granularity requires to structure temporal models into 
differently grained components and to formally define their 
relationships. From an applicative point of view, temporal 
granularity plays a major role in several domains as 
temporal data base, planning, scheduling, diagnosis and 
natural language understanding. The notion of granularity 
allows to embed different levels of knowledge in a 
representation language and refers to the level that abstracts 
from the domain only those aspects relevant to the actual 

The work is funded by the Centro Ricerche Automauca (CRA) 
of the Electricity Board of Italy (ENEL), and partially by the 
National Research Council (CNR), within Piano Finalizzato 
Informatica e Calcolo Parallelo. 

goal. In particular, temporal granularity enhances both the 
expressive and the computational power of a knowledge 
representation formalism. 
About the former, time granularity allows to represent the 
dynamics of different processes according to different time 
constants as separate as possible [Corsetti,91a], and to 
model the dynamics of a process with respect to different 
time scales. 
About the latter, time granularity supports different grains 
of reasoning. In such a way it allows to deal with 
incompleteness and uncertainty of knowledge [Allen,83]. 
Further, it allows to switch among different temporal 
granularities during the execution of a task in order to solve 
each incoming problem at a temporal granularity as coarse 
as possible [Dean,88]. Such a switching among temporal 
granularities requires the definition of a number of 
simplification and articulation rules [Hobbs,85], [Greer,89]. 
It minimizes the computational complexity of the problem 
solving process. The simplification, induced by the 
minimization, speeds up the reasoning, but implies a 
relaxation of the precision of the solution [Levesque,86]. 
The ratio between the temporal granularities provides a 
measurement of the approximation of the achieved result. 
The main issue addressed in this paper is the semantics of 
the temporal aspects of the object oriented language ex­
pressed into the granular logical language. The object 
oriented language extends the temporal logic one with 
modular and abstraction primitives in order to deal with the 
specification in the large. With respect to other framework 
that deal with the description of actions and change, our 
proposal is more general. Indeed, it allows to deduce 
assertions by means of classical inference rules, without 
any mechanism of default reasoning [McCarthy,69], 
[Kowalski,86] and [Montanari,92]. The semantics is 
provided by objects translation into logical formulae, and a 
number of rules stating the theory articulation and 
simplification. 

The semantics of the object oriented language allows the 
verification of specifications. That is, a verification that 
ensures the consistency and the adequacy of the 
specification, at each step of the incremental development. 
The paper is organized as follows: section 2 presents how 
to deal with time granularity, section 3 briefly sketches the 
logical granular language, and section 4 presents the object 

Ciapessoni at al. 861 



oriented extension and the main semantic issues regarding 
time granularity. 

2. Assertions over several t ime granular i t ies 

It is possible to point out a wide class of systems, whose 
main characteristics are time critical response to external 
stimuli and dynamic behavior regulated by very different 
time constants. We call such class of systems real-time 
granular systems. 

Let us consider as an example a simplified specification 
of a controller of a pondage-power plant. Such specification 
requires the definition of the temporal constraints: each 
action affecting the system has a specific time constant, 
which is the time needed for its completion. For instance, 
the filling the empty-reservoir, with a given input of water, 
takes (about) two months, whereas the closing an open-
sluice-gate takes one minute. 

The description of a granular system in a language 
without any abstraction structure and with just one tempo­
ral domain (of instants, points), constrains to specify the 
whole system with respect to the finest time granularity, to 
avoid loss of information. Thus, if in the previous example 
the finest temporal domain is the domain of seconds then, 
closing takes 60 seconds and filling takes 2*30*24*60*60 = 
5 * 10* seconds (assuming 30 days a month). 

Dealing with different time granularities improves the 
naturalness of system description, simplifying its model, 
but involves difficult semantics problems. Referring to the 
specification of a company as an example, the underlying 
assertions in: "Every month, if an employee works, then he. 
gets his salary", cannot hold over all instants of each 
temporal domain finer than months. A unifying model for 
the above sentences provides a set of temporal domains 
(including at least months and days) and a refinement 
mechanism to relate a formula asserted on a domain to 
finer, or coarser, ones. Such a mechanism must allow that if 
an employee works during a month, then he works at most 
during 22 days of this month, whereas, he gets his salary in 
just one day during the month. 

We summarize the steps that provide time granularity in 
a temporal logic language: to replace a single temporal 
domain with a temporal universe; to allow the 
contextualization of a formula over a temporal domain, the 
assertion of a formula over time instants in correspondence 
with the current one, and the definition of rules to relate 
assertions to several (finer or coarser) temporal domains. 
• the temporal universe 
The temporal universe (T) is a set of instants (points), and 
includes a finite number of temporal domains (T l..,Tk). 
Temporal domains of the universe are totally ordered with 
respect to the binary granularity relation such that if Ti 

Tj then Tt is coarser than Tj, or Tj is finer than TI 

Among time instants and temporal domains three rela­
tions are stated. The first relation allows to contextualize an 
instant with respect to a temporal domain, the second one 

expresses a displacement between each couple of instants 
of a temporal domain and the third one puts into correspon­
dence instants belonging to the temporal universe. The con­
textual relation is specified so that the set of temporal 
domains constitutes a partition of the temporal universe. 
Further, the displacement relation is specified by a number 
of properties so that the notion of metric temporal logic 
([Koymans,90]) is supported by any temporal domain. The 
correspondence relation is subject to a number of properties 
that constrain time instants and temporal domains to 
specify a certain kind of temporal universe. For instance 
given the temporal domains of years, months and days, the 
correspondence of a calendric-universe can be specified. 
The correspondence between each couple of temporal 
domains obeys to the instant-articulation and interval-
simplification rules. Giving two temporal domains such that 
Tj \ Tj, each time instant of the coarser one is put into 
correspondence with an interval of time instants of the finer 
one, and vice versa. Next figure depicts the rules. 

For instance, according to such a rule it is possible to state 
the correspondence between a minute and its 60 corre­
sponding seconds. In order to get the specification of a real 
universe, a new relation between temporal domains is 
needed. The relation of disjointedness states that given two 
temporal domains such that Ti i Tj, if each interval 
simplification of Tj over Tt is disjoined from the other ones, 
then Tj Z Tj holds too. For instance, month articulations 
over weeks are not disjoined, whereas month articulations 
over days are disjoined. In fact there can be a week corre­
sponding to two months, but each day corresponds to one, 
and only one, month. The whole set of properties stated 
over temporal universe relations are formally defined in 
[Ciapessoni,92]. 
• contextualization, correspondence and projection 
In a temporal logic language each formula implicitly refers 
to a time instant belonging to the underlying temporal 
domain ([Ghezzi,90], [Rescher 71] and [Pnueli,81]); 
replacing the temporal domain with a temporal universe is 
useful to specify which temporal domain the current instant 
of a formula belongs to, and to assert the truth of a formula 
over instants in correspondence with the current one. To 
this aim a couple of intensional operators are needed. For 
instance, given the assertion "rains", it can be 
contextualized either to the minutes temporal domain or to 
the days temporal domain (and so on), and it is possible to 
assert over a day that there is a corresponding hour over 
which it "rains". 
Temporal logic languages can be thought as a way to 
qualify the truth of classical first order formulae with 
respect to instants. Thus, in a temporal logic language that 

882 LOGIC P r o g r a m m i n g 



Other downward projections can be defined: the projection 
states the assertion holds over just an articulation instant 
(punctual), over any articulation instant (pervasive) and 
over a bounded set of articulation instants (bounded). 
Previous rules state a monotonic projection. On the other 
hand, alternative upward projection rules can lead to 
semantic problems. Let us consider the (weak) rule: if an 
assertion holds over an articulation instant, then it holds 
over the corresponding simplifications. Thus, if during the 
current hour "rains" holds and during the previous hours 
"not-rains" holds, then, applying twice the (weak) upward 
projection rule we can contradictorily conclude that today 
"rains" and "not-rains". 

The projection rules sketched above can be compared to 
[Allen,83] and [Shoham,88]. 

3. The logical granular language 

The typed temporal logical language is sketched throughout 
a brief survey of the syntax, the semantics and the 
axiomatization; for a deep and complete description we 
refer to [Ciapessoni,92]. The syntax includes the first order 
terms and formulae, and those terms and formulae referring 
to temporal aspects. Among the latter ones, we take into 
account just those that wil l be used in the next section. The 
language provides a displacement operator, a context 
operator and a correspondence operator (and dual ones). 

Clapessonl et al. 883 

deals with time granularity, first order formulae are 
asserted over instants belonging to several domains. This 
means that first order formulae belonging to instants 
between which the correspondence relation is stated should 
be put into correspondence. Correspondence between first 
order theories is stated by projection rules. These rules can 
be classified in downward projection, i.e., theory 
articulation, and upward projection, i.e., theory 
simplification. The former specifies the correspondence 
between a theory true over an instant and a theory true over 
the instant articulations on finer domains. The latter 
specifies the correspondence between a theory that holds 
over an interval and a theory that holds over any interval 
simplifications on coarser domains. 
For instance, let us consider the case in which "rains" holds 
during a day and we want to know if "rains" holds or not 
during the corresponding hours. Downward projection can 
be specified, in a weak way (sequences), stating that if an 
assertion holds over an instant, it holds at least over one 
instant of any articulation. Upward projection can be 
specified, in a strong way (pervasive), stating that if an 
assertion holds over any instant of an interval then it holds 
over any interval simplification. 



where is the current instant of the universe. 
The language provides an axiomatic system to define both 
the temporal universe properties and the correspondence 
rules for first order formulae between temporal domains. 
The former set of axioms was defined in [Ciapessoni,92] 
and its soundness checked in [Corsetti,93]. The latter set 
includes several axioms stating the chosen correspondences 
between temporal domains. Among them, let us show the 
formalization of weak downward projection. Weak 
downward projection is defined by the following axiom 
schema: 

Such a schema states that for each couple of temporal 
domains related by disjointedness relation, if a formula o 
holds over an instant of the coarser one, then it holds in at 
least an instant of the finer one. According to such a 
formula the theorem stating the upward projection1 rule can 
be deduced. 

4. The object-oriented extension 

4.1. The language: ontology and syntax 

The object oriented framework allows to partition the 
specification by means of objects, and to link them by 
relations. An object represents a stereotype likewise a 
frame [Minsky,75], and it holds the minimal part of a 
specification. With respect to a methodological point of 
view an object can identify a class or an instance, and from 
an ontological point of view an entity or an event 
([Borgida,85]). According to the methodology an object-
class denotes a collection of related individual concepts, 
while an object-instance denotes an individual concept 
(e.g., in the block world, the class of blocks and the 
block#l, respectively). According to the ontology an 
object-entity denotes an object that persists in time, while 
an object-event denotes the instantaneous change occurred 
in entities (e.g., in the block world the entity block and the 
event of block-change-position). The set of relations among 
objects is partitioned into relations among instances and 
classes, relations among classes, and relations among 
instances. Relations among instances and classes and 
relations among classes are the usual relations of 
belongings and (monotonic) inclusion, respectively 
[Brachman,85], and both are identified by IS-A. Relations 
among instances provide the definition of an object-class: 
methodologically identify the relevant characteristics and 
logically identify the object signature. In a very simplified 
view the object-class signature may be thought as the 
specification of the Cartesian product for each relation de­
clared within the object, providing class identifiers and 

! The following formula states the upward projection rule: 

for each couple of disjontdeness temporal domains if <o> holds 
over an interval on the finer temporal domain, then it holds over 
the corresponding simplification on the coarser one. 

884 Logic Programming 

class cardinalities (i.e., the number of class instances 
involved into relation extension). Object-instances 
comprise ground-instance relations declared within the 
classes they belong to. Entity and event signatures mainly 
differ for the at-time relation that must be declared within 
each event. Such a relation specifies the occurring instant 
and the granularity of the event. 
The subset of relations declared in an object and changing 
in time defines object-state (time dependent relations). 

Relations declared within objects must satisfy integrity-
constraints, if any. Integrity-constraints state general and 
atemporal conditions about object relations, and are 
expressed by first order formulae. 
The complete event-class specification needs the descrip­
tion/prescription of the conditions referring to the state of 
the entities before and after the event occurrence. Condi­
tions state causal and temporal relationships between the 
event occurrence and the entity-states. Causal relationships 
codify constraints over the states that validate (sufficient-
conditions) and are validated (necessary-conditions) by the 
event occurrence. Temporal relationships allow to refer to 
intervals whose starting, or ending, point is the event 
occurrence instant. Conditions are expressed by means of 
logical formulae. Differently from other models of change 
based on the notion of event, e.g. the Event Calculus 
[Kowalski,86], the conditions encompass both the 
deduction of relations from events and the deduction of 
events from relations. 

2Such a keyword denotes a relation defined for each class-
instance. 



specification). Let us pay a special attention to the event 
decomposition, because of the notion of time granularity is 
needed. The decomposition of an event consists of a set of 
events, and a number of constraints stating the causal and 
temporal relations among component occurring time. We 
call the event decomposition the process associated to the 
compound event, that is expressed by means of a logical 
granular formula. A process is the description, with respect 
to a simplification, of an event occurring time. 

Referring to the notions of system specification and 
history, given in the previous section, we can say that a 
system specification can be expressed by a set of classes, 
and a system history can be expressed by a set of instances. 

4.2. The object oriented semantics 
The semantics of the object oriented language is provided 
by means of translation into the logical language, and such 
a translation provides the object oriented executability, too. 
Translation put into correspondence each object oriented 
structure with a formula so that: each object-oriented-
specification is translated into a specification-formula, and 
each object-oriented-history is translated into a history-for­
mula. Object oriented executability is ensured by the logi­
cal executability, thus the consistency, or validity, proof of 
a formula can be applied to a translation, and the se­
mantical result can be extended to the corresponding ob­
ject. In this section we only describe the object class 
translation, indeed instance translations is just a conjunc­
tion of ground atoms. The description of the translation wil l 
be detailed with respect to those aspects involving temporal 
representation, sketching the other ones. The whole 
semantics definition of the object oriented language can be 
found in [Ciapessoni,93]. 

The following object oriented translation provides an object 
identifier O, which is a unary predicate that in case of an 
entity does not change its value in time; "grain" is the 
temporal domain of the event object. 

(1) object identifier and signature 
let be the formula translating the object signature 
referring to class identifiers, object identifier and object 
signature are composed according to the instantiation rule 
([Hayes,79]): 

such a rule is specialized in case the object is an event as 
follows: 

Clapessoni et al. 885 



Conc lus i ons 

The paper has defined the semantics of the temporal 
aspects of an object oriented language that supports the 
notion of time granularity. Such a semantics is expressed 
by means of object translation into a logical formula. Thus, 
the object oriented language gets a formal semantics and 
gains logical executability. Further, in the translation we 
proposed a number of projection rules, between temporal 
domains, grounded on the object oriented ontology. Such 
projection rules could be embedded within the logical 
language to improve its expressiveness. 

A c k n o w l e d g m e n t s 

We would like to thank Angelo Montanari for the 
contributions he gave to the argument during his working 
period at CISE. Further, we are grateful to Paolo 
Mancarella and Dino Pedreschi for helpful comments on an 
early draft of this paper. 

References 

[Allen,83] Maintaining Knowledge about Temporal Intervals, J.Allen, 
Communications of the ACM, 26,11,1983. 

fBorgida,85] Knowledge Representation as the Basis for Requirements 
Specifications, Borgida A., Greenspan S., Mylopoulos J., IEEE 
Computer, vol 18(4), April 1985. 

[Brachman,85] Readings in Knowledge Representation, R.Brachman, 
H.Levesquc, Morgan Kaufmann, San Matteo CA, 1984. 

[Ciapessoni,92] Embedding Time Granularity in a Logical Specification 
Language for Synchronous Real-Time Systems, E.Ciapessoni, 
E.Corsetti, A.Monunan, P.San Pietro, Science of Computer 
Programming Magazine, Elsevier: North-Holland, 1992, (in printing). 

[Ciapessoni,93] TRW* semantics by translation into granular TRIO, 
E.Ciapessoni, E.Corsetti, P.Mancarella, M.Migliorati, D.Pedreschi, 
CISE Technical Report, 7657, March 1993, (in Italian). 

[Corsetti,91a] Dealing with Different Time Granularities in Formal 
Specification of Real-Time systems, Corsetti E., Montanari A., Ratto E., 
The journal of Real-Time Systems, Vol III, Issue 2,1991. 

(Corsetti,9lb] Dealing with Different Time Scales in Formal Specifications, 
Corsetti E., Crivelli E., Mandrioli D., Montanari A., Morzenti A., Ratto 
E., San Pietro P., Proc. 6th International Workshop on Software 
Specification and Design, Como, Italy, October 1991. 

|Corsetti,93) Logical Specification of Real-Time Granular Systems in the 
Synchronous Case, E.Corsetti E. Ciapessoni, CISE - Technical Report, 
n.7217, 1993. 

[Dean,88J Reasoning about Partially Ordered Events, T.Dean, M.Boddy, 
Artificial Intelligence, 36,1988. 

[Ghezzi 90] TRIO a Logic Language for Executable specifications of Real-
Time Systems, Ghezzi C, Mandrioli D., Morzenti A., The Journal of 
Systems and Software, June-July 1990. 

IGreer,89] A Computational Framework for Granularity and its Application 
to Educational Diagnosis, J.Greer, G.McCalla, in Proc. 11th IJCAI, 
Detroit, USA, 1989. 

[Hayes 79] The Logic of Frames, Hayes P., in Frame Conception and Text 
Understanding, Metzing D., (Ed), Walter de Grutyer and Co., Berlin, 
1979. 

[Hobbs,85] Granularity, J.Hobbs, in Proc. 9th IJCAI, Los Angeles (USA), 
1985. 

|Kowalski,86) A Logical Based Calculus of Events, R.Kowalski, M.Sergol, 
New Generation Computing, 4,1986. 

[Kowalski,90] Problems and Promises of Computational Logic, 
R.Kowalski, in Computational Logic, Brussels, November, 1990. 

[Koymans 90] Specifying Real-Time Properties with Metric Temporal 
Logic, R.Koymans, The Journal of Realtime Systems, vol. II, 1990. 

[Levesque,86] Making Belivers out of Computers, H.Levesque, Artifical 
Intelligence, 30, 1986. 

[Montanari ,92] Dealing with Time Granularity in the Event Calculus, 
A.Montanari, E.Maimm, E.Ciapessoni, E.Ratto, Proc. Int. Conf. on 5th 
Generation Computer Systems, Tokio, Japan, 1992. 

[McCarthy,69] Some Philosophical Problem from the Standpoint of 
Artificial Intelligence, J.McCarthy, P.Hayes, Machine Intelligence 4, 
1969. 

[Minsky,75] A Framework for Representing Knowledge, M.Minsky, in The 
Psychology of Computer Vision, P.Winston ed., McGraw Hill, 1975. 

[Pnueli,8l] The Temporal Semanticss ofCuncurrent Programs, Pucli A., 
Theoretcal Computer Science, 13, North-Holland, 1981. 

[Rescher,71] Temporal Logic, Rescher N., Urquhart A., Springer-Verlag, 
Wien-New-York, 1971. 

[Shoham,88] Reasoning About Change: Time and Causation from the 
Standpoint of Artificial Intelligence, Shoham Y., MIT Press, 1988. 

886 Logic Programming 


