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Abstract

The problem of finding a set of assumptions which explain a
given proposition is in general NP-hard, even when the back-
ground theory is an acyclic Horn theory. In this paper it is
shown that when the background theory is acyclic Horn and
its pseudo-completion is unit refutable, there is a polynomial
time algorithm for finding minimal explanations. A test for
unit-refutability of clausal theories is presented, based on the
topology of the connection graph of the theory.

1 Introduction

The abduction problem in which we are interested can be de-
fined as follows:
Definition 1 The triple <I1,A,g> is an abductive problem
iff T is a set of propositional Hom Clauses, A is a set of
propositions and g is a proposition. The set of propositions A
is a solution of the abductive problem <[1,A,g> iff
l.AcA
2.AUT —9
3. AUl is consistent
4. {ac Aand A+T |—a) - acA
A is & minimal solution of <I1,A,g> iff it is a solution of
<I1.A,g> and no subset of A is a solution of <[1,A,g>.

Given the abductive problem <[T,A,g> we call [T the back-

ground theory, A the abducible set, and g the goal. A propo-
sition is abducible if it belongs to A. (Throughout the paper,
we will use 8 to refer to the set of non-abducible propositions
in Muigh)

The purpose of condition 4 is to enable us to include clauses
with abducibles at their head in the theory. It ensures that the
set of assumptions adopted as the solution is closed under
logical implication.

Selman and Levesque [16] show that even when only one
solution is required, and the background theory n is restricted
to be acyclic, finding abductive solutions is NP-hard. This has
led to pessimism regarding the practical utility of abduction
as formulated above.

In this paper, we present a collection of definitions, results
and algorithms, which together define a class of abduction
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literal: Let p be a proposition. Then p and -p are liter-
als.

clause: A clause is a disjunction of literals.

Horn Clause: A Horn Clause is a clause in which there
is at most one positive literal.

definite clause: A definite clause is a Hom Clause in
which there is exactly one positive literal. A definite
clause such as p1v—pav—p3...v—P can also be written
asp1¢-p2.P3...Pn-We call pi the head of the clause, and
the conjunction paapas..Apy the body of the clause.
denial: A denial is a Horn clause in which there are no
positive literals. A denial such as —pv—pa...v—pp can
also be written as «—py,P2..pp

unit clause: A unit clause is a clause which has one lit-
eral.

problems for which finding a minimal solution is tractable.

We also provide a polynomial time test for the membership

of the abduction problem in this class. Below is a summary of

these definitions, results and algorithms. Some of these are
taken from the literature, the rest are new.

1. The definition of the pseudo-completion of a Horn theory
with respect to a set of abducibles. (This is a variation on
the standard definition of completion in logic program-
ming)

2. The definition of the minimization of a set of proposition
symbols with respect to a propositional theory (this is a
variation on the minimization ideas used in circumscription
and the notion of minimal diagnosis in model-based diag-
nosis)

3. A theorem stating that for abduction problems with acyclic
background theories, minimal solutions of the abduction
problem correspond to minimizations of the abducible set
with respect to the pseudo-completion of the background
theory. This result is new.

4. An algorithm for finding a minimization of a set of propo-
sitions with respect to a clausal theory. This algorithm is
known in the literature.

5. A definition of unit-refutability for propositional clausal
theories. Unit refutability ensures that computing a minimi-
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zation of a set of proposition with respect to the theory is

tractable. This definition is new.

6. A test for unit-refutability of clausal theories. This test re-
lies on the topology of the connection graph of the theory,
and is polynomial time with respect to the size of the theo-
ry. Passing this test is a sufficient, but not necessary condi-
tion for unit refutability. This test is new.

As a result, we argue that the class of abduction problems

which have a background theory with a unit-refutable pseu-

do-completion is tractable, and provide a sufficient, but not
necessary, test for membership of this class.

Notice that the background theory can have general denials
(as opposed to denials restricted to only abducible proposi-
tions), and that we allow abducibles to occur at the head of
clauses.

For the case that the test fails, or we do not perform it, we
will not know whether or not the pseudo-completion is unit
refutable. In this situation, we can still use the algorithm, but
we need to augment it with a correctness test to make sure that
the set of assumptions returned is a solution. Sometimes this
test will fail, i.e. we will not be able to generate a solution.
The correctness test itself is of linear complexity, so when we
do not know that the pseudo-completion is unit-refutable, we
have a correct, but incomplete, tractable technique for finding
solutions to abduction problems of the above form.

2 Pseudo-Completions

In order to define the pseudo-completion of [1, the first step
is o assign to each clause ¢ in I1 a unique proposition ng
which does not occur in NMufgjuA. We call n, the name of c.
No two clauses have the same name.

Definition2 Let the clauses pQy, pe—Qo,.... peQy,
where Q4,Qy....,.Q ase conjunctions of propositions, be all
the clauses in T which have p at their head. Let ngq, ngp,....ng
be the names of these clauses. Then the only-if set of p with
respect 10 11 is {—pvngyvneav.. . vRgy Ng1—Q4, nep—0s...
nexk—Qyt. For a set of propositions S and the Hom clause
theory T, we use only-if{T,3) to denote the union of only-if sets
of all the propoesitions in S with respect to T. We use only-if{(T)
1o denote only-if(T,props(T)) where props(T) is the set of all
propositions in T.

Since each Q; is a conjunction of propositions, a sentence of

the form n—0; is equivalent to the set of clauses 'ngy—qjq,
Agi—3Gi2,- .- Nej—djn where Qg AQjzA...AG. THus comput-
ing the clausal form of only-if sets is trivial,
Example: Let the clauses in T with p at their head be p—aq.r
and p«s,t, Let the names of these clauses be ny and ns. Then
the only-if set of p with respect o T is {—pvnivny, ny—aq,
Ny—, Na—8, Na—t}

Given the abductive problem <ILA,g>, we define the pseu-
do-completion of IT to be NMuonly-it{1,8). {(Recall the defini-
tion of & given on the first page). From the discussion above
it is clear that we can assume the psendo-completion to be in
clausal form, which is the major reason we chose pseudo-
completions in preference to the standard notion of comple-
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tion.

We compute solutions to the abductive problem <I1,A.9> by
minimizing A with respect to Duonly-if([2,8)u{g}. In the next
section we make precise the notion of minimization we are
using.

3  Minimization with respect to a theory

In order to define minimization, we need to define models.
Definition 3  Let C be a propositional clausai theory, S th
set of propositions in C, and M a set of propositions. Then th
truth-assigament induced by M is the assignment of true W a
propositions in S which are in M, and jfeise 10 thos
propositions in S which are not in M. M is a model of C iff th
truth assignment induced by M satisfies all the clauses in C,
Definition 4 Lot C be a propositional clausal theory, and .
a set of propositions, Then M is a model of C whic
minimizes A iff

1.M is a model of C

2. There is no other model M' of C such that M'nAcMnA

We say that A is a minimization of A with respect to C iff ther
is a model M of C which minimizes A and A=MnA

Our definition of minimization corresponds to the notion ¢
minimal model used in circumscription, when the proposi
tions in A are circumscribed relative to C, and all other prop
ositions are allowed to vary [10] . It also corresponds to th
notion of minimal diagnosis used in [14] , where the assump
tions A will be the abnormality assumptions associated wit
the components of the system.

4  Abductive solutions and minimization
Theorem 1 is the basis of our technique for finding minim:
solutions of abductive problems. (Proof in Appendix 1)
Theorem 1  Let F= <[,A,g> be an abduction probler
where T1 is acyclic. Let @ be the set of all propositions i
NwAg} which do not occur in A. Then A is a minimal solutio
of <MMAg> iff it is a mimmization of A with respect t
Nuonly-it(1,8)u{g}.

Corollary: When I1 is a acyclic, TTuoniy-if{(I1,8).{g} is in
consistent ifl <IT,A,g> has no solution,

In order to use this resutt for finding a solution to the abuc
tion problem <I1,A,g> we proceed as follows: first we com
pute only-f{[1,8) (the pseudo-completion of TI). Then w
check [Muonly-if{IT,8){g} for consistency. If inconsistent, th
abduction problem has no solution. If consistent, we use th
algorithm in the next section to find a minimization of A wit
respect to [Muonly-it{T, 8k {g}. The set of assumptions re
wumed is a minimal solution to the abduction problem.

5  Finding a minimization of A

The following algorithm (reported, for example, in [6]) can
be used for finding a minimization of A with respect to C.
This algorithm assumes that C is consistent. (M holds a set of
literals, N and S hold a set of propositions, a holds a proposi-
tion):



M:u{}N:af{};S:=A;
while Sx{}
{
choose a from S;
Sb-a;
if {—a} wCuUM is consistent M:=MuU{—a}
else N:=N 4{a};

Notice that the selection of a from S in the first step ol the
loop is non-deterministic, but this Is a don't care type of non-
determinism, i.e. no matter which proposition is chosen, the
algorithm will succeed and there is no need for backtracking.

It is easy to prove that, for propositional C and A, this algo-
rithm always terminates, and when it does, N holds a minimi-
zation of A with respect to C. Let k be the size of A. Then it is
clear that the cost of computing a minimization of A with re-
spect to C using this algorithm is k times the cost of checking
the consistency of CuM, where M is a set of unit clauses
whose size is bounded by the size of A.

In general, checking the consistency of CuM is an NP-com-
plete problem. But there is a class of theories for which the
cost of consistency checking, using unit resolution, is linear
with respect to the size of the theory. We investigate this
class, and the repercussions for finding solutions to abduction
problems, next.

6 Unit Resolution

Unit resolution is a restriction of the resolution rule where
one of the resolvent must be a unit clause. Unit resolution, es-
pecially for propositional clauses, can be implemented very
efficiently. But unit resolution is not a complete rule of infer-
ence, i.e. for some clausal theories, there are theorems which
can not be proved using unit resolution. For a clausal theory
C and a clause s, we say that s is unit-derivable from C iff
there is a derivation of s from C in which every step is a unit
resolution.
Definition 8 A propositional clausal theory C is unil
refutable iff, for every set of unit clauses U, if Gol is
inconsisient, then the empty clause is unit-derivable from
Ccuu.
Notation: For a clavse ¢, size(c) denotes the number of fiter-
als in c. For a set of clauses C, size{C) denotes the sum of the
sizes of all the clanses in C.
Lemmal Let C be a unit-refutable propositional theory,
and U a set of unit clanses, Then the cost of checking the
consistency of CUU is linear with respect 1o size(CuU) (proof
omitted)
Thus, if C is unit refutable, the cost of minimizing A with re-
spect to C using the above aigorithm is bounded by O{(k+n)k).
where k is the size of A, and n is the size of C.
Lemma2 Let <TAg> be an abduction problem. Then
size{TTuonly-H(TT1,8))<d(size({[1}) (proof omitted)

The following lemma states the consequences of these facts
for finding solutions to abduction problems:

Lemma3 Let <I1,A,g> be an abduction problem, where I

is acyclic, and Muonly-it{{1,8) is unit refutable. Then the cost
of finding a minimal solution to this problem is bounded by
Of(k+n+1)(k+1)). where k is the size of A, and n is the size of
.

This lemma relies on using unit resolution to check the con-
sistency of {Tuonly-#(11,8)uig), and using the algorithm
above for minimizing A with respect to Tluonly-if{1,6)uig).

At this point, two guestions need to be asked: how can we
say whether MMuonly-if{T1,0) is unil refutable, and what hap-
pens if it isn’1?

In the next section we introduce a test for unit refutability
hased on the topology of the connection graph of the theory.

7 When is a set of clauses unit refutable?

Our test for unit refutability is based on the topology of the
connection graph ol the set of clauses. We show thar if the
connection graph of 4 propositional clausal theory lacks cer-
tatn topelogical features, which we have called tied chains, it
is unit refutable. Notice that this is a sufficient, but not neces-
sary condition, But first, we need some preliminaries.

7.1  Connection Graphs
Connection graphs were introduced in [9] 10 help construct
more efficient resolution theorem provers.
Definition 6 Given a sel of clauses G, the connection
graph of C is the graph obtaincd by drawing a link between
cach complimentary pair of literals in the set.
Example: Let C be the set {avb, —ave, —cv—a, —bv- d,
—bvd). Then the connection graph of C is:

—bvd

avh
—av C

We say that the clause ¢ is linked (o the clause cy if there is
a link between a literal in ©y and a literal in ¢y, ie. cq has 4
literal such as p where ¢ has —p.

The next concept we need to introduce is that of a chain.
Intzitively, a chain corresponds to a subgraph comprised of a
sequence of clauses each linked to the next, with the links
connecting the clause ¢ 1o the previous and nexi clauses land-
ing on different fiterals in c. For example, the following cor-
responds o a chain:

—ave ~CV—a

To define chains formally, we need the notion of a c-triple. A
c-triple is a triple {x,e,y) where e is a clavse and x and y are
different literals in e.

Definition 7 Given the set of clauses C, the sequence
[(xq.@1,¥1h{X2,22,¥2)...(Xn. 8. ¥n)] Of C-triples is a chain in C iff
for all k, gy is a clause in C and yym—xy, 1.

Definition 8  {(xy,81.y1){x2.02.¥2)-.(Xn.0n¥n)] i5 & tied
chain in C iff it is a chain in C and xywyp,.

Example: {—a,—ave,c){-¢,—~cv—a,—a) is a tied chain,
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Theorem 2 Every prepositional clausal theory whose
connection graph has no tied chains is unit refutable. (Proof
in Appendix 2)

Notice that the reverse is not necessarily true, i.e. there are
unit refutable sets of clauses which have tied chains.

7.2 The cost of checking for tied chains

To estimate the cost of checking for tied chains, for the set of
clauses C we define the binary relations chain between liter-
als as follows:

chain(l1,—l) iff 1y and ip are literals in a clause in C and 11l,.

Let chain* be the transitive closure of chain. Then it is easy to
show that there is a tied chain in C iff for some literal I,
chain*{l,-l} holds. Thus the cost of checking for existence of
tied chains is bounded by the cost of computing the relation
chain*, which is polynomial.

8 What if we don't know if Duonly-i{[1,8) is
unit-refutable

We might not want to do the test for tied chains in riuonly-
if{[1,6), or we might test and find a tied chain. In both cases,
we do not know whether or not Muenly-if(I1,8) is unit-refut-
able. So what happens?

It is important to emphasize that while lack of tied chains in
[Nwonly-if{f1,8) is a sufficient condition for the correctness
and completeness of the algorithm, it is not a necessary con-
dition. In other words, even if Tonly-#{I1,8} has tied chains,
in many instances the algorithm returns a correct solution.
Thus, when we do not know that [lwenly-#({I1,6} is unit refut-
able, the best strategy to adopt is to use the algorithm to find
a potential solution & anyway. But, in order to make sure that
we have a solution, we can test the conditions 2 to 4 in Defi-
nition 1 in linear time (since I is Hom). If the conditions are
satisfied, then we have a solution. In other words, without tiny
consideration as to the unit-refutability of Muonly-if{[1,6}, the
combination of the algorithm in section 5 and the further test
of correctness can be considered a tractable algorithm for
finding solutions to abduction problems which is correct, but
incomplete.

In fact, practical experience has shown that, without any
checking of Muenly-if{f1,8}., the algorithm rarely fails to re-
turn a correct answer. More substantial practical evidence
supporting this claim will be presented when enough data is
gathered.

9 Comparison with related work and
conclusion

The ATMS [31 essentially computes all the minimal solutions
for the abductive problems <[LAgs>. <[Ags>... where
g1, 92 ,..are the propositions in I1. But the performance of
ATMS can be exponential with the number of propositions in
n[l2].

The use of predicate completion to characterize abduction
as deduction has been proposed by a number of researchers
[2] [13] [8] . In this regard, the relationship established by
Theorem 1 is closest to the work of Console et. al. in [2] .

6 Automated Reasoning

They, too, consider acyclic Hom background theories, but
they restrict them so that a) all definite clauses have non-ab-
ducibles at the head and b) all the denials only have abduci-
bles atoms. Also, they do not establish a relationship between
minimal solutions and the minimization of the abducible set
with respect to the completion.

As far as the test for unit-refutability is concerned, to our
knowledge the work reported here is new. DeKleer in [4J ad-
vocates the use of unit resolution (which he calls clausal bi-
nary constraint propagation) and gives some pragmatic
techniques for making unit resolution complete for consisten-
cy checking.

A top-down algorithm for abduction using negation as fail-
ure type reasoning was reported in [5]. There are a number of
published algorithms for finding genendized stable models of
logic programs [7] , such as the algorithms reported in [15] .
Computing general stable models is a generalised version of
the abduction problem, thus all the algorithms developed for
that purpose can be used for computing solutions to the ab-
ductive problems of the type considered in this paper. No
tractability results have been published concerning these al-
gorithms.

The techniques presented here (without the test for unit-re-
futability) have recently been implemented in the context of
a general purpose abduction/reason-maintenance system. So
far, the system has given promising performance, though de-
finitive judgement has to await further experiments.
Acknowledgment: | would like to thank Bruno Bertolino,
Chris Preist, Ajay Gupta and Alex Loopik for many useful
discussions on the subject of this paper.
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Appendix 1: Proof of Theorem 1

Preliminaries: For a set of propositons S={sy,55..} and a s
of Hurn clauses T, we use -5 to denote {—s¢.—sp...]. and T®
10 denote the set of clawses in T which have a proposition
fromn S ai their head. Lel p—Qq, p—Qs..p<Qy, be all the
clawses in T with p at their head, where Qq, Qy..Qp, are con-
junctions of propositions. Then the completion of p relative to
T is p=Q4vQov...vQy,. If there is no clause in T with p at its
head. then the completion of p relative to 7 is —p. We use
Comp(T,3} to denote the completion of all propositons in S
relative to T.

We state the following proposition without proof. Its proof

straightforwardly follows from known resulis in the fogic
programming liteeature {117 .
Proposition 1  Let T be an acyclic propositional detinite
clause theory and S a set of propositions which includes adl
propositions in T. Then for all propositions p in S, THp iff
Comp(T,S)}—--p

We aiso need the following lemmas:

lemmad Let A be a soluton ol <A,g> Let M be the
minimal model of [TwA. Then M is also the minimal model of
nua (HB is the ser of all clauses in 11 which have a
proposition from 6 at their head).
Proof: Let the proposition p be provable from Nua. We show
that it is also provable from ®UA. Since the minimal model
of a propusitional Homn clause theory is the set of proposi-
tons provable from it, this would establish the lemma.

First, we observe that if p it is abducible, then since A is 4
solution of <I1,A,g>. by definition p isin A,

For the case where p is non-abducible, we show that p is
provable from [T®UA by induction on the length of the short-
est resolation refutation proof of p from I'UA.

Base Case: p is provable from ITuA in zero sieps, ie. pisa

unit clause in [1. Thus it is in 19,

Inductive Case: Let the first step in the shortest proof of p
from NMuA be the resolution of —p with the clause pe-py,po...
Then pq,po.. are all provable from IuA with proof shorter
than that of p, thus by inductive assumption they are provabie
from NPUA. Since pe—py,py... is aclause in 119, it follows that
p is provable from MMPUA.
Lemma5 Let T be a definite theory, with M its minimad
modei. Then only-if(T} has a model M" which is a superset of
M, and M WM only contains names of clauses in T,
Proof: We construct a model M of only-f(T) as follows: Let p
be a proposition in M, Then TH— p, i.e. there is a clause p—Q
in T where Q is & conjunction of propositons, and all the
propositions in Q are in M. Let the name of this clause be n.
Then we add ng 10 M. We repeat this procedure for all the
propositions in M. It is easy to venfy that M satisfies all the
clauses in only-if(T}.
Proposition 2 For all sets of assumplions A, A is a solution
of <lLA,g> iff Tuonly-if(N,QhAu-{AW)U{g) is consistent
Proof of «
Let L=@UA, Le. L is the set of all propositions in the language
ol <I1A.g>. Now TMuonly-if(T1,8)uAau—-(AW) L{g} is consis-
tent thus I'lguonly-if(l'l,H)uAu—‘(A\A)u{g} is consistent. It is
easy (o show tha Comp(l'lauﬁ.L) is & logical consequence
of M@Uonly-f(IT,@)uau—(AW). Thus Comp(IT?u ALyiglis
consistent, which shows that Comp{neuA.L)If- —g. Thus,
since MP0UA is an acyclic propositional definite theory, by
Proposition | Mo0A- g.

1t remains to show that (ae A and A+I1 |—a} - aeA . Sup-
pose this is not true, ie. there 1s an a such that ae A and
A+TT}—a and ag A. But il ag A, it will be in AL, which means
—a iy in ~{A\), Thus TTuAU~[AW) would be inconsistent,
which is contrary (0 assumption. QED
Proof of —
We show NMuenly-if{T,@)uau—{Aa)iigl is consistent by
showing that it has a model. Now since A is a solution of
<T,A,g> by definition MuA is consisient. Let M be the mini-
mal mode] of NuUA. Since A is a solution of <I1,A,g> by defi-
nition NuA— g, thus ge M. By Lemma 4 M is the minimal
model of ITP0A, thus by Lemma S there is a mode! M’ of only-
if((1®UA) which is 4 superset of M and none of the proposi-
tions in MM occur in Tl or A. But only-if(IT®UA) is a superset
ol only-it{1,), thus M’ satisfies [1,4, only-if{{1,8). and g, so
we need only 10 show that M’ satisfies —(A\A). Let —a be a
member of —(AVA). Since A 1s a solution of <I1,A,g>, by defi-
rition a is not provable from TTUA, (hus agM, thus aeM'.
Therefore M’ satisfies —(A\A), QED

Proof of Theorem 1

I easily follows from Proposition 2 that A is a minimal solu-
tion of <ILA,g> iff A is a minirnal set of assumptions such that
Muonly-f{1, B Aau—~{AW) g} is consistent. 1 is also casy to
show that, for any clausal theory C, A is a minimization of A
with respect to C ifl A is o minimal subset of A such thai
CuAL—{A\) is consistent. Thus A is a minimal soludon of
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<I1,A,g> iff A is a minimization of A with respect to Muonly-
{01, vAau-{Aa){g).

Appendix 2: Proof of Theorem 2

First, we need a few preliminary definitions and propositions.
Proposition 3  Let C be derived from C by one resolution
step. Then if C4 has a tied chain, so does C.

Sketch of Proof: Let Cy have a tied chain, and be derived
from C by the resolution of the clauses py and pp in C. Let the
resolvent of py and py be r. If the tied chain in G4 does not in-
volve r, then it is a tied chain of C too. If it involves 1, and r is
not the first or last clause in the chain, then one of the follow-
ing situations obtains (¢4 and c, are the clauses before and af-
ter r in the chain);

In the situation depicted on the left, r inherits the link to ¢,
from pq and the link o ¢y from py. In the situation depicted
on the right, it inherits both links from one pareat. say pa. In
both cases from the topology of the graphs it is easy 10 see
that there is a tied chain in C. There is a similar argument
when r is the first or last clause in the chain.

Convention: The length of a (unit) resolution derivation of s
from C is the number of (unit) resolution steps in that deriva-
tion. We define the length of the derivation to be 0 iff se C.
Proposition 4  Let C be a consistent propositional clavsal
theory without tied chains which has a unit theoremn u, Then
C has at least one unii clause.

Proof: Let ofC,u) be the length of the shortest resolution der-
ivation of u from C. We prove the proposition by induction on
og{C.u).

Base Case: G(C,u)=0, 50 ue C.

Inductive case: Let 0(C u)=n, We assume that the proposition
holds for all sets of clauses such as C; where o{Cj,u}<n, and
then we prove that it holds for C.

Proof: Let C, C.4.Cp.a.....Cp be one of the shortest resolu-
tion derivation of v from C. Thus C; ¢ is derived from C; by
one resolution, and Cg contains u. Now. o(Cp,.1,u}=n-1. By
Proposition 4, Cj, 1 does not have any tied chains. Thus, by
inductive assumption, C,.1 contains a unit clause, Let wq and
1» be the two clauses which are resolved in C, giving the re-
solvent p. Thus C, =C{p}. Now since CuAp} contains a
unit clause, if C does not contain a unit clause, p must be unit.
Thus for some literal A, t;=pvA and Ty=—Avp, (because this
is the only way a unit clause can be derived from two non-unit
clavses). But this means there is a tied chain in C, contradic-
tory 1o assumption.

pvA —hvp

Proposition 5 Let C be an inconsistent proposiiional
clausal theory without tied chains, Then C has at least one
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unit clause.

Proof: Let C' be a minimally inconsistent subset of C. Let
lyvlgv..l be a clause in C'. Let C*aC' \{lyvipv..k}. Then C is
consistent, and the unit clauses -y, —lp..~y are theorems of
C". Thus by Proposition 4 C* has a unit clause, and since
CreC. C has a unit clause.

Definition 9 Let C be a consistent propositional clausal
theory, and X a unit clause in C. Then Cy is the set of clauses
derived by deleting from C all clauses which have A as a
literal, and deleting —A from the all other clauses,
Proposition 6  Let C be without tied chains. Then for alt A
for which C, is defined. C, is without tied chains. (This is a
special case of Proposition 3 )

Proposition 7  Let C be a consistent propositional clausal
theory, and A a unit clause in C, Let u be a theorem of C which
is different from A. Then u is a theorem of C,. (proof omitted)

Proposition 8 Let C be a consistent set of propositional
clauses without tied chains, and let u be a theorem of C, Then
there is a unit derivation of u from of C.

Proof by induction on the number of proposition symbols in
C.

Rase Cuse: The number of proposition symbols in C is one.
Then C={u} and there is a zero step unit derivation of u from
C.

{nduciive Case: Let n be the number of propositional symbols
in C. Assume that Proposition 8 holds for all C; such that the
number of propositional symbols in C; is less than n. Then we
prove that it holds for C.

Proof of the induction siep: By Proposition 4 C has at least
one unit clause. Let this clause be A, If A=u, we are done. Oth-
erwise, by Proposition 7 u is provable from C,. C; has one
less proposition symbol than C, and By Proposition 6 it does
not have any tied chains, so by inductive assumption there is
a unit derivation of ¥ from Cy. Bt Gy can be derived from C
by a series of unit resolutions (i.e. resolving the unit clause A
with all the clauses in C with which it can be resolved) thus
there is a unit derivation of o from C,

Proof of Theorem 2 Let € be aset of clauses without any tied
chains, and U a set of unit clauses, where Col is inconsistent.
Let ' be a minimally inconsistent subset of C, and l4vls.. vl
a clause in C'. Let C'=C' \ {l;vis...vi). Since C has no tied
chatns, neither does C'. Now, C* is consistent, and -y,
—ly... -l are unit theorems of C”, So by Proposition  there is
a unit derivation of the unii clauses —ly, —lp,..—l from C*,
thus since lyvlp...vly is a clause in C, there is a unit derivation
of the empty clause from C (by first deriving -y, =lp..<lg
from C, and then resolving these with lyvly.. vl in k unit res-
olution steps).



