
A Tractable Class of Abduction Problems

Kave Eshghi*
Hewlett Packard Laboratories,

1501 Page Mill Road,
Palo Alto, CA 94304

USA
Email: ke@hplb.hpLhp.com

Abstract

literal: Let p be a proposition. Then p and -p are liter­
als.
clause: A clause is a disjunction of literals.
Horn Clause: A Horn Clause is a clause in which there
is at most one positive literal.
definite clause: A definite clause is a Hom Clause in
which there is exactly one positive literal. A definite
clause such as can also be written
as We call pi the head of the clause, and
the conjunction the body of the clause.
denial: A denial is a Horn clause in which there are no
positive literals. A denial such as can
also be written as

unit clause: A unit clause is a clause which has one lit­
eral.

The problem of finding a set of assumptions which explain a
given proposition is in general NP-hard, even when the back­
ground theory is an acyclic Horn theory. In this paper it is
shown that when the background theory is acyclic Horn and
its pseudo-completion is unit refutable, there is a polynomial
time algorithm for finding minimal explanations. A test for
unit-refutability of clausal theories is presented, based on the
topology of the connection graph of the theory.

1 Introduction
The abduction problem in which we are interested can be de­
fined as follows:

ground theory, A the abducible set, and g the goal. A propo­
sition is abducible if it belongs to A. (Throughout the paper,
we will use 8 to refer to the set of non-abducible propositions
in

The purpose of condition 4 is to enable us to include clauses
with abducibles at their head in the theory. It ensures that the
set of assumptions adopted as the solution is closed under
logical implication.

Selman and Levesque [16] show that even when only one
solution is required, and the background theory n is restricted
to be acyclic, finding abductive solutions is NP-hard. This has
led to pessimism regarding the practical utility of abduction
as formulated above.

In this paper, we present a collection of definitions, results
and algorithms, which together define a class of abduction

*This research was conducted while the author was at Hewlett
Packard Labs-Stanford Science Center.

problems for which finding a minimal solution is tractable.
We also provide a polynomial time test for the membership
of the abduction problem in this class. Below is a summary of
these definitions, results and algorithms. Some of these are
taken from the literature, the rest are new.
1. The definition of the pseudo-completion of a Horn theory

with respect to a set of abducibles. (This is a variation on
the standard definition of completion in logic program­
ming)

2. The definition of the minimization of a set of proposition
symbols with respect to a propositional theory (this is a
variation on the minimization ideas used in circumscription
and the notion of minimal diagnosis in model-based diag­
nosis)

3. A theorem stating that for abduction problems with acyclic
background theories, minimal solutions of the abduction
problem correspond to minimizations of the abducible set
with respect to the pseudo-completion of the background
theory. This result is new.

4. An algorithm for finding a minimization of a set of propo­
sitions with respect to a clausal theory. This algorithm is
known in the literature.

5. A definition of unit-refutability for propositional clausal
theories. Unit refutability ensures that computing a minimi-

Eshghi 3

zation of a set of proposition with respect to the theory is
tractable. This definition is new.

6. A test for unit-refutability of clausal theories. This test re­
lies on the topology of the connection graph of the theory,
and is polynomial time with respect to the size of the theo­
ry. Passing this test is a sufficient, but not necessary condi­
tion for unit refutability. This test is new.

As a result, we argue that the class of abduction problems
which have a background theory with a unit-refutable pseu­
do-completion is tractable, and provide a sufficient, but not
necessary, test for membership of this class.

Notice that the background theory can have general denials
(as opposed to denials restricted to only abducible proposi­
tions), and that we allow abducibles to occur at the head of
clauses.

For the case that the test fails, or we do not perform it, we
will not know whether or not the pseudo-completion is unit
refutable. In this situation, we can still use the algorithm, but
we need to augment it with a correctness test to make sure that
the set of assumptions returned is a solution. Sometimes this
test will fail, i.e. we will not be able to generate a solution.
The correctness test itself is of linear complexity, so when we
do not know that the pseudo-completion is unit-refutable, we
have a correct, but incomplete, tractable technique for finding
solutions to abduction problems of the above form.

5 Finding a minimization of A
The following algorithm (reported, for example, in [6]) can
be used for finding a minimization of A with respect to C.
This algorithm assumes that C is consistent. (M holds a set of
literals, N and S hold a set of propositions, a holds a proposi­
tion):

4 Automated Reasoning

Notice that the selection of a from S in the first step ol the
loop is non-deterministic, but this Is a don't care type of non-
determinism, i.e. no matter which proposition is chosen, the
algorithm will succeed and there is no need for backtracking.

It is easy to prove that, for propositional C and A, this algo­
rithm always terminates, and when it does, N holds a minimi­
zation of A with respect to C. Let k be the size of A. Then it is
clear that the cost of computing a minimization of A with re­
spect to C using this algorithm is k times the cost of checking
the consistency of CuM, where M is a set of unit clauses
whose size is bounded by the size of A.

In general, checking the consistency of CuM is an NP-com-
plete problem. But there is a class of theories for which the
cost of consistency checking, using unit resolution, is linear
with respect to the size of the theory. We investigate this
class, and the repercussions for finding solutions to abduction
problems, next.

6 Unit Resolution
Unit resolution is a restriction of the resolution rule where
one of the resolvent must be a unit clause. Unit resolution, es­
pecially for propositional clauses, can be implemented very
efficiently. But unit resolution is not a complete rule of infer­
ence, i.e. for some clausal theories, there are theorems which
can not be proved using unit resolution. For a clausal theory
C and a clause s, we say that s is unit-derivable from C iff
there is a derivation of s from C in which every step is a unit
resolution.

Eshghi 5

Theorem 2 Every prepositional clausal theory whose
connection graph has no tied chains is unit refutable. (Proof
in Appendix 2)
Notice that the reverse is not necessarily true, i.e. there are
unit refutable sets of clauses which have tied chains.

7.2 The cost of checking for tied chains
To estimate the cost of checking for tied chains, for the set of
clauses C we define the binary relations chain between liter­
als as follows:

Let chain* be the transitive closure of chain. Then it is easy to
show that there is a tied chain in C iff for some literal I,
chain holds. Thus the cost of checking for existence of
tied chains is bounded by the cost of computing the relation
chain*, which is polynomial.

8 What if we don't know if
unit-refutable

We might not want to do the test for tied chains in riuonly-
if or we might test and find a tied chain. In both cases,
we do not know whether or not is unit-refut­
able. So what happens?

It is important to emphasize that while lack of tied chains in
is a sufficient condition for the correctness

and completeness of the algorithm, it is not a necessary con­
dition. In other words, even if has tied chains,
in many instances the algorithm returns a correct solution.
Thus, when we do not know that is unit refut­
able, the best strategy to adopt is to use the algorithm to find
a potential solution anyway. But, in order to make sure that
we have a solution, we can test the conditions 2 to 4 in Defi­
nition 1 in linear time . If the conditions are
satisfied, then we have a solution. In other words, without tiny
consideration as to the unit-refutability of the
combination of the algorithm in section 5 and the further test
of correctness can be considered a tractable algorithm for
finding solutions to abduction problems which is correct, but
incomplete.

In fact, practical experience has shown that, without any
checking of , the algorithm rarely fails to re­
turn a correct answer. More substantial practical evidence
supporting this claim will be presented when enough data is
gathered.

9 Comparison with related work and
conclusion

The ATMS [31 essentially computes all the minimal solutions
for the abductive problems where
g1, g2 ,..are the propositions in But the performance of
ATMS can be exponential with the number of propositions in
n [l 2] .

The use of predicate completion to characterize abduction
as deduction has been proposed by a number of researchers
[2] [13] [8] . In this regard, the relationship established by
Theorem 1 is closest to the work of Console et. al. in [2] .

They, too, consider acyclic Hom background theories, but
they restrict them so that a) all definite clauses have non-ab-
ducibles at the head and b) all the denials only have abduci-
bles atoms. Also, they do not establish a relationship between
minimal solutions and the minimization of the abducible set
with respect to the completion.

As far as the test for unit-refutability is concerned, to our
knowledge the work reported here is new. DeKleer in [4J ad­
vocates the use of unit resolution (which he calls clausal bi­
nary constraint propagation) and gives some pragmatic
techniques for making unit resolution complete for consisten­
cy checking.

A top-down algorithm for abduction using negation as fail­
ure type reasoning was reported in [5] . There are a number of
published algorithms for finding genendized stable models of
logic programs [7] , such as the algorithms reported in [15] .
Computing general stable models is a generalised version of
the abduction problem, thus all the algorithms developed for
that purpose can be used for computing solutions to the ab­
ductive problems of the type considered in this paper. No
tractability results have been published concerning these al­
gorithms.

The techniques presented here (without the test for unit-re­
futability) have recently been implemented in the context of
a general purpose abduction/reason-maintenance system. So
far, the system has given promising performance, though de­
finitive judgement has to await further experiments.
Acknowledgment: I would like to thank Bruno Bertolino,
Chris Preist, Ajay Gupta and Alex Loopik for many useful
discussions on the subject of this paper.

References
11] Clarke, K. Negation as Failure. Logic and Databases

pp293-322, cd H Gallaire, J. Minker, 1978
[2] Console!., Theseider D. & Torasso, P. On the rela­

tionship between abduction and deduction. Journal of
Logic and Computation, 2(5), Sept. 1991.

[3] deKleer, J. An assumption based truth maintenance
system, Artificial Intelligence Journal 28, 1986,
pp127-162

[4] deKleer, J., Exploiting locality in a TMS, in Proceed­
ings of AAA1-90, Boston, MA (1990)264-271

[5] K. Eshghi & R. Kowalski. Abduction compared with
Negation as Failure. Proceedings of the 6th Int. Conf.
on Logic Programming, Lisbon 1989, pp234-254.

[6] G. Friedrich, G. Gotdab, W. Nejdl Physical Impossi-
bility Instead of Fault Models. Proceedings of AAAI -
90, Boston, MA (1990) 331-336

[7] Kakas, A.C. & Mancarella, P., Generalized stable
models: a semantics for abduction. Proceedings of
ECAI90, 1990pp.385-391

[8] Konolige, K. A general theory of abduction, Proceed­
ings AAAI symposium on Automated Abduction,
Stanford 1990 pp 62-66

6 Automated Reasoning

[9] Kowalski, R., A proof procedure using connection
graphs, J ACM Vol. 22 No. 4, (1975) 572-595

[10] Lifschitz, V. Computing circumscription, Proceedings
IJCAI85, 1985 pp 121-127

[11] Lloyd, J. Foundations of Logic Programming, 2nd
edition, Springer Verlag (1987)

[12] McAllester, D. A widely used truth maintenance sys­
tem, MIT AI Lab Memo, 1985

[13] Poole, D. Representing knowledge for logic based di­
agnosis. Proceedings of the International. Conference
on Fifth Generation Computer Systems, Tokyo 1988
pp 1282-1290

[14] R. Reiter. A theory of diagnosis from first principles,
/Artificial Intelligence Journal 32, 1987

[15] K. Satoh & N. Iwayama. Computing Abduction by us­
ing the TMS. Proceedings of the Eighth International
Conference on Logic Programming, 1991.

[161 Selman, B. & Levesque, H.J., Abductive and default
reasoning: a computational core, in Proceedings of
AAAI-90. Boston, MA (1990) 343-348

Eshghi 7

8 Automated Reasoning

