Using Classification as a Programming Language

Chris Mellish'and Ehud Reiter*
Department of Artificial Intelligence
University of Edinburgh
80 South Bridge
Edinburgh EH1 1HN
GREAT BRITAIN

Abstract

Our experience in the IDAS natural language
generation project has shown us that IDAS'S KL-
ONE-like classifier, originally built solely to hold
a domain knowledge base, could also be used to
perform many of the computations required by
a natural-language generation system; in fact
it seems possible to use the classifier to encode
and execute arbitrary programs. We discuss
IDAS'S classification system and how it differs
from other such systems (perhaps most notably
in the presence of template' constructs that en-
able recursion to be encoded); give examples
of program fragments encoded in the classifi-
cation system; and compare the classification
approach to other Al programming paradigms
(e.g., logic programming).

1 Introduction

This paper investigates a new approach to program-
ming that is based on controlling a KL-ONE-type clas-
sifier [Brachman and Schmolze, 1985]. In this approach,
'inputs' are classes that are given to the classifier, 'pro-
grams' are the existing classes in the taxonomy main-
tained by the classifier, and 'outputs' are formed by clas-
sifying the input class into the program taxonomy, and
reading off some of the attributes that the class inherits
by virtue of its position in the taxonomy. We have used
this approach to implement [Reiter and Mellish, 1992]
most of the natural-language generation component of
the IDAS on-line documentation system [Reiter et al.,
1992], and have noticed that it seems possible to use clas-
sification programming to implement many other kinds
of programs as well. We mean this not just in the sense
that our classification programming system is Turing-
equivalent (which it is), but in the more important sense
that it seems like a natural way to express certain kinds
of computations; this has proven to be the case in IDAS,
at any rate.

This work is perhaps best considered as an attempt to
explore a poorly investigated portion of the space of pos-

* E-mail C.Mellisheed. ac.uk.
+ E-mail E.ReiterOed.ac.uk. Ehud Reiter is supported
by SERC grant GR/F/36750

696 Knowledge Representation

sible programming languages; it is not yet clear whether
this exploration will lead to a useful general-purpose pro-
gramming language. Much of our work is inspired by
the development of logic programming, which arose out
of the realisation that controlled theorem-proving could
be the basis of a programming language; our hope is to
show that controlled classification can similarly be used
to create a programming language. We would like to em-
phasize, incidentally, that although this paper presents
work in progress, we have implemented the Il system we
discuss in this paper, and have used it to build a sub-
stantial portion of a documentation generation system;
the system we are describing here is not simply a paper
design. On the other hand, Il was not developed origi-
nally as a general-purpose programming language and it
is clear that it is deficient in a number of respects (e.g.
syntax, existence of optimising compilers and debuggers)
that prevent it from being (at present) a practical gen-
eral programming language.

We will compare classification programming system
mainly to logic programming, both because that is
the programming paradigm we are most familiar with,
and also because our experience to date with classifi-
cation programming has suggested that such program-
ming 'feels like' programming Prolog; at the most basic
level, for example, both classification and logic program-
ming are very declarative approaches to building pro-
grams. Classification programming also, however, con-
tains characteristics that are more reminiscent of object-
oriented programming and production systems, and this
may make it useful in applications that are difficult to
develop in Prolog.

Section 2 of this paper briefly describes what a classi-
fier does. Section 3 introduces the Il system and gives
a simplified formal syntax and semantics for its core.
Section 4 describes how Il can be used to represent and
execute programs, and gives examples of a simple Prolog-
style append function and a rule from the IDAS surface
realisation grammar. Section 5 compares classification
to related approaches, and section 6 presents some con-
cluding comments about classification programming and
its future prospects.

2 Classification

A classification system computes subsumption relation-
ships between domain entities, and records these sub-
sumption relationships by maintaining a classification
taxonomy. For example, a classifier could determine
that the class Bachelor, defined as [Person with attributes
{sex:Male, age-status:Adult, marital-status:Unmarried}],
was subsumed by the class Man, defined as [Person with
attribute {sex:Male, age-status:Adult}]; and hence that
Bachelor should go beneath Man in the taxonomy. Space
does not permit a detailed discussion of basic classifica-
tion technology and terminology; the interested reader
may wish to read, for example, IBrachman and Schmolze,
1985] or the chapters in [Sowa, 1991]. We will assume in
this paper that the reader is familiar with basic classifi-
cation terminology, such as the terms value restrictions
and primitive class.

A classification-based knowledge representation sys-
tem usually contains an assertional component or 'A-
box' as well as the subsumption reasoner ('T-box'). One
of the simplest A-box's, and the one that will be of pri-
mary interest here, is a default inheritance system, where
attributes are inherited from superclass to subclass in the
subsumption taxonomy, unless they are overridden by an
attribute value specified in a more specific class. These
inherited attributes are typically distinguished from the
attributes the classifier examines when performing sub-
sumption calculations, since current-day classification al-
gorithms cannot handle default attributes.

A classification-based KR system performs inferences
by combining the abilities of its T-box and A-box. For
example, suppose the system was informed that

+ the class Adult-Person, defined as [Person with
{age-status:Adult}], has the default attribute has-
children :True;

* the class Unmarried-Adult-Person, defined as [Person
with {age-status:Adult, marital-status Unmarried}],
had the default attribute has-children:False.

« John is a Person with attributes {sex:Male, age-
status: Adult, marital-status: Unmarried}

John is subsumed by both Adult-Person and Unmarried-
Adult-Person, and Unmarried-Adult-Person is subsumed
by Adult-Person. If a query is issued for the value of
has-children for John, the system will prefer the default
attached to Unmarried-Adult-Person because this class is
more specific than (i.e., is subsumed by) Adult-Person;
hence, the system will conclude that John has the value
False for the role has-children.

The above illustrates the simplest use of classification
to make inferences and computations; the classifier uses
its knowledge about the individual class John to place
that class in the taxonomy, and then uses the class's com-
puted taxonomy position to make inferences about its
attributes. Writing general-purpose programs requires
adding facilities for procedure calls and data structur-
ing; the techniques used by Il to do this are based on
adding template and reference constructs that allow new
classes to be dynamically created, classified, and queried
(for attribute values) while the system is responding to

an attribute value query. These constructs are described
in section 3, and their use for programming is discussed
in section 4.

3 Il

Il is the knowledge representation system used in IDAS,
and includes:

* an automatic classifier that value

restriction.’

supports

» a default-inheritance system that gives precedence
to defaults from subsumed (more specific) classes.

* various support tools, such as a graphical browser
and editor.

11 is probably not the best possible classification pro-
gramming language, and if we were to start over we
would undoubtably build a somewhat different system.
But Il has been the basis of our experiments with clas-
sification programming, and hence we will use it in this
paper.

More formally, the open-class symbols used in speci-
fying an 11 knowledge base are of three kinds. We will
use ¢ E C to denote a concept (class) name, ra E Ra
an assertional role name and rd € Rd a definitional role
name. Definitional roles are those seen by the classi-
fier, whereas assertional roles are those whose values are
inherited by the default mechanism. Definitional roles
are not processed by the default-inheritance system (al-
though they are inherited in a non-default manner), and
assertional roles are ignored during classification.

For specifications of role values, we will use va € Va
to denote an assertional role value specification and vd €
Vd a definitional role value specification®:

vd — ¢

ve —c|<ri...rp> | ewith {rdy :vy,... rdm vy}

We will refer to the second kind of va specification as a
reference, and the third kind as a template. References
apecify the value of a role in terms of a K1.-ONE-like role
chain, while templates specify a parametrized class def-
inition as a role value.

An ! knowledge base is specified by a set of sentences
¢ as follows:

b —
¢ = {ra:vay,...,ra,:va,} |
c={er, ..., em} with {rdy:vd;, ... rdyivd,}

There are some global conditions that must be placed on
the set of sentences that can occur in a knowledge base.
For instance, each concept symbol ¢ should only occur
in one statement of the form ¢ = For convenience
we will define R = RaURd, V = VaUVdandusere R
andveV.

The following example illustrates some templates with
embedded reference role chains:

2The Il classifier also supports other class-definition op-
erators (e.g., a very limited form of role differentiation), but
these will not be discussed in this paper.

2 Note that for compactness this paper uses a different 11
syntax from that used in the implementation.

Mellish and Reiter 697

Open-door = {Oper)} with {actor:Animate, actee:Door}
Open-door = {
decomposition: Sequence with {
1: Grasp with {actor:<actor>, actee:<<handle actee>},
2: Turn with {actor:<actor>, actee:<handle actee>},
3: Pull with {actor:<actor>, actee:<handle actee>}}}

The = statement defines Open-door to be the class of
all Open entities whose actor role has a filler subsumed
by Animate, and whose actee role has a filler subsumed
by Door. These are definitional value restrictions. The
=> statement describes the value for an assertional role
(decomposition) of Open-door. The value is specified by a
template, which provides the name of a class subsuming
the value (Sequence) and a set of specifications for role
values of this class (here, the roles 1, 2 and 3). These
role values are themselves specified by templates. Each
of these templates defines a class whose ancestor is an
action (Grasp, Turn, Pull) that has the same actor as the
Open-Door action and that has an actee that is the filler
of the handle role of the actee of the Open-Door action.

For example, if Open-12 was defined as an Open action
with role fillers actor:Sam and actee:Door-6:

Open-12 = {Open} with {actor:Sam, actee:Door-6}

then Open-12 would be classified beneath Open-Door by
the classifier on the basis of its actor and actee values. If
an inquiry was issued for the value of decomposition for
Open-12, the above definition from Open-Door would be
inherited, and, if Door-6 had Handle-6 as the filler of its
handle role, the three templates in the Sequence would
be expanded into three actions, (Grasp-12 Turn-12 Pull-
12), each of which had an actor of Sam and an actee of
Handle-6; these three subactions would then themselves
be classified into the taxonomy.

We will now specify a simple formal semantics for the
I1 syntax we have presented. This is purely for concrete-
ness - apart, perhaps, from the case of templates (the
last clause for val below), we take a standard approach,
as exemplified, for instance, by [Levesque and Brach-
man, 1985). This account fails to deal with the default
inheritance aspects of 11, and must be read making the
assumption that any class only inherits a single speci-
fication for any assertional role from its ancestors. An
tnierpretation 7 is a pair < D, F >, where D is a set
and F provides for each ¢ € C, a set ¢ C D and for
each r € R, a function ¥ : D — D. An interpretation
I saatisfies a given sentence ¢, sat{¢,T) in the following
CaBes:

sat(c = {...,ri v, ...}, I)iff
for each z € ¢*, for each 4,
v} (z) € val(v;, z,T)
satle={...,¢;,...} with {...,rjiv;,.. .}, T} iff
z € ¢* exactly when
for all i, z € ¢F and
for all j, r¥(z) € val(v;,z,I)
where
val(c,z,T) = &
val(<>,2,7) = {z}
val(< ry...rg >, 2,T) =

() |y eval(< ry,y...70 >,2,1)}
val(c with {...,r:v;,...},2,7) =

698 Knowledge Representation

{y € |for all i, r¥(y) € val(v;, z,1)}
An interpretation 7 satisfies a set of sentences KB iff it
satisfies each sentence in K B.

Once a knowledge base has been established, it is nec-
essary to be able to present queries to determine its con-
sequences. A query can be expressed in the form:

(<rmry...rys>of ¢} C ey
{“is the value of r; of r2 of ... r, of every instance of
¢ also an instance of ¢;7”). A knowledge base K B sup-
ports (a “yes" answer to) a query ¢, K B |= g, as follows:
KBE(<r,r...ta>0olc) C ¢ iff
for all T such that sat(K 8,7),
for all £ € £,
val(< ry,re...rg >, 2,7)C cf
In practice, in I1, queries can only be expressed for
classes ¢ that have been declared as individuals. Role
values are computed lazily (but with caching) as they
are needed to answer a query.

4 Classification Programming

Il was designed to represent a fairly conventional knowl-
edge base of entities and actions, but we discovered that
it could also be used to represent and execute general-
purpose programs. To do this,

1. Classes in the taxonomy are regarded as rules,
whose conditions are specified in the definitional
roles (value restrictions) and whose conclusions are
expressed in the assertional roles.

2. Queries are represented as new classes that must be
classified.

3. The classifier acts as a pattern-matcher that selects
a rule which fits the query.

The 'running' of a classification program is initiated by
a request for the value of an assertional role for a class
that has already been classified. The interesting case
arises when this role value is specified by a template.
In this case, the class specified by the template must be
created and classified. |fsome role value for the new class
is needed to satisfy the original request, then this may
lead to more new classes being created and classified.
In this way, the classification programmer has access to
recursion.

Classes can also be used to represent data structures,
with roles being used to represent and access the data
structure's fields. Such data structures can be dynami-
cally constructed by templates during the 'execution* of
a classification program, and their components can be
dynamically accessed with references. It is also possible
to add special-purpose constructs for common structures
such as lists, which may improve efficiency; this is simi-
lar to the approach taken by Prolog, which has a special
syntax and compiler optimisations for constructing and
accessing lists. It is important to note that programs
and data in |l are represented with the same kind of
structure, namely classes, and are subject to the same
operations, namely classification and role inheritance; in
languages such as Prolog, in contrast, a real distinction
is made between programs and data and the operations
that make sense on each.

4.1 Converting Prolog Programs into
Classification Programs

Simple Prolog programs can be fairly mechanically con-
verted into |l programs, provided that the clauses in
the program distinguish between input and output ar-
guments, and no deep backtracking is performed. These
restrictions of course remove much of the power of Pro-
log, but we illustrate the process here in an attempt to
give readers used to Prolog more of an intuition for clas-
sification programs.

To generate an equivalent Il program for a simple
Prolog program, the following must be performed:

* An |l primitive class is generated for each Prolog
predicate®.

* A role is defined for each argument (input and out-
put) of a predicate (argument names must be intro-
duced, since classification requires keyword param-
eters instead of Prolog's positional arguments).

* A class is defined for each clause, which

- Includes an appropriate value restriction for ev-
ery constrained input argument.

- Includes a template for each 'call' of a predicate
in the clause's right-hand-side, with embedded
templates used to create any necessary complex
terms (data structures).

- Includes templates and references that relate
the output of the LHS predicate to the inputs
of the LHS predicates and the outputs of the
RHS predicates.

Such a program is queried by creating a class from the
input query, classifying it, and requesting the value of
any desired output arguments.

An example of this mapping is the following version
of the Prolog append function. Since II, unlike Pro-
log, does not have a special syntax for list manipula-
tion, the interpretation below assumes lists are repre-
sented with Lisp-like cons cells, e.g., [a,b] is represented
as cons(a,cons(b,null)). The components of a cons
structure will be referred to with the first and rest
roles. The following definitions also assume that the
first two arguments of append are the inputs input1 and
input2, and the third argument is the output output.

; append(nil, Y, Y).
Append-null = {Append} with {inputl:Null}
Append-null = {output:<input2>}

; append{cons(X,Y),Z,cons(X,Z1)) :- append(Y.Z,21).
Append-non-null = {Append} with {inputl:Cons}
Append-non-null = {
append-call: Append with
{inputl:<rest inputl> input2:<input2:}
output: Cons with
{first: <first inputl>,rest: <output append-call>}}

3Primitivenes8 can be simulated in the simplified syntax
by using a definition of the form:

C = ... with {c-q:True}
where c-q is a role not mentioned elsewhere in the knowledge
base.

It may be useful to illustrate the above definition with
some example inputa:

Listl = Cons with {first: A rest:Null}
List2 = Cons with {first:B,rest:Null}
Appendl = {Append} with {inputl:Listl, input2:List2}

Issuing a request for the value of output of Appendl
results in the following computations:

s Appendl is classified beneath Append-non-null, since
its inputl is a Cons.

¢ The output definition of Append-non-null is pro-
cessed, causing a new Cons to be created whose first
element is A {the first element of Listl, the inputl
to Appendl).

e The rest element of this Cons is computed by ex-
panding the template for append-call and comput-
ing its cutput. The template defines an Append class
whose first element is Null and whoee rest element
is List2. This class is classified beneath Append-null
since itg inputl is Null, and hence its output will be
its input2, i.e., List2.

o The final result (i.e., the value of output for Ap-
pendl} is a Cons whose first element is A and whosee
rest element is List2; this represents the list [A,B],
as desired.

4.2 Programming a Realisation Grammar

A more complex (and perhaps realistic} example of clas-
sification programming is its use to represent and process
a grammar for realising semantic representations as En-
glish sentences. Here are some simplified I1 definitions
for classes of sentences:

Sentence =
{Complete-phrase} with {semantics:Predication}
Sentence = {
realisation: Sequence with {
1:<realisation subject>,
2:<realisation predicate>},
Imperative = {Sentence} with {semantics:Command}
Imperative = {subject: EmptyPhrase}
Declarative = {Sentence} with {semantics:Statement}
Declarative = {subject:<deep-subject>}
Active = {Sentence} with {semantics:ActorTheme}
Active = {...,
deep-subject:Noun-phrase with
{semantics:<actor semantics>>}}
Passive = {Sentence} with {semantics: ActeeTheme}
Passive = {.. .,
deep-subject:Noun-phrase with
{semantics:<aclee semantics>}}

Informally, a Sentence is a phrase whose semantics is
a Predication. The realisation of a Sentence consists of
the realisation of its subject and the realisation of its
predicate {we will not consider the latter here). An Im-
perative sentence (when the semantics is 8 Command) has
an empty subject, A Declarative sentence uses its deep-
subject as its subject. This will always be a Noun-phrase,
whose semantics is either the actor or actee specified in
the sentence semantics. These definitions are used in the
following way to realise a semantic representation a. A
class Target is defined as follows:

Mellish and Reiter 699

Target = {Sentence } with {semantics:or}

and then queries about the realisation of Target are posed.

In this instance, the semantic distinctions Ac-
torTheme/ActeeTheme and Command/Statement are in-
dependent. A given (complete) semantic representation
a will be classified under one of each of these pairs. It
follows that Target will be classified both under one of Ac-
tive/Passive and also under one of Imperative/Declarative.
The appropriate value will then be inherited for the sub-
ject (either an empty phrase, or the value of the deep-
subject, which will be a Noun-phrase with a semantics
taken from an appropriate point in a).

Instead of giving separate definitions for Declarative
and Active, the programmer could have associated the as-
sertional statements about them (e.g., {subject:<deep-
8ubject>}) with Sentence. Under IlI's default inheri-
tance mechanism, this means that a Sentence would by
default be assumed to have these assertional proper-
ties unless its definitional information (i.e., the semantics
value) was such that it was classified beneath the more
specialised class Imperative or Passive. Using default in-
heritance in this manner allows the grammar to process
incomplete semantic inputs, which can be useful.

5 Comparison to Other Systems

There are interesting similarities between classification
programming and a number of existing programming
schemes. Space does not permit a detailed comparison
here, but we will attempt to summarise the most im-
portant points. We have already discussed briefly some
similarities between classification programming and Pro-
log, though the rigid distinction between inputs and out-
puts suggests a closer match in some respects with func-
tional languages such as ML [Milner et al., 1990]. The
use of (multiple) inheritance in Il reminds one natu-
rally of object-oriented languages, including Smalltalk
[Goldberg and Robson, 1983] and the feature-oriented
and declarative DATR language [Evans and Gazdar, 1989]
for lexical description. The use of complex functional
descriptions is reminiscent of recent feature logics and
extensions to unification grammars, such as TFS [Zajac
and Emele, 1990] and FUF [Elhadad, 1991], as weli

of the type specification languages of Ait-Kaci and his
associates — KBL [Ait-Kaci, 1984] and LOGIN J[Ait-Kaci
and Nasr, 1986]. Indeed, papers on TFS, FUF and KBL
all present versions of the Prolog append definition that
are similar to ours. Our discussion of Il definitions as
pattern-action rules suggests a connection with produc-
tion systems such as OPS5 [Brownstone et a/., 1985].

5.1 Classification

The major way in which Il differs from other systems
providing inheritance, such as Smalltalk, DATR, TFS,
FUF, LOGIN and KBL, is by the incorporation of a non-
trivial classifier. In these other systems, the types or
classes from which information can be inherited are
primitive (there are no non-trivial sufficient conditions
for class membership). This is essentially like running
Il without any = statements, with the programmer per-

700 Knowledge Representation

forming the necessary classification by hand*.

5.2 Determinism

Prolog, TFS, FUF, LOGIN and KBL provide, in place of
classification, unification and disjunction. A primitive
class can be associated with a set of possible "defini-
tions" and, when these are matched with the known
role-value pairs ofa more specific class, only certain com-
binations will turn out to be consistent. |If more than
one is possible, then non-determinism arises. In classifi-
cation programming, classification determines uniquely
where a class fits within the taxonomy and there is no
non-determinism. In this respect it behaves more like a
language like ML, where the first matching clause is al-
ways chosen (though in classification, it will be the most
specific definition, regardless of the textual order). Clas-
sification programming sacrifices bidirectionality by this
approach.

OPS5 provides disjunction implicitly by considering
all productions whose conditions are satisfied. If an
OPS5 program used a conflict-resolution strategy that
preferred the most specific matching productions, then
this might in some ways approximate the behaviour
of a classification system; in practice OPS5 conflict-
resolution strategies tend to also consider other factors,
such as when a data element was created or last updated.

5.3 Object-Orientation

In classification programming, a given class may be clas-
sified beneath several parent classes, and thereby inherit
will information from all of these classes. This is illus-
trated by our realisation grammar example, in which
a sentence class may, for instance, be a child of both
Declarative and Passive; such a sentence will inherit a
value for subject from Declarative, and a value for deep-
subject from Passive. Our append example (which looks
close to similar definitions in Prolog, ML, TFS, FUF, KBL
and LOGIN) is not really representative for this reason.
When an Il programmer produces definitions of sub-
classes of a given class these are not required to be dis-
joint. In the other languages, the multiple clauses for
a predicate, function or type are interpreted as disjoint
alternatives. The effect of multiple inheritance can be
coded in other ways in these languages, of course. In the
end, the difference is a matter of orientation. |l classes
are in this respect more like classes in Smalltalk and
DATR (and, to some extent, productions in OPS5), and
Il references can be seen as a form of message-passing.

“In fact, a limited kind of classification seems possible in
KBL via the lattice ordering on the type signature. If a type
which is equivalent to a conjunction of simpler types (and
hence not primitive) can be associated with a KBL "defini-
tion", then a kind of classification would be needed to as-
sociate this "definition" with a class that was subsumed by
both of the classes in the conjunction. But we have seen no
examples of this being done in the papers on KBL and this in
any case would involve only a very simple notion of classifi-
cation (which does not take account of role values). NB KBL
definitions associate only necessary conditions with classes
and correspond roughly to Il => statements. Because this is
a different sense of the word "definition" than our own, we
will distinguish it by quotes.

The use of default inheritance in |l is another feature in
common with object-oriented systems.

5.4 Declarativeness

Although classification programming has an object-
oriented orientation, unlike most OOP languages (with
the exception of DATR) it is purely declarative. It also
differs from OPS5 in this respect.

5.5 Recursion

The template mechanism in Il is what distinguishes
it from other classification systems; in particular, tem-
plates permit the Il programmer to implement recursion
and procedure calls. Several systems have been built
that combined classification and forward chaining pro-
duction rules, including CLASP [Yen et al, 1991], CLAS-
SIC [Brachman et al, 1991], and CONSUL [Mark, 1980];
these rules could perhaps be used to achieve some of
the same functionality as Il's templates, but we are not
aware of any attempt to use these systems as we are using
Il. CONSUL also seems to have had some template-like
capabilities, but the details are unclear, and again this
facility was not used in the way we use templates in |I.

5.6 Laziness

In I'l, assertional roles are only accessed (and templates
expanded) when this is necessary to answer a query. This
lazy evaluation strategy, which is not the only mecha-
nism that could be used in classification programming,
differs from the forward chaining rules of OPS5 and
CLASSIC. It is similar to lazy evaluation as it appears
in functional languages.

5.7 Procedures vs Data

As with TFS, FUF and KBL, Il makes no distinction be-
tween procedures and data, the same operations being
applicable to both. In this respect it differs from LOGIN,
Prolog, ML and OPS5.

6 Conclusion

This paper has shown how a KL-ONE-like classification
system can be used to execute general-purpose programs,
if it is augmented with a default inheritance system
and constructs that allow recursion to be programmed
(e.g., templates). The resultant programming system
has some similarities to logic programming, production-
rules systems, and object-oriented approaches, but does
not fully fall into any of these categories. Classifica-
tion programming has proven to be a very useful tool in
the IDAS system, and we expect that it will be similarly
useful in other knowledge-centred applications which re-
quire integrating some algorithmic reasoning with a KL-
ONE-like domain knowledge base. Whether the classifi-
cation approach will lead to a general-purpose language
that is as useful as, say, Prolog is unclear at this point in
time; at minimum, however, classification programming
provides a novel and interesting perspective on what con-
stitutes programming, and on the relationship between
knowledge and reasoning.

References

[Ait-Kaci, 1984] Hassan Ait-Kaci. A Lattice Theoretic Ap-
proach to Computation Baaed on a Calculus of Partially
Ordered Type Structures. PhD thesis, University of Penn-
sylvania, 1984.

[Ait-Kaci and Naur, 1986] Hassan Ait-Kaci and Roger Nasr.
LOGIN: A logic programming language with built-in inher-
itance. Journal of Logic Programming, 3:185-215, 1986.

[Brachman and Schmolze, 1985]
Ronald Brachman and James Schmolze. An overview of
the KL-ONE knowledge representation system. Cognitive
Science, 9:171-216, 1985.

[Brachman et al, 1991] Ronald Brachman at al.. "Living
with CLASSIC: When and How to Use a KL-ONE-Like
Language". In [Sowa, 1991].

[Brownstone et al, 1985] Lee Brownstone, Robert Farrell,
Elaine Kant, and Nancy Martin. Programming Expert Sys-
tems in OPS5. Addison-Wesley, 1985.

[Elhadad, 1991] Michael Elhadad. "FUF User's Manual -
Version 5.0\ Technical Report CUCS-038-91, Columbia
University, 1991.

[Evans and Gazdar, 1989] Roger Evans and Gerald Gazdar.
Inference in DATR. In Proceedings of Fourth Meeting of the
European Chapter of the Association for Computational
Linguistics (EACL-1989), pages 66-71, 1989.

[Goldberg and Robson, 1983] Adele Goldberg and David
Robson. SMALLTALK-80: The Language and its Imple-
mentation. Addison-Wesley, 1983.

[Levesque and Brachman, 1985]
Hector Levesque and Ronald Brachman. "A Fundamental
Tradeoff in Knowledge Representation and Reasoning". In
Readings in Knowledge Representation, Eds. R. J. Brach-
man and H. J. Levesque. Morgan Kaufmann, 1985.

[Mark, 1980] William Mark. Rule-based inference in large
knowledge bases. In Proceedings of the First National Con-
ference on Artificial Intelligence (AAAI-1980), pages 190-
194, 1980.

[Milner et al, 1990] Robin Milner, Mads Tofte and Robert
Harper. The Definition of Standard ML, MIT Press, 1990.

[Reiter and Mellish, 1992] Ehud Reiter and Chris Mellish.
Using classification to generate text. In Proceedings of the
30th Annual Meeting of the Association for Computational
Linguistics (ACL-1992), pages 265-272, 1992.

[Reiter et al., 1992] Ehud Reiter, Chris Mellish, and John
Levine. Automatic generation of on-line documentation
in the IDAS project. In Proceedings of the Third Con-
ference on Applied Natural Language Processing (ANLP-
1992), pages 64-71, Trento, Italy, 1992.

[Sowa, 1991] John Sowa, editor. Principles of Semantic Net-
works. Morgan Kaufmann, 1991.

[Yen et al, 1991] John Yen, Robert Neches, and Robert
MacGregor. CLASP: Integrating Term Subsumption Sys-
tems and Production Systems. |EEE Transactions on
Knowledge and Data Engineering, 3:25-32, 1991.

[Zajac and Emele, 1990] Remi Zajac and Martin Emele.
"Typed Unification Grammars" In Proceedings of the
13th International Conference on Computational Linguis-
tics (COLING-1990), Helsinki, 1990.

Mellish and Reiter 701

