
Us ing Classi f icat ion as a P r o g r a m m i n g Language

Chris Mel l i sh 'and Ehud Reiter*
Department of Artificial Intelligence

University of Edinburgh
80 South Bridge

Edinburgh EH1 1HN
GREAT BRITAIN

Abst rac t
Our experience in the IDAS natural language
generation project has shown us that IDAS'S KL-
ONE-like classifier, originally built solely to hold
a domain knowledge base, could also be used to
perform many of the computations required by
a natural-language generation system; in fact
it seems possible to use the classifier to encode
and execute arbitrary programs. We discuss
IDAS'S classification system and how it differs
from other such systems (perhaps most notably
in the presence of template' constructs that en-
able recursion to be encoded); give examples
of program fragments encoded in the classifi­
cation system; and compare the classification
approach to other AI programming paradigms
(e.g., logic programming).

1 In t roduc t i on
This paper investigates a new approach to program­
ming that is based on controlling a KL-ONE-type clas­
sifier [Brachman and Schmolze, 1985]. In this approach,
' inputs' are classes that are given to the classifier, 'pro­
grams' are the existing classes in the taxonomy main­
tained by the classifier, and 'outputs' are formed by clas­
sifying the input class into the program taxonomy, and
reading off some of the attributes that the class inherits
by virtue of its position in the taxonomy. We have used
this approach to implement [Reiter and Mellish, 1992]
most of the natural-language generation component of
the IDAS on-line documentation system [Reiter et al.,
1992], and have noticed that it seems possible to use clas­
sification programming to implement many other kinds
of programs as well. We mean this not just in the sense
that our classification programming system is Turing-
equivalent (which it is), but in the more important sense
that it seems like a natural way to express certain kinds
of computations; this has proven to be the case in IDAS,
at any rate.

This work is perhaps best considered as an attempt to
explore a poorly investigated portion of the space of pos-

* E-mail C.Mellisheed. ac.uk.
+ E-mail E.Reiter0ed.ac.uk. Ehud Reiter is supported

by SERC grant GR/F/36750

sible programming languages; it is not yet clear whether
this exploration wil l lead to a useful general-purpose pro­
gramming language. Much of our work is inspired by
the development of logic programming, which arose out
of the realisation that controlled theorem-proving could
be the basis of a programming language; our hope is to
show that controlled classification can similarly be used
to create a programming language. We would like to em­
phasize, incidentally, that although this paper presents
work in progress, we have implemented the II system we
discuss in this paper, and have used it to build a sub­
stantial portion of a documentation generation system;
the system we are describing here is not simply a paper
design. On the other hand, II was not developed origi­
nally as a general-purpose programming language and it
is clear that it is deficient in a number of respects (e.g.
syntax, existence of optimising compilers and debuggers)
that prevent it from being (at present) a practical gen­
eral programming language.

We wil l compare classification programming system
mainly to logic programming, both because that is
the programming paradigm we are most familiar with,
and also because our experience to date with classifi­
cation programming has suggested that such program­
ming 'feels like' programming Prolog; at the most basic
level, for example, both classification and logic program­
ming are very declarative approaches to building pro­
grams. Classification programming also, however, con­
tains characteristics that are more reminiscent of object-
oriented programming and production systems, and this
may make it useful in applications that are difficult to
develop in Prolog.

Section 2 of this paper briefly describes what a classi­
fier does. Section 3 introduces the II system and gives
a simplified formal syntax and semantics for its core.
Section 4 describes how II can be used to represent and
execute programs, and gives examples of a simple Prolog-
style append function and a rule from the IDAS surface
realisation grammar. Section 5 compares classification
to related approaches, and section 6 presents some con­
cluding comments about classification programming and
its future prospects.

696 Knowledge Representation

2 Classif ication

A classif ication system computes subsumpt ion re lat ion­
ships between domain ent i t ies, and records these sub­
sumpt ion relat ionships by ma in ta in ing a classification
taxonomy. For example, a classifier could determine
tha t the class Bachelor, defined as [Person w i t h at t r ibutes
{sex:Male, age-status:Adult, marital-status:Unmarried}],
was subsumed by the class Man, defined as [Person w i t h
a t t r i bu te {sex:Male, age-status:Adult}] ; and hence tha t
Bachelor should go beneath Man in the taxonomy. Space
does no t pe rm i t a detai led discussion of basic classifica-
t i on technology and termino logy; the interested reader
may wish to read, for example, IBrachman and Schmolze,
1985] or the chapters in [Sowa, 1991]. We w i l l assume in
th is paper t ha t the reader is fami l ia r w i th basic classifi­
cat ion termino logy, such as the terms value restrictions
and primitive class.

A classif ication-based knowledge representation sys­
tem usual ly contains an assertional component or 'A -
box ' as wel l as the subsumpt ion reasoner ('T -box ') . One
of the simplest A-box 's , and the one tha t w i l l be of p r i ­
mary interest here, is a default inheri tance system, where
a t t r ibu tes are inher i ted f r om superclass to subclass in the
subsumpt ion taxonomy, unless they are overridden by an
a t t r i bu te value specified in a more specific class. These
inher i ted a t t r ibu tes are typ ica l ly dist inguished f rom the
a t t r ibu tes the classifier examines when per forming sub­
sumpt ion calculat ions, since current-day classification al­
go r i thms cannot handle defaul t a t t r ibutes.

A classif ication-based KR system performs inferences
by combin ing the abi l i t ies of i ts T-box and A-box. For
example, suppose the system was informed that

• the class Adult-Person, defined as [Person w i t h
{age-status:Adul t }] , has the default a t t r ibu te has-
children :True;

• the class Unmarried-Adult-Person, defined as [Person
w i t h {age-status:Adult, marital-status Unmarried}],
had the defaul t a t t r i bu te has-children:False.

• John is a Person w i t h at t r ibutes {sex:Male, age-
status: Adul t , marital-status: Unmarried}

John is subsumed by bo th Adult-Person and Unmarried-
Adult-Person, and Unmarried-Adult-Person is subsumed
by Adult-Person. If a query is issued for the value of
has-children for John, the system w i l l prefer the default
at tached to Unmarried-Adult-Person because this class is
more specific t han (i .e., is subsumed by) Adult-Person;
hence, the system w i l l conclude tha t John has the value
False for the role has-children.

T h e above i l lustrates the simplest use of classification
to make inferences and computat ions; the classifier uses
i ts knowledge about the ind iv idua l class John to place
tha t class in the taxonomy, and then uses the class's com­
puted taxonomy posi t ion to make inferences about i ts
a t t r ibu tes . W r i t i n g general-purpose programs requires
add ing faci l i t ies for procedure calls and data st ructur­
ing ; the techniques used by I I to do this are based on
add ing template and reference constructs tha t allow new
classes to be dynamica l l y created, classified, and queried
(for a t t r i bu te values) whi le the system is responding to

Mellish and Reiter 697

an a t t r i bu te value query. These constructs are described
in section 3, and their use for p rog ramming is discussed
in section 4.

3 I I

I I is the knowledge representation system used in IDAS,
and includes:

• an automat ic classifier t ha t supports value
rest r ic t ion. 1

• a defaul t - inher i tance system tha t gives precedence
to defaults f r om subsumed (more specific) classes.

• various support tools, such as a graphical browser
and edi tor .

11 is probably not the best possible classification pro­
g ramming language, and if we were to star t over we
would undoubtab ly bu i ld a somewhat different system.
Bu t I I has been the basis of our experiments w i t h clas-
sif icat ion p rogramming , and hence we w i l l use it in this
paper.

More formal ly , the open-class symbols used in speci­
fy ing an 11 knowledge base are of three kinds. We w i l l
use c E C to denote a concept (class) name, ra E Ra
an assertional role name and rd € Rd a definitional role
name. Def in i t iona l roles are those seen by the classi­
fier, whereas assertional roles are those whose values are
inher i ted by the default mechanism. Def in i t iona l roles
are not processed by the defaul t - inher i tance system (al ­
though they are inher i ted in a non-defaul t manner) , and
assertional roles are ignored dur ing classif ication.

2The II classifier also supports other class-definition op­
erators (e.g., a very l imited form of role differentiation), but
these wi l l not be discussed in this paper.

2 Note that for compactness this paper uses a different 11
syntax from that used in the implementation.

The = statement defines Open-door to be the class of
a l l Open ent i t ies whose actor role has a f i l ler subsumed
by Animate, and whose actee role has a fil ler subsumed
by Door. These are def in i t iona l value restr ict ions. T h e
=> statement describes the value for an assertional role
(decomposition) of Open-door. T h e value is specified by a
templa te , wh ich provides the name of a class subsuming
the value (Sequence) and a set of specif ications for role
values of th is class (here, the roles 1, 2 and 3). These
role values are themselves specified by templates. Each
of these templates defines a class whose ancestor is an
act ion (Grasp, Turn, Pull) t ha t has the same actor as the
Open-Door act ion and tha t has an actee tha t is the f i l ler
of the handle role of the actee of the Open-Door act ion.

For example, if Open-12 was defined as an Open act ion
w i t h role f i l lers actor:Sam and actee:Door-6:
Open-12 = {Open} wi th {actor:Sam, actee:Door-6}

then Open-12 wou ld be classified beneath Open-Door by
the classifier on the basis of i ts actor and actee values. I f
an inqu i ry was issued for the value of decomposition for
Open-12, the above def in i t ion f r o m Open-Door would be
inher i ted , and , i f Door-6 had Handle-6 as the f i l ler of i ts
handle role, the three templates in the Sequence would
be expanded in to three act ions, (Grasp-12 Turn-12 Pull-
12), each of wh ich had an actor of Sam and an actee of
Handle-6; these three subact ions wou ld then themselves
be classified in to the taxonomy.

4 Classif ication Programming
I I was designed to represent a fa i r l y convent ional knowl ­
edge base of ent i t ies and act ions, bu t we discovered tha t
i t could also be used to represent and execute general-
purpose programs. To do th is ,

1. Classes in the taxonomy are regarded as rules,
whose condi t ions are specified in the def in i t ional
roles (value restr ict ions) and whose conclusions are
expressed in the assertional roles.

2. Queries are represented as new classes tha t must be
classified.

3. The classifier acts as a pat tern-matcher tha t selects
a rule which fits the query.

The ' r u n n i n g ' of a classif ication p rog ram is in i t i a ted by
a request for the value of an assertional role for a class
tha t has already been classified. The interest ing case
arises when th is role value is specified by a template.
In th is case, the class specified by the templa te must be
created and classified. If some role value for the new class
is needed to satisfy the or ig ina l request, then th is may
lead to more new classes being created and classified.
In th is way, the classif ication programmer has access to
recursion.

Classes can also be used to represent da ta structures,
w i t h roles being used to represent and access the data
st ructure 's f ields. Such da ta structures can be dynami ­
cal ly constructed by templates du r ing the 'execution* of
a classif ication p rog ram, and their components can be
dynamica l l y accessed w i t h references. It is also possible
to add special-purpose constructs for common structures
such as l ists, which may improve efficiency; th is is s im i ­
lar to the approach taken by Pro log, wh ich has a special
syntax and compi ler op t im isa t ions for const ruct ing and
accessing l ists. I t is i m p o r t a n t to note t h a t programs
and da ta in I I are represented w i t h the same k i nd o f
s t ruc ture , namely classes, and are subject to the same
operat ions, namely classif ication and role inher i tance; in
languages such as Pro log, in contrast , a real d is t inc t ion
is made between programs and da ta and the operat ions
tha t make sense on each.

698 Knowledge Representation

4.1 C o n v e r t i n g P ro log Programs i n t o
Classi f icat ion Programs

Simple Prolog programs can be fairly mechanically con­
verted into II programs, provided that the clauses in
the program distinguish between input and output ar­
guments, and no deep backtracking is performed. These
restrictions of course remove much of the power of Pro-
log, but we illustrate the process here in an attempt to
give readers used to Prolog more of an intuition for clas­
sification programs.

To generate an equivalent II program for a simple
Prolog program, the following must be performed:

• An II primitive class is generated for each Prolog
predicate3.

• A role is defined for each argument (input and out­
put) of a predicate (argument names must be intro­
duced, since classification requires keyword param­
eters instead of Prolog's positional arguments).

• A class is defined for each clause, which

- Includes an appropriate value restriction for ev­
ery constrained input argument.

- Includes a template for each 'call ' of a predicate
in the clause's right-hand-side, with embedded
templates used to create any necessary complex
terms (data structures).

- Includes templates and references that relate
the output of the LHS predicate to the inputs
of the LHS predicates and the outputs of the
RHS predicates.

Such a program is queried by creating a class from the
input query, classifying it , and requesting the value of
any desired output arguments.

An example of this mapping is the following version
of the Prolog append function. Since I I , unlike Pro-
log, does not have a special syntax for list manipula­
tion, the interpretation below assumes lists are repre­
sented with Lisp-like cons cells, e.g., [a ,b] is represented
as cons (a , cons (b , n u l l)) . The components of a cons
structure wil l be referred to with the f i r s t and res t
roles. The following definitions also assume that the
first two arguments of append are the inputs input 1 and
inpu t2 , and the third argument is the output output.

3Primitivenes8 can be simulated in the simplified syntax
by using a definition of the form:

C = . . . wi th {c-q:True}
where c-q is a role not mentioned elsewhere in the knowledge
base.

Mellish and Reiter 699

Target = {Sentence } w i th {semantics:or} f o rm ing the necessary classif ication by hand 4 .

and then queries about the realisation of Target are posed.
In th is instance, the semantic d is t inct ions Ac-

torTheme/ActeeTheme and Command/Statement are i n ­
dependent. A given (complete) semantic representat ion
a w i l l be classified under one of each of these pairs. I t
fol lows tha t Target w i l l be classified both under one of Ac­
tive/Passive and also under one of Imperative/Declarative.
The appropr ia te value w i l l then be inher i ted for the sub­
ject (either an empty phrase, or the value of the deep-
subject, wh ich w i l l be a Noun-phrase w i t h a semantics
taken f r o m an appropr ia te po in t in a) .

Instead of g i v ing separate def in i t ions for Declarative
and Active, the p rogrammer could have associated the as-
sert ional statements about t hem (e.g., {sub ject :<deep-
8 u b j e c t > }) w i t h Sentence. Under I I 's defaul t inher i ­
tance mechanism, th is means tha t a Sentence wou ld by
defaul t be assumed to have these assertional proper­
ties unless i ts def in i t iona l i n fo rmat ion (i .e., the semantics
value) was such t ha t i t was classified beneath the more
specialised class Imperative or Passive. Using defaul t in ­
heri tance in th is manner al lows the g rammar to process
incomplete semantic inputs , wh ich can be useful.

5 Comparison to Other Systems

There are interest ing s imi lar i t ies between classif ication
p rog ramming and a number of ex is t ing p rog ramming
schemes. Space does not pe rm i t a detai led comparison
here, bu t we w i l l a t t e m p t to summarise the most i m ­
por tan t po in ts . We have already discussed brief ly some
s imi lar i t ies between classif ication p rog ramming and Pro -
log, though the r ig id d is t inc t ion between inputs and out­
puts suggests a closer match in some respects w i t h func­
t iona l languages such as ML [Mi lner et a l . , 1990]. The
use of (mu l t i p le) inher i tance in I I reminds one na tu ­
ra l ly o f object-or iented languages, inc lud ing Smal l ta lk
[Goldberg and Robson, 1983] and the feature-oriented
and declarat ive DATR language [Evans and Gazdar, 1989]
for lexical descr ip t ion. The use of complex funct iona l
descript ions is reminiscent of recent feature logics and
extensions to un i f ica t ion g rammars , such as TFS [Zajac
and Emele, 1990] and FUF [E lhadad, 1991], as weli
of the type specif icat ion languages of A i t - K a c i and his
associates — KBL [A i t - K a c i , 1984] and L O G I N [A i t -Kac i
and Nasr, 1986]. Indeed, papers on TFS, FUF and KBL
al l present versions of the Pro log append def in i t ion tha t
are s imi lar to ours. Our discussion of I I def in i t ions as
pa t te rn-ac t ion rules suggests a connect ion w i t h produc­
t ion systems such as OPS5 [Brownstone et a/., 1985].

5 . 1 C l a s s i f i c a t i o n

T h e ma jo r way in wh ich I I differs f r o m other systems
p rov id ing inher i tance, such as Smal l ta lk , D A T R , T F S ,
FUF, LOGIN and KBL, is by the incorpora t ion of a non-
t r i v i a l classifier. In these other systems, the types or
classes f r o m which i n fo rma t ion can be inher i ted are
p r i m i t i v e (there are no non - t r i v i a l sufficient condi t ions
for class membersh ip) . T h i s is essentially l ike runn ing
I I w i t h o u t any = statements, w i t h the programmer per-

5.2 D e t e r m i n i s m

Pro log, TFS, FUF, LOGIN and KBL prov ide, in place of
classif icat ion, un i f ica t ion and d is junc t ion . A p r im i t i ve
class can be associated w i t h a set of possible "def in i ­
t ions" and , when these are matched w i t h the known
role-value pairs of a more specific class, on ly certain com­
binat ions w i l l t u r n ou t to be consistent. I f more than
one is possible, then non-determin ism arises. In classifi­
cat ion p rog ramming , classif ication determines uniquely
where a class fits w i t h i n the taxonomy and there is no
non-determin ism. In th is respect i t behaves more l ike a
language l ike ML, where the f irst ma tch ing clause is a l ­
ways chosen (though in classif icat ion, i t w i l l be the most
specific de f in i t ion , regardless of the tex tua l order) . Clas­
si f icat ion p rog ramming sacrifices b id i rec t iona l i ty by this
approach.

OPS5 provides d is junct ion imp l i c i t l y by considering
al l product ions whose condi t ions are satisf ied. I f an
OPS5 program used a conf l ic t - resolut ion strategy tha t
preferred the most specific match ing product ions, then
th is m igh t in some ways approx imate the behaviour
of a classif ication system; in pract ice OPS5 confl ict-
resolut ion strategies tend to also consider other factors,
such as when a da ta element was created or last updated.

5 .3 O b j e c t - O r i e n t a t i o n

In classif ication p rog ramming , a given class may be clas­
sified beneath several parent classes, and thereby inher i t
w i l l i n fo rmat ion f r o m a l l of these classes. Th i s is i l lus­
t ra ted by our real isat ion g rammar example, in which
a sentence class may, for instance, be a chi ld of both
Declarative and Passive; such a sentence w i l l inher i t a
value for subject f rom Declarative, and a value for deep-
subject f rom Passive. Our append example (which looks
close to s imi lar def in i t ions in Pro log, ML, TFS, FUF, KBL
and L O G I N) is not real ly representative for th is reason.
When an I I p rogrammer produces def in i t ions o f sub­
classes of a given class these are not required to be dis­
j o i n t . In the other languages, the mu l t i p l e clauses for
a predicate, func t ion or type are in terpreted as dis jo int
al ternat ives. The effect of mu l t i p le inher i tance can be
coded in other ways in these languages, of course. In the
end, the difference is a mat te r of o r ien ta t ion . I I classes
are in th is respect more l ike classes in Smal l ta lk and
D A T R (and , to some extent , product ions in OPS5) , and
II references can be seen as a f o r m of message-passing.

4 In fact, a l imited kind of classification seems possible in
KBL via the lattice ordering on the type signature. If a type
which is equivalent to a conjunction of simpler types (and
hence not primit ive) can be associated wi th a KBL "defini­
t ion" , then a kind of classification would be needed to as­
sociate this "definit ion" wi th a class that was subsumed by
both of the classes in the conjunction. But we have seen no
examples of this being done in the papers on KBL and this in
any case would involve only a very simple notion of classifi­
cation (which does not take account of role values). NB KBL
definitions associate only necessary conditions wi th classes
and correspond roughly to II => statements. Because this is
a different sense of the word "definit ion" than our own, we
wi l l distinguish it by quotes.

700 Knowledge Representation

The use of default inheritance in II is another feature in
common w i t h object-or iented systems.

5.4 D e c l a r a t i v e n e s s

A l t h o u g h classif ication p rog ramming has an object-
or iented o r ien ta t ion , unl ike most O O P languages (w i t h
the except ion o f D A T R) i t i s purely declarative. I t also
differs f r o m OPS5 in th is respect.

5 .5 R e c u r s i o n

T h e templa te mechanism in I I i s what distinguishes
i t f r o m other classif ication systems; in par t icu lar , tem­
plates pe rm i t the I I programmer to implement recursion
and procedure calls. Several systems have been bu i l t
t ha t combined classif ication and forward chaining pro­
duc t ion rules, inc lud ing C L A S P [Yen e t a l , 1991], C L A S ­
S I C [Brachman et a l , 1991], and C O N S U L [Mark , 1980];
these rules could perhaps be used to achieve some of
the same func t iona l i t y as I l ' s templates, but we are not
aware of any a t t emp t to use these systems as we are using
I I . CONSUL also seems to have had some template- l ike
capabi l i t ies, bu t the detai ls are unclear, and again this
fac i l i ty was not used in the way we use templates in I I .

5.6 L a z i n e s s

In I I , assertional roles are only accessed (and templates
expanded) when th is is necessary to answer a query. Th is
lazy eva luat ion strategy, which is not the only mecha­
n ism tha t could be used in classification programming,
differs f r om the forward chaining rules of OPS5 and
C L A S S I C . It is s imi lar to lazy evaluat ion as i t appears
in func t iona l languages.

5 .7 P r o c e d u r e s v s D a t a

As w i t h TFS, FUF and K B L , I I makes no dist inct ion be­
tween procedures and data , the same operations being
appl icable to b o t h . In th is respect i t differs f rom L O G I N ,
Pro log, ML and OPS5.

6 C o n c l u s i o n

Th is paper has shown how a KL-ONE-like classification
system can be used to execute general-purpose programs,
i f i t is augmented w i t h a default inheritance system
and constructs t ha t al low recursion to be programmed
(e.g., templates) . The resul tant p rogramming system
has some s imi lar i t ies to logic p rogramming , product ion-
rules systems, and object-or iented approaches, but does
not fu l l y fa l l i n to any of these categories. Classifica-
t ion p rog ramming has proven to be a very useful tool in
the IDAS system, and we expect tha t i t w i l l be s imi lar ly
useful in other knowledge-centred appl icat ions which re­
quire in tegra t ing some a lgor i thmic reasoning w i t h a KL-
ONE-like doma in knowledge base. Whether the classifi­
cat ion approach w i l l lead to a general-purpose language
t ha t is as useful as, say, Pro log is unclear at this point in
t ime ; a t m i n i m u m , however, classification programming
provides a novel and interest ing perspective on what con­
st i tu tes p rog ramming , and on the relat ionship between
knowledge and reasoning.

References
[Ai t -Kaci , 1984] Hassan Ai t -Kaci . A Lattice Theoretic Ap­

proach to Computation Baaed on a Calculus of Partial ly
Ordered Type Structures. PhD thesis, University of Penn­
sylvania, 1984.

[Ait-Kaci and Naur, 1986] Hassan Ai t -Kaci and Roger Nasr.
LOGIN: A logic programming language wi th bui l t- in inher­
itance. Journal of Logic Programming, 3:185-215, 1986.

[Brachman and Schmolze, 1985]
Ronald Brachman and James Schmolze. An overview of
the KL-ONE knowledge representation system. Cognitive
Science, 9:171-216, 1985.

[Brachman et a l , 1991] Ronald Brachman at al.. "Living
wi th CLASSIC: When and How to Use a KL-ONE-Like
Language". In [Sowa, 1991].

[Brownstone et a l , 1985] Lee Brownstone, Robert Farrell,
Elaine Kant, and Nancy Mart in. Programming Expert Sys­
tems in OPS5. Addison-Wesley, 1985.

[Elhadad, 1991] Michael Elhadad. "FUF User's Manual -
Version 5 .0 \ Technical Report CUCS-038-91, Columbia
University, 1991.

[Evans and Gazdar, 1989] Roger Evans and Gerald Gazdar.
Inference in DATR. In Proceedings of Fourth Meeting of the
European Chapter of the Association for Computational
Linguistics (EACL-1989), pages 66-71, 1989.

[Goldberg and Robson, 1983] Adele Goldberg and David
Robson. SMALLTALK-80: The Language and its Imple­
mentation. Addison-Wesley, 1983.

[Levesque and Brachman, 1985]
Hector Levesque and Ronald Brachman. "A Fundamental
Tradeoff in Knowledge Representation and Reasoning". In
Readings in Knowledge Representation, Eds. R. J. Brach­
man and H. J. Levesque. Morgan Kaufmann, 1985.

[Mark, 1980] Wi l l iam Mark. Rule-based inference in large
knowledge bases. In Proceedings of the First National Con­
ference on Art i f ic ia l Intelligence (AAAI-1980), pages 190-
194, 1980.

[Milner et a l , 1990] Robin Milner, Mads Tofte and Robert
Harper. The Definit ion of Standard ML, M I T Press, 1990.

[Reiter and Mellish, 1992] Ehud Reiter and Chris Mellish.
Using classification to generate text. In Proceedings of the
30th Annual Meeting of the Association for Computational
Linguistics (ACL-1992), pages 265-272, 1992.

[Reiter et al., 1992] Ehud Reiter, Chris Mellish, and John
Levine. Automatic generation of on-line documentation
in the IDAS project. In Proceedings of the Third Con­
ference on Applied Natural Language Processing (ANLP-
1992), pages 64-71, Trento, Italy, 1992.

[Sowa, 1991] John Sowa, editor. Principles of Semantic Net­
works. Morgan Kaufmann, 1991.

[Yen et a l , 1991] John Yen, Robert Neches, and Robert
MacGregor. CLASP: Integrating Term Subsumption Sys­
tems and Production Systems. I E E E Transactions on
Knowledge and Data Engineering, 3:25-32, 1991.

[Zajac and Emele, 1990] Remi Zajac and Mart in Emele.
"Typed Unification Grammars" . In Proceedings of the
13th International Conference on Computational Linguis­
tics (COLING-1990), Helsinki, 1990.

Mellish and Reiter 701

