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Abstract 

literal: Let p be a proposition. Then p and -p are liter­
als. 
clause: A clause is a disjunction of literals. 
Horn Clause: A Horn Clause is a clause in which there 
is at most one positive literal. 
definite clause: A definite clause is a Hom Clause in 
which there is exactly one positive literal. A definite 
clause such as can also be written 
as We call pi the head of the clause, and 
the conjunction the body of the clause. 
denial: A denial is a Horn clause in which there are no 
positive literals. A denial such as can 
also be written as 

unit clause: A unit clause is a clause which has one lit­
eral. 

The problem of finding a set of assumptions which explain a 
given proposition is in general NP-hard, even when the back­
ground theory is an acyclic Horn theory. In this paper it is 
shown that when the background theory is acyclic Horn and 
its pseudo-completion is unit refutable, there is a polynomial 
time algorithm for finding minimal explanations. A test for 
unit-refutability of clausal theories is presented, based on the 
topology of the connection graph of the theory. 

1 Introduction 
The abduction problem in which we are interested can be de­
fined as follows: 

ground theory, A the abducible set, and g the goal. A propo­
sition is abducible if it belongs to A. (Throughout the paper, 
we will use 8 to refer to the set of non-abducible propositions 
in 

The purpose of condition 4 is to enable us to include clauses 
with abducibles at their head in the theory. It ensures that the 
set of assumptions adopted as the solution is closed under 
logical implication. 

Selman and Levesque [16] show that even when only one 
solution is required, and the background theory n is restricted 
to be acyclic, finding abductive solutions is NP-hard. This has 
led to pessimism regarding the practical utility of abduction 
as formulated above. 

In this paper, we present a collection of definitions, results 
and algorithms, which together define a class of abduction 
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problems for which finding a minimal solution is tractable. 
We also provide a polynomial time test for the membership 
of the abduction problem in this class. Below is a summary of 
these definitions, results and algorithms. Some of these are 
taken from the literature, the rest are new. 
1. The definition of the pseudo-completion of a Horn theory 

with respect to a set of abducibles. (This is a variation on 
the standard definition of completion in logic program­
ming) 

2. The definition of the minimization of a set of proposition 
symbols with respect to a propositional theory (this is a 
variation on the minimization ideas used in circumscription 
and the notion of minimal diagnosis in model-based diag­
nosis) 

3. A theorem stating that for abduction problems with acyclic 
background theories, minimal solutions of the abduction 
problem correspond to minimizations of the abducible set 
with respect to the pseudo-completion of the background 
theory. This result is new. 

4. An algorithm for finding a minimization of a set of propo­
sitions with respect to a clausal theory. This algorithm is 
known in the literature. 

5. A definition of unit-refutability for propositional clausal 
theories. Unit refutability ensures that computing a minimi-
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zation of a set of proposition with respect to the theory is 
tractable. This definition is new. 

6. A test for unit-refutability of clausal theories. This test re­
lies on the topology of the connection graph of the theory, 
and is polynomial time with respect to the size of the theo­
ry. Passing this test is a sufficient, but not necessary condi­
tion for unit refutability. This test is new. 

As a result, we argue that the class of abduction problems 
which have a background theory with a unit-refutable pseu­
do-completion is tractable, and provide a sufficient, but not 
necessary, test for membership of this class. 

Notice that the background theory can have general denials 
(as opposed to denials restricted to only abducible proposi­
tions), and that we allow abducibles to occur at the head of 
clauses. 

For the case that the test fails, or we do not perform it, we 
will not know whether or not the pseudo-completion is unit 
refutable. In this situation, we can still use the algorithm, but 
we need to augment it with a correctness test to make sure that 
the set of assumptions returned is a solution. Sometimes this 
test will fail, i.e. we will not be able to generate a solution. 
The correctness test itself is of linear complexity, so when we 
do not know that the pseudo-completion is unit-refutable, we 
have a correct, but incomplete, tractable technique for finding 
solutions to abduction problems of the above form. 

5 Finding a minimization of A 
The following algorithm (reported, for example, in [6] ) can 
be used for finding a minimization of A with respect to C. 
This algorithm assumes that C is consistent. (M holds a set of 
literals, N and S hold a set of propositions, a holds a proposi­
tion): 
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Notice that the selection of a from S in the first step ol the 
loop is non-deterministic, but this Is a don't care type of non-
determinism, i.e. no matter which proposition is chosen, the 
algorithm will succeed and there is no need for backtracking. 

It is easy to prove that, for propositional C and A, this algo­
rithm always terminates, and when it does, N holds a minimi­
zation of A with respect to C. Let k be the size of A. Then it is 
clear that the cost of computing a minimization of A with re­
spect to C using this algorithm is k times the cost of checking 
the consistency of CuM, where M is a set of unit clauses 
whose size is bounded by the size of A. 

In general, checking the consistency of CuM is an NP-com-
plete problem. But there is a class of theories for which the 
cost of consistency checking, using unit resolution, is linear 
with respect to the size of the theory. We investigate this 
class, and the repercussions for finding solutions to abduction 
problems, next. 

6 Unit Resolution 
Unit resolution is a restriction of the resolution rule where 
one of the resolvent must be a unit clause. Unit resolution, es­
pecially for propositional clauses, can be implemented very 
efficiently. But unit resolution is not a complete rule of infer­
ence, i.e. for some clausal theories, there are theorems which 
can not be proved using unit resolution. For a clausal theory 
C and a clause s, we say that s is unit-derivable from C iff 
there is a derivation of s from C in which every step is a unit 
resolution. 
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Theorem 2 Every prepositional clausal theory whose 
connection graph has no tied chains is unit refutable. (Proof 
in Appendix 2) 
Notice that the reverse is not necessarily true, i.e. there are 
unit refutable sets of clauses which have tied chains. 

7.2 The cost of checking for tied chains 
To estimate the cost of checking for tied chains, for the set of 
clauses C we define the binary relations chain between liter­
als as follows: 

Let chain* be the transitive closure of chain. Then it is easy to 
show that there is a tied chain in C iff for some literal I, 
chain holds. Thus the cost of checking for existence of 
tied chains is bounded by the cost of computing the relation 
chain*, which is polynomial. 

8 What if we don't know if 
unit-refutable 

We might not want to do the test for tied chains in riuonly-
if or we might test and find a tied chain. In both cases, 
we do not know whether or not is unit-refut­
able. So what happens? 

It is important to emphasize that while lack of tied chains in 
is a sufficient condition for the correctness 

and completeness of the algorithm, it is not a necessary con­
dition. In other words, even if has tied chains, 
in many instances the algorithm returns a correct solution. 
Thus, when we do not know that is unit refut­
able, the best strategy to adopt is to use the algorithm to find 
a potential solution anyway. But, in order to make sure that 
we have a solution, we can test the conditions 2 to 4 in Defi­
nition 1 in linear time . If the conditions are 
satisfied, then we have a solution. In other words, without tiny 
consideration as to the unit-refutability of the 
combination of the algorithm in section 5 and the further test 
of correctness can be considered a tractable algorithm for 
finding solutions to abduction problems which is correct, but 
incomplete. 

In fact, practical experience has shown that, without any 
checking of , the algorithm rarely fails to re­
turn a correct answer. More substantial practical evidence 
supporting this claim will be presented when enough data is 
gathered. 

9 Comparison with related work and 
conclusion 

The ATMS [31 essentially computes all the minimal solutions 
for the abductive problems where 
g1, g2 ,..are the propositions in But the performance of 
ATMS can be exponential with the number of propositions in 
n [ l 2 ] . 

The use of predicate completion to characterize abduction 
as deduction has been proposed by a number of researchers 
[2] [13] [8] . In this regard, the relationship established by 
Theorem 1 is closest to the work of Console et. al. in [2] . 

They, too, consider acyclic Hom background theories, but 
they restrict them so that a) all definite clauses have non-ab-
ducibles at the head and b) all the denials only have abduci-
bles atoms. Also, they do not establish a relationship between 
minimal solutions and the minimization of the abducible set 
with respect to the completion. 

As far as the test for unit-refutability is concerned, to our 
knowledge the work reported here is new. DeKleer in [4J ad­
vocates the use of unit resolution (which he calls clausal bi­
nary constraint propagation) and gives some pragmatic 
techniques for making unit resolution complete for consisten­
cy checking. 

A top-down algorithm for abduction using negation as fail­
ure type reasoning was reported in [5] . There are a number of 
published algorithms for finding genendized stable models of 
logic programs [7] , such as the algorithms reported in [15] . 
Computing general stable models is a generalised version of 
the abduction problem, thus all the algorithms developed for 
that purpose can be used for computing solutions to the ab­
ductive problems of the type considered in this paper. No 
tractability results have been published concerning these al­
gorithms. 

The techniques presented here (without the test for unit-re­
futability) have recently been implemented in the context of 
a general purpose abduction/reason-maintenance system. So 
far, the system has given promising performance, though de­
finitive judgement has to await further experiments. 
Acknowledgment: I would like to thank Bruno Bertolino, 
Chris Preist, Ajay Gupta and Alex Loopik for many useful 
discussions on the subject of this paper. 

References 
11 ] Clarke, K. Negation as Failure. Logic and Databases 

pp293-322, cd H Gallaire, J. Minker, 1978 
[2] Console!., Theseider D. & Torasso, P. On the rela­

tionship between abduction and deduction. Journal of 
Logic and Computation, 2(5), Sept. 1991. 

[3] deKleer, J. An assumption based truth maintenance 
system, Artificial Intelligence Journal 28, 1986, 
pp127-162 

[4] deKleer, J., Exploiting locality in a TMS, in Proceed­
ings of AAA1-90, Boston, MA (1990)264-271 

[5] K. Eshghi & R. Kowalski. Abduction compared with 
Negation as Failure. Proceedings of the 6th Int. Conf. 
on Logic Programming, Lisbon 1989, pp234-254. 

[6] G. Friedrich, G. Gotdab, W. Nejdl Physical Impossi-
bility Instead of Fault Models. Proceedings of AAAI -
90, Boston, MA (1990) 331-336 

[7] Kakas, A.C. & Mancarella, P., Generalized stable 
models: a semantics for abduction. Proceedings of 
ECAI90, 1990pp.385-391 

[8] Konolige, K. A general theory of abduction, Proceed­
ings AAAI symposium on Automated Abduction, 
Stanford 1990 pp 62-66 

6 Automated Reasoning 



[9] Kowalski, R., A proof procedure using connection 
graphs, J ACM Vol. 22 No. 4, (1975) 572-595 

[ 10] Lifschitz, V. Computing circumscription, Proceedings 
IJCAI85, 1985 pp 121-127 

[11] Lloyd, J. Foundations of Logic Programming, 2nd 
edition, Springer Verlag (1987) 

[12] McAllester, D. A widely used truth maintenance sys­
tem, MIT AI Lab Memo, 1985 

[13] Poole, D. Representing knowledge for logic based di­
agnosis. Proceedings of the International. Conference 
on Fifth Generation Computer Systems, Tokyo 1988 
pp 1282-1290 

[14] R. Reiter. A theory of diagnosis from first principles, 
/Artificial Intelligence Journal 32, 1987 

[15] K. Satoh & N. Iwayama. Computing Abduction by us­
ing the TMS. Proceedings of the Eighth International 
Conference on Logic Programming, 1991. 

[161 Selman, B. & Levesque, H.J., Abductive and default 
reasoning: a computational core, in Proceedings of 
AAAI-90. Boston, MA (1990) 343-348 

Eshghi 7 



8 Automated Reasoning 


