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Abstract

A new approach to the semantics of description
logics, using concept algebras, was introduced
in [Dionne et al., 1992b]. In that approach,
the terms of a description logic, i.e., concept
descriptions, were viewed as elements of a free
algebra. In the context of a given knowledge
base possibly involving cycles, an intensional
semantics was given by mapping every concept
description to a possibly non-well-founded set
that embodied the abstract structure of the
concept description. This is in contrast to an
extensional semantics that assigns to a concept
description a specific set it describes. These
sets that embody the abstract structures of
concept descriptions are the elements of the
universal concept algebra. The novelty of this
approach is that one can define an ordering on
the terms in these algebras that corresponds di-
rectly to the structural subsumption algorithms
that most of these logics employ in their imple-
mentations. In this paper we prove that struc-
tural subsumption in the universal concept al-
gebra is the most abstract with respect to all
the greatest fixed point models, i.e., that sub-
sumption defined structurally is equivalent to
subsumption defined model-theoretically. This
result provides the link between our intensional
semantics based on concept algebras and the
usual extensional models.

1 Introduction

The nature of extensional semantics for description logics
is easily grasped: given a knowledge base, concept terms
are interpreted as sets of objects from some universe be-
ing modeled by that knowledge base. Thus, there is
a particular world view in the form of a fixed universe
that is at the root of an extensional semantic model. In
contrast, an intensional semantics implies an interpreta-
tion uncommitted to the specifics of a particular world
view. A related contrasting use of terminology is found
when we speak of a function being defined intension-
ally as some sort of algorithm or formula, as opposed
to extensionally as a set of ordered pairs. Concept alge-
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bras, recently introduced in [Dionne et al., 1992b], pro-
vide the mathematical underpinnings for a first attempt
at an intensional semantics for description logics. An
element of the universal concept algebra is an abstract
object that reflects the structural essence of a term of a
description logic. The ordering of the terms in this alge-
bra corresponds to subsumption. In fact, the definition
of this ordering is actually an abstract specification of
structural subsumption used in description logics like K-
REP [Mays et al., 1991], LOOM [MacGregor and Bates,
1987], and CLASSIC [Borgida et al., 1989], in contrast
to KRIS [Baader and Hollunder, 1991], which employs
a model-based approach. This algebraic model captures
the essence of subsumption as a process of structural
comparison, and is defined without any use of exten-
sional models.

Bill Woods has argued eloquently for taking a more
operational or intensional view of subsumption [Woods,
1991], with several examples that exhibit the confu-
sions that arise through implicit use of quantifiers. His
work has motivated our development of concept algebras.
Though certainly a broader approach to intensional se-
mantics is called for by Woods, concept algebras arc an
initial step in that direction. Another motivation for the
algebraic approach was the problem of cycles. We've
shown that, in elementary description logics support-
ing conjunctions of concepts, recursive definitions can
be handled. This model has also been extended to han-
dle disjunctions, while still handling cycles [Dionne et
al., 1992a]. Since we have not yet extended our proof of
the main theorem of this paper to the model support-
ing disjunction, we will restrict ourselves to the more
elementary case.

The class of concept algebras is defined using univer-
sal algebra [jacobson, 1989]. The signature is specified
using the operators for term formation in the description
logic, and axioms are specified that must be satisfied by
algebras in the class. Three kinds of concept algebras
are of particular interest. First, there are free algebras,
i.e, algebras of syntactic terms, that are generated by
a set of variables that may be defined by a knowledge
base, where a knowledge base is simply a set of equa-
tions equating variables with terms of the free algebra.
Second, we consider quotients of free algebras by congru-
ences generated by knowledge bases. Finally we consider
the universal concept algebra, which is given by the so-



lution of a certain set-theoretic equation. The carrier of
this algebra is a collection of non-well-founded sets, each
representing the structure of a concept description. For
each given knowledge base satisfying a certain weak con-
dition, there is a unique homomorphism from the corre-
sponding quotient algebra to the universal concept alge-
bra. The universal concept algebra can be thought of as
the collection of all possible concepts. In [Dionne et al/.,
1992b], we conjectured that this algebra was the most
abstract of all the greatest fixed point extensional mod-
els. In this paper, the conjecture is stated formally and
proved as a theorem, thus linking this new approach
with existing model theories. We claim the novelty of
this algebraic approach is that the quotient algebra cor-
responding to a given knowledge base, together with its
mapping to the universal concept algebra, elucidates the
distinctions between descriptive and greatest fixed point
semantics. This coincides with Bernhard Nebel's com-
ment [Nebel, 1990] that in descriptive fixed point models,
concept names are a distinguishing feature. In fact, in
a new implementation of K-REP two spaces of objects
are maintained, a definition space corresponding to the
quotient algebra, and a semantic space corresponding to
the universal concept algebra. Two concepts might be
defined with different names that classify to the same ob-
ject. Their separate definitions arc kept in the definition
space, yet they point to the same object in the semantic
space. We feel this is a first step towards an intensional
semantics that will enhance our understanding of how to
implement correctly the effect of definitional changes on
subsumption relations.

In the next section we discuss some related works.
This is followed by a brief section describing the descrip-
tion logic we are discussing. Then, there is a section
reviewing [Dionne et a/., 1992b] covering the formal de-
finitions of concept algebras and of homomorphisms be-
tween them. In Section 5 we outline the construction of
extensional greatest fixed point models. Next is Section
6, which contains the main result: a theorem relating
the universal concept algebra to the class of extensional
greatest fixed point models. The paper ends with re-
marks on intensional semantics and prospects for han-
dling negations.

2 Related Work

Various fixed point models have been investigated in
[Nebel, 1990]. The problem of cyclic definitions, in
roughly the same subset of description logics that we
discuss here, was first solved in [Baader, 1990]. Baader
views concept descriptions as automata, and couches
subsumption questions in terms of language acceptance.

A use of non-well-founded sets similar to ours is made
in [Rounds, 1991]. There the emphasis is on merging
relational data bases, situation theory, and feature log-
ics. Our main emphasis is on subsumption of terms and
the incremental maintenance of a network of terms. Our
work is restricted to description logics, with emphasis
placed on issues particular to them. The "complex ob-
jects" appearing in [Rounds, 1991] have both intensional
and extensional aspects, and both least upper bounds
and greatest lower bounds of complex objects are exam-

ined, including a detailed explanation of how Aczel's So-
lution Lemmais used to compute the least upper bound.
In our implementation we are never required actually to
compute least upper bounds, since subsumption is com-
puted directly. Although our situation is, on the surface,
less complex, it does not seem to be a special case of the
results presented in [Rounds, 1991]. Nevertheless, the
use of non-well-founded set theory to handle recursive
definitions is similar.

Another algebraic approach [Brink and Schmidt,
1992], involves an equational algebra of relations act-
ing on a boolean algebra of sets, similar to the notion of
a module. Though more general than concept algebras,
since roles are treated as first class citizens, the details
of subsumption, which amounts to equational reasoning
in their algebra, are not yet worked out. Even though
cycles are not considered, this work is similar to con-
cept algebras, in that the view is algebraic as opposed
to model-theoretic.

3 The Representation Language

As in [Dionne et al/., 1992b], we are only considering a
small subset of K-REP [Mays et al; 1991], a description
logic based knowledge representation language. Table 1
shows the constructs in this language, together with their
abstract form and set-theoretic semantics. Though we
have developed concept algebras for a larger model that
includes disjunctions, and are currently pursuing nega-
tion, we restrict ourselves here to the original model.
This is the model for which we prove the conjecture
originally stated in [Dionne et al, 1992b]. Note that
our "allsonse" operator combines two operators that are
normally kept separate in most description logics. The
"some" operator by itself would act as a join homomor-
phism (see [Brink and Schmidt, 1992]), and one attempt
at extending concept algebras to handle negations in-
volves separating the two out to make use of the clas-
sical relationship between negation and existential and
universal quantification.

We assume the reader is familiar with description log-
ics. The point we wish to emphasize is that concepts
are organized into an ordered structure (in this model a
meet-semilattice, in [Dionne et a/., 1992a] a distributive
lattice), by a process called classification, whose main
component is structural subsumption. One concept term
subsumes another if: 1) all of its primitive components
are contained in the other, 2) its roles are a subset of the
roles of the other, and 3) the value restriction of each
of its roles subsumes the value restriction of the other
concept's role. Later this subsumption ordering will be
rigorously stated in terms of the ordering of elements in
the universal concept algebra.

4 Concept Algebras

Consider the signature E containing a set P of constants,
a set IR of unary operators, a binary operator A, and a
constant T. Let E be the following set of axioms with
respect to this signature:
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Table 1: A subset of the K-REP language

Concrete Form Ahstract Form

Concept Forming Operaiors

top T
(and C;...Cy) CiA...AC,
(allsome R C) V3R:C
Terminological Azioms
(defconcept N C) N=C
{defprimconcept N C) NCC
zAz = =z {idempotence)
zZAY = yA=z {commutativity)
(zA¥)Az = zA(yAz) Eauocwttmty)
AT = T is a unit)
R(zAy) = R(:l:) AR(y) YRe®

We call the class of algebras for this signature I that
satisfy the axioms E, concept algebras. Using A, a partial
order > can be imposed on a concept algebra (p > q iff
pAg = ). The constants in P are meet-irreducible prim-
itives and each R € R defines 8 meet homomorphiam on

the algebra.
Given X = {2,,...,2n}, A[X] = A[21,...,2n]} is the
free concept algebra generated by X. A[] = A[@] is the

initial concept algebra.

A KB is a set of n possibly mutually recursive defini-
tions

A= {tl S TIN5 Etn}

where ¢; € A[x;,...,2n] . We can then let =, be the
least congruence on A{X] that contains A, and then de-
fine Aa[X] to be the quotient algebra A[X]/ =4. This
is a standard conmstruction {see [Jacobson, 1989] and
{Dionne et al., 1992b] for details). Let x5 : A[X] —
Aa[X] be the canonical projection homomorphism that
gends each term to its congruence class.

For each KB, A, we will be interested in three relations
on A[X]:

8; Ja 83 (descriptive subsumption)

8; >4 83 (structural subsumption)
81 DA #3 (extensional subsumption)

The algebra Aa[X] captures descriptive semantics in
the sense that names with structurally similar definitions
are not necessarilly identified.

Definition 4.1 Given two terms sy, 9, € A[X], we say
8y deseriplively subsumes 83, wrillen 85y Ja 83, iff
Fafl 2a,[X) Fasz.

We next wish to construct an algebra that provides an
intensional semantics for terms and that is used to define
structural subsumption. There will be no variables in
this aigebra, and the interesting seta of equations with
cycles in them have unique solutions in this semantic
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Semantics

U

cin...nC%
{deu|R1(d)cc'-'ARI(d)¢0}
where RF CU x U

Nt=(C?
Nicc?

algebra. The universal concept algebra is the greatest
fixed-point solution of the equation

C = (P<uP) x (R=C)

whete (P, P) is the collection of finite subseta of P, and
(9?(—’0) is the collection of partial functions from R to

C with finite domain.

A concept definition is composed of a collection of
ptimitives conjoined with a collection of role definitions.
Each element of C is an ordered pair whose first com-
ponent is a set of primitives from P, and whose second
component is a set of ordered pairs, each arising from one
of the role definitions. This set can just be represented
as a partial function on R, defined for each role in the
concept’s definition. Note that if we were working within
standard Zermelo-Fraenkel set theory (ZFC) the only so-
lution to the above equation would be C = @! However,
a nontrivial solution C that corresponds to our intuitions
exists in a consistent extension of ZFC, namely, Aczel's
theory of non-well-founded sets (roughly sets that can
contain themselves as members). This ia how circularity
of concept definitions can be supported.

To see that C is a concept algebra, we must interpret
the operators of I:

Te=(0,0)

pc = {{r}, ®)
Rc(z) = (8. {(R,2)})
Given C) = (Q1, fo,) where @y € Pand fc, € (R‘(—'W’C)
and similarly for C3 = (Q3, fe,) we define:

CLAC; = (Q1UQa, fo,nc,)
where fC'u\C': € (&::C) ia defined as fCIACa(R) =

fo.(R if R € dom(fc,) - dom(fc,)
{ fei(R if R € dom(fc,) —dom(fe,)

fcn(R)’\fcz(R) lfRGdom(fG:)n (fcz)
Technically, to define the meet operation on C, one must

do a bit more than write down this recursive definition,
because it is not entirely clear that this definition leads



to a well defined function. However, the recursive defini-
tion can readily be translated into a simultaneous system
of equations, to which the Solution Lemma [Acsel, 1988]
can be applied, and this allows us to assert the exis-
tence and uniqueness of the meet operation (see {Rounds,
1981]). With respect to A, let us define what is meant
by a good set of definitions.

Definition 4.2 A set of definitions A is good if each 2,
appears only once on the left hand side, and each equa-
tion z; = t; is of the formzi = (A; Pij)A (AL (Rin 2i4))
where P, ; € P and 8,3, € A[X] Vi, 5,k. In other words
each equation is composed of a conjunciion of a conjunc-
tion of primilives, and a conjunction of role terms that
may or may not contain varigbles.

Theorem 4.3 There ezisls o unigue concept algebra ho-
momorphism Aa[2Z1,...,%a] 22 C if A is a good set of
definitions

The proof appears in [Dionne et al,, 1992b]. 1t uses
Aczel’s Solution Lemma, along with somne basic theorems
of universal algebra (see [Aczel, 1988; Jacobson, 1989]).

Thus, we have the following picture:
AlX] 2 a5(x) 25 ¢
Now we can define siructural subsumpiion:

Definition 4.4 Given two {erms 83,95 € A[X], we say
2, siructurally subsumes ag, wrillen 8; =4 83, iff (pa o

%a)81 2c (pa 0 %a)e:.

Thus, structural subsumption is given by the ordering
on C. We now explicitly state the ordering on C, to
both relate it to A and the actual implementation in K-
REP. Given C) = {Q1, fc,) where @1 C P and fc, €
(H?:C) and similarly for C3 = (@2, fc,), we say that

Cl ZC C’! if Ql g Q’! and dm(fc;) (_: dm(fCa)! and
YR € dom(fc,) , fe,(R)} >¢ fc,(R). This is exactly
the test for subsumption of concepts stated earlier in
the aection on K-REP. Notice also that when C;i >¢
C,, if one inspects C; A (3, that @, U Q2 = @, and
since dom({ fc,) C dom{fc,), that fo,ac, reduces to the
second and third cases. The third case corresponds to
fcl(R) >¢ fe,(R), and thus Cy >¢ Cift CiAC; = Ch.

The algorithm for computing subsumption, essentially
constructs apg-like objects’ for each term of A[X] in
which we are interested. Let D be the collection of these
objects. This construction corresponds to the map Impa
in the diagram below. Each apg in D then describes a
unique set in C via the unnamed arrow. The testing of
subsumption is actually testing the presence of a Hoare
simulation between the objects in C. With respect to our
implementation we now have the following commutative
diagram.

'apgs (accessible pointed graphs) are pictures of non-well-
founded sets (see [Acsel, 1988])

D
Imppy
AX]
Pa 0N
C

(Our new implementation of K-REP creates two
spaces of objects representing concepts. The definition
space corresponds to A5 [X], and the semantic space cor-
responds to C. Thus the definition space allows for mul-
tiple definitions that might map to the same object in
the semantic space).

The fact that s preserves order proves the following
theorem:

Theorem 4.5 Descriptive subsumptlion implies struc-
tural subsumption.

This shows ua that descriptive subsumpticn is weaker
than structural subsumption, and agrees with Proposi-
tion 5.2 (page 133) in [Nebel, 1990],

5 Extensional Greatest Fixed Point
Models

In this section we will define eztensional, i.c., model-
theoretic, subsumption. We need to do this carefully in
order to have the necessary notation to carry out the
proof to be given in the next section.

If B is a concept algebra and a: X — B, then
&: A{X] — B is the unique homomorphism that extends
the definition of & on X to the free algebra A[X]. The
effect of applying & to a term s € A[X] is to substitute
in s for occurences of variables corresponding to values
from B specified by a: X — B.

From a formal point of view, a knowledge base

A:{zlEh,...,antn}

is a function A: X — A[X], where Az; = {;. The func-
tion A induces a transformation Kalszﬂx — BX de-
fined by Ka ga = doA, foralla: X — B. A fixed point
of Ka g is exactly what is meant by a solution in the
concept algebra B to the system of equations

A={zl..=-t1‘-..‘="stn}-

As a general reference on ordered sets, we suggest
[Davey and Priestley, 1990]). Let L and M be complete
lattices, A function from L to M is Scott continvous if
it preserves sup’s of directed subsets of L. If f: L — L is
Scott continuous, then the Tarski-Scott Fixed Point The-
oremn asserts that f has a least fixed point, and this least
fixed point is given by \/_ . o(f™ L). However, extensional
subsumption ia defined using greatest fixed pointa, so we
need a dual notion of continuity. A function from L to M
in dually Scot! continuous if it preserves inf's of filtered
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subsets of L. The Tarski-Scott Fixed Point Theorem im-
ples that, if f: L — L is dually Scott continuous, then f
has a greatest fixed point, and this greatest fixed point
is given by A, o(f/"T)

To build an extensional greatest fixed point model in
the context of a knowledge base A: X — A[X], we start
with a universe /. Then we interpret the primitives as
gubsets of I{ and the roles as binary relations on i/. Using
these interpretations, and guided by Table 1, we endow
the power set B = 2¥ with a concept algebra structure.
Of course, B is a complete lattice under is set inclusion.
Furthermore, each of the concept algebra aperators turns
out then to have & dually Scott continuous interpretation
as an operation on 8. Since B is a complete lattice, so
also is the set BX, ordered pointwise. Since the opera-
tions on B are dually Scott continuous, it follows that
Kp m: BX — BX is also dually Scott continuous. Hence,
Ka,p has a greatest fixed point §: X — B. The exten-
sional greatest fixed point model for A[X] is then the
homomorphism

M =B:A[X] - B.
It is conventional to denote by s = s the subset of
I assigned to a term s by an extensional greatest fixed
point model M,
Definition 5.1 Given lwo terms sy, 8; € A[X], we say
3y exiensionally subsumes s; (written 81 Da 83) iff, for
all eztensional greatest fized point models M, {1 D s31.

The remainder of this section is devoted to a closer
look at a fixed extensional greatest fixed point model
f: A[X] —+ B. Note that the maximum element of B% is
the function Sg: X — B given by fpz = U, forallz € X.
If we inductively define 8,.: X — B by 8n41 = Ka pfn
for each nonnegative integer n, it follows that 5o > ,G‘E >
B2 > - and § = A,c. Bn- Upon realising that BAIXT
ordered pointwise, is a complete lattice, it is not hard to
prove the following proposition.

PropoPition 5.2 fo > B > 8 >
Anco Bn - A[X] — B.

In keeping with our conventions, the unique homomor-
phism extending A: X — A[X] is A: A[X] — A[X).
l"roposi!;ion.s.3 For all nonnegative integers n,
Bns1=Fnod.

Proof. This follows easily by considering the commu-
tative diagram

.end § =

AlX]
A
x B . 4
Bn+1 fn
B
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Corollary 5.4 For all nonnegative integers k, i =

AnEu(ﬁﬂ o Al)'

68 Concept Algebras and Greatest Fixed
Point Models

In this section we will prove Theorem 6.3, which as-
serts that structural subsumption is equivalent to model-
theoretic subsumption. This theorem was first posed as
a conjecture in [Dionne et al., 1992b]. Roughly speaking,
it states that structural subsumption in the algebra C is
the most abstract of all the greatest fixed point modela.
By “most abstract” we mean that if a subsumption holda
in C, then it holdw in all greatest fixed point models, and
converscly. In fact it appears that a stronger statement
can be made about finite models, which we will discuss
later as & new conjecture.

Let A: X — A[X] be some fixed knowledge base that
is & good set of definitions. To simplify notation, let
p be the intensional model described in Section 4 that
corresponds to A. Thus, 3 = pa 0 7xa @ A[X] = C.
When the homomorphism 5 is restricted to the set X
of knowledge base variables, we obtain ;s X — C, which
gives the unigue selution in C to the system of equations
A={z1=1,...,2, =1,}. Since p ia the unique fixed
point of Kx ¢, it follows that p = fo A. By considering
the diagram

A[X]
A
A
X A[X]
P I
C

we see that j = ﬁoA.

For each i € A[X], let depth 1 be the length of the
longest role chain in t. (Note that depth t is a purely
syntactic notion that is independent of A. One could
oot similarly define the depth of an element of Ax[X]
because in that aigebra there may be infinite role chains.)

Most of this section is devoted to the proof of the next
proposition, which is fairly technical. Its proof can be
skipped on a first reading. The proof of the proposition
is based on the following algebraic fact: since A[X] is a
free algebra, each term in it has a unigue decomposition
in the sense that, for each t € A[X], there exist uniquely
determined sets Q¢ C P and Vi C X and a uniquely
determined finite partial function Fy € R:":A[X ] such

that

t= AQAAViAA{R(FiR)| RedomF}.
Thus, the fact that A is a good set of definitions can be
stated succinctly as (Vz)(Vao. = 0).

Proposition 6.1 Let M = f: A[X] — B be an ezten-
sional greatest fized point model, where B = 24, For



each integer n, let the homomorphism B,: A[X] — B
be defined as in Section 5. For all nonncgative inte-
gers n and k, if 1,0’ € A[X)] satisfy pt = pt' and
k = max{depth t', max{depth Az | z € X}}, then
Briasrt < Aot

Proof. We will use a double induction on n and k.

Case 1: n =k = 0. Given t,t' € A[X], we need to
show that it < fot’. Since depth ¢' = 0, it must be

that
t = AQt' I\AV;-.
Note that fot' = A Qe since foz = T, and jt = pt’
implies 3(At) = (Ar’). Since k = 0,
HBE) = BAQe) A B N (nQa.)-
e'eV,
Now we have p(At) =

p(AQ:)
f\(ﬁ(A.e“[{\st A A{R (FAU R} | Re do'm'FA:}])
ABALR (A(Fe R)) | R € domF,}),

from which it follows that p(At) =
A(AQr)
Aﬁ(AggV,(AQAS)
AA{R (G: R} | R € domF U, ¢y, domFa.}),
where Gi(R} =
{ A(FacRA{A(F.R))) R € domFa, NdomkF,
.Fa,R RE domFA, -domF.
FgR RG dome—dmnan
So, p(At) = p(At') implies
BAQA N (7Qa)) =AAQe A N\ (AQ4.))-

2EV, z'EVy,
Therefore ;1 = ﬁo(ﬁt) = ﬁo[/\Q, AAsev (MQaz) - )<
Bo(AQr) = fot’

Case 2: Suppose the proposition is true if n = 0 and
¥k < j. Consider the case k£ = j,n = 0. We need to
show that F; 41t < fot’. As in the base case,

t= AQAAViAA{R (FR) | R domF}
and similarly for ¢'. Again, we have that jt = jt’ implies
B(At) = p(Ar'). So, p(At) =

A ey (@)
AMELGR) | R € domF, U, y, domFac})

and ﬁ(Af') =
HAQw)
Aﬁ(A-eV,U\QAI')
AM{R(GeR) | R € domFy U, ey, domFav}),
where Gy is defined the same way as ;. Note that:
max{depth G (R), max{depth Az' |z’ € Vv }} < j

Thus, separating the action of 3 on ¢,t' into its primi-
tive and role components allows us to use the induction
hypothesie, so that 3,1t = :

Bi((rQ0)
A A.:ev (AQar)
ANR(G\R) | R € domF, U, ¢y, domFas})
< Bo((AQe)
AAerey, (AQax)
AMR(GyR) | R € domFu U Ue'e‘if,. domFpa.})
Bo(at)
Bot'.
Caae 3: n = m,k = 0 where the proposition is true

for all n < . We need to show that Sy < Amt’. The
action of p on t and ' are the same as in the previous
cases, 80 we'll just sketch the main argument. Obgerve

that ﬁm,+1t -
Brn (A Q)
A Anev.(AQAc)
AA{R (GiR){ R € domF, U USGV. domFa.}).
< BnlAQe A Aer,(AQac))

Since £ = 0, application of the induction hypothesis
yields

Byt <

IA I

ﬁ?m-i(’_\Qt' AAvev, (AQaz))
fn-1(AIAQu A A Vi)
Bmt'.

Case 4: n = m, k = j where the proposition. ia true for
alln < m and k < j. We need to see that Smyj4at <
Bmt'. We have ,é,n+j+1t =

Em-H((AQt)

A A:ev (AQM)
ANR(G.R} | R € domF, U\, ¢y, domFa.})

= Bmyi-1{(AQr)
A Agev' !AQA=)
A A{R(A(Ggﬂ)) | R [ dOang U U’EVI dO‘YnFA.})

Therefore, by the induction hypothesis, 5,...4.,-“: <

B -1 ({A Q)
A AI‘EV‘: (AQﬂS')
AMR(AGR)) | R € domFe U, ey, domFas})
= fnt.
This proves Proposition 6.1. O

Lemma 6.2 Let 8 be the greatest fized point of Kam
for an arbitrary algebra B of sets corresponding fto some

model. For allt,t’ € A[X] it = pt' implies ft = ft'.
Proof. Suppose that 5t = jt’. By the preceding propo-
sition, o X R
Bt= N Bu(AM) < N But' = Y
nEw NnEw

The reverse inequality is proved similarly. O
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Theorem 6.3 Given two terms 53,82 € A[X)

a tn a2 S_ﬂ' ) Qn 3.

Procf. The proof in the “if” direction is a direct conse-
quence of a Stone-like representation theorem, that every
meet-semilattice is isomorphic to a meet-semilattice of
sets {see pp. 82 of [Davey and Priestley, 1990]). It is
easy to see that this implies that C is isomorphic to an
extensional greatest fixed point model.

For the “only if” direction, suppose we have an ar-
bitrary greatest fixed point model M = 8: A[X] — B,
where B = 2¢. To prove that &3 s 52 = 83 24 83,
V31, 83 € A[X], we argue as follows:

11 >4 83 = p(81 A s3) = p(s3)

= B(a1 As3) = f(s3) = o4 D 8

Since A is arbitrary, this implies s; D5 82, and this
proves Theorem 6.3. O

It appears that more can be said about the “only if”
direction of this proof. Namely that if two terms do not
subsume one another in the universal concept algebra
C, then it appears that one can construct a finite model
that exhibits this failure. The iptuition comes from ob-
serving that if one concepts fails to subsume another,
then it is for one of three reasons. Either they disagree
on primitives, or the subsuming concepts roles are not a
subsaet of the subsuming concepts roles, or they disagree
on some value restriction. The thitd case eventually re-
duces to either the first or the second, and even in the
cyclic cases, that clearly give rise to infinite chains, some
finite piece is sufficient. However this reasoning is hardly
a proof and since we've proved one conjecture already
we'll finish with another.

Conjecture 6.4 Given two terms 81, 82 € A[X]

81 =a 83 iff a3 Da 52 iff s‘lM ) s;“ ¥ finite models M.

7 Conclusion

This paper has shown that structural subsumption as
computed in the universal concept algebra, and sub-
sumption in all greatest fixed point models, are essen-
tially the same. Therefore, for purposes of subsumption
testing, one need not appeal to extensional models. This
appears to be a first step towards intensional semantics,
in the larger sense, as advocated in [Woods, 1991]. Con-
cepts are seen as just descriptions. Their relationships,
via subsumption, to other concepts is a structural com-
parison process. Each concept in K-REP gives rise to
two objects: a definitional one in AQ[X] and a semantic
one in C.

Currently we are working on extending concept alge-
bras, which now include disjunctions (see [Dionne et al.,
1992a]), to include negation while still handling cycles.
One approach might make use of the fact that a finite
distributive lattice is a Heyting algebra, in which one
can define negation in terms of disjunction. Another ap-
proach would be to use boolean algebras, in which case
normalization in the presence of cycles is problematic.

718 Knowledge Representation

References

[Aczel, 1988] Peter Aczel. Non-Well-Founded Sets, vol-
ume 14 of CSLI Lectures Notes, CSLI/Standford,
1988.

[Baader and Hollunder, 1991] Franz Baader and Bern-
hard Hollunder. KRIS: Knowledge representation and
inference system. SIGART Bulletin, 2(3), June 1991.

[Baader, 1990] Franz Baader. Terminological cycles in
KL-ONE-based knowledge representation languages.
In Proceedings of AAAI, Boston, Mass., June 1990.

[Borgida et al, 1989] Alexander Borgida, Ronald J.
Brachman, Deborah L. McGuinness, and Lori Alperin
Resnick. CLASSIC: a structural data model for ob-
jects. In Proceedings of the 1989 ACM SIGMOD In-
ternational Conference on Management of Data, Port-
land, Oregon, May-June 1989.

[Brink and Schmidt, 1992] Chris Brink and Renate A.
Schmidt. Subsumption computed algebraically. Com-
puters Math, Applications., 23(2-5):329-342, 1992.

[Davey and Priestley, 1990] B. A. Davey and H. A.
Priestley. Introduction to Lattices and Order. Cam-
bridge University Press, 1990.

[Dionne et aL, 1992a] Robert Dionne, Eric Mays, and
Frank J. Oles. Disjunctive concept algebras. Tech-
nical Report RC 18458, IBM, 1992.

[Dionne et aL, 1992b] Robert Dionne, Eric Mays, and
Frank J. Oles. A non-well-founded approach to ter-
minological cycles. In Proceedings of AA Al 92, San
Jose, Cal., July 1992.

[Jacobson, 1989] Nathan Jacobson.
W.H. Freeman and Company, 1989.

[MacGregor and Bates, 1987] Robert MacGregor and
Raymond Bates. The LOOM knowledge representa-
tion language. Technical Report ISI/RS-87-188, Uni-
versity of Southern California, Information Science In-
stitute, Marina del Rey, Cal., 1987.

Basic Algebra II.

[Mays et al, 1991] E. Mays, R. Dionne, and R. Weida.
K-REP system overview. SIGART Bulletin, 2(3),
June 1991.

[Nebel, 1990] Bernhard Nebel. Reasoning and Revision
in Hybrid Representation Systems, volume 422 of Lec-
ture Notes in Artificial Intelligence. Springer-Verlag,
1990.

[Rounds, 1991] William C. Rounds. Situation-theoretic
aspects ofdatabases. In Barwise, Gawron, Plotkin and
Tutiya, editor, Situation Theory and its Applications,
volume 26. CSLI/Stanford, 1991.

[Woods, 1991] William A. Woods. Understanding sub-
sumption and taxonomy: A framework for progress. In
J. F. Sowa, editor, Principles of Semantic Networks.
Morgan Kaufman, 1991.



