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A b s t r a c t 
A class of concept l ea rn ing a l g o r i t h m s CL aug­
men ts s t a n d a r d s im i l a r i t y -based techniques by 
p e r f o r m i n g feature cons t ruc t i on based on the 
S B L o u t p u t . Paga l lo and Hausslcr 's F R I N G E , 
Paga l lo 's extens ion S y m m e t r i c F R I N G E ( S y m -
Fr inge) a n d a re f inement we ca l l D C F r i n g e are 
a l l instances of th is class us ing decis ion trees as 
the i r u n d e r l y i n g rep resen ta t ion . These m e t h ­
ods use pa t te rns a t t h e f r i nge o f the tree to 
gu ide the i r cons t ruc t i on , b u t D C F r i n g e uses 
l i m i t e d cons t ruc t i on o f c o n j u n c t i o n and dis­
j u n c t i o n . Expe r imen ts w i t h sma l l D N F and 
C N F concepts show t h a t D C F r i n g e ou tper ­
f o r m s b o t h the pu re ly con junc t i ve F R I N G E 
a n d the less res t r ic t ive S y m F r i n g e , in terms o f 
accuracy, conciseness, and eff iciency. Fu r the r , 
t he ga in of these me thods is l i nked to the size 
o f the t r a i n i n g set. We discuss the apparent 
l i m i t a t i o n o f cu r ren t m e t h o d s to concepts ex­
h i b i t i n g a low degree of fea ture i n t e rac t i on , and 
suggest ways to a l lev ia te i t . T h i s leads to a 
fea tu re cons t ruc t i on app roach based on a w ider 
va r ie ty o f pa t te rns res t r i c ted by s ta t i s t i ca l mea­
sures and op t i ona l knowledge . 

1 I n t r o d u c t i o n 
Superv ised concept learning is t he p rob lem of f i n d i n g a 
desc r ip t i on o f an u n k n o w n class o f ob jec ts for wh i ch we 
are g iven a set o f t r a i n i n g examples . T h e mos t c o m m o n 
approaches to th is p rob lem can be co l lec t ive ly referred to 
as similarity-based learning ( S B L ) , i n c l u d i n g agg lomera-
t i ve l ea rn ing systems and s p l i t t i n g a l go r i t hms [B re iman 
et a/., 1984; Q u i n l a n , 1983]. 

T h e effectiveness o f mos t S B L a l g o r i t h m s i s in f luenced 
by concept difficulty, va r ious ly measured as feature i n ­
t e rac t i on [Dev i jver a n d K i t t l e r , 1982; Rende l l and Seshu, 
1990], concept d ispers ion [Rende l l a n d C h o , 1990], cross 
en t ropy [Ragavan a n d Rende l l , 1990], and t e r m and l i t ­
e ra l c o m p l e x i t y [Ehrenfeucht et a/., 1988]. These studies 
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F igu re 1: Decis ion tree representa t ion for x\x2 Vx3x4 . 

show t h a t S B L concept d i f f i cu l t y affects the accuracy 
and conciseness o f mach ine lea rn ing systems. 

Concepts used to test s im i la r i t y -based learn ing sys­
tems are o f ten no t d i f f i cu l t , because the i r cor respond ing 
fea ture set is selected w i t h the a id o f h u m a n experience. 
However , fo r m a n y in te res t ing and i m p o r t a n t concepts 
the app rop r i a te level o f abs t rac t i on is no t d i rec t l y ava i l ­
able. A sh i f t o f i nduc t i ve bias t h r o u g h fea ture const ruc­
t i o n m a y he lp cons t ruc t an instance space at a proper 
level o f abs t rac t i on for conven t iona l S B L system to wo rk 
[Utgof f , 1986; M a t h e u s , 1989]. T h i s paper discusses a 
general approach to fea tu re cons t ruc t i on and compares 
specific approaches based on the F R I N G E a l g o r i t h m . 

F R I N G E [Pagal lo a n d Haussler, 1990; Pagal lo , 1989] is 
a feature cons t ruc t i on a l g o r i t h m fo r decision-tree learn­
i ng designed to c o m b a t the rep l i ca t ion p r o b l e m . T h e 
replication problem is the dup l i ca t i on of a sequence of 
tests in di f ferent branches of a decision tree ( F i g . 1) , 
lead ing to an inconcise representat ion t h a t also tends to 
have low pred ic t i ve accuracy. A l t h o u g h rep l icat ions are 
inheren t to the decision tree representa t ion ra ther t h a n 
the concept i tself , the rep l i ca t ion p r o b l e m is a mani fes­
t a t i o n o f u n d e r l y i n g concept character ist ics t h a t is ac­
cen tua ted for d i f f i cu l t concepts [Yang et a/., 1991]. 

Sect ion 2 presents a general ized a l g o r i t h m schema 
based o n F R I N G E t h a t ut i l izes the o u t p u t o f s im i l a r i t y -
based learn ing for feature cons t ruc t i on . We present some 
specific approaches cap tu red by th is a l g o r i t h m schema. 
Sect ion 3 summar izes and in te rp re ts the results of ex­
per imen ts w i t h three feature cons t ruc t i on a lgo r i t hms . 
F ina l l y , section 4 discusses inherent l i m i t a t i o n s and re­
search d i rect ions. 
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Concept learning a lgo r i thm CL 
Let Prm be the set of primitive user-given attributes. 
Input the Data expressed using Prm, each 

with its class-member ship value. 
Initialize active feature set Act <— Prm. 
Repeat unti l some stopping criterion is met: 

1. convert Data from ground Prm to active form Act; 
2. perform SBL(Act, Data, Tree) 

(build a decision tree using splitting algorithm); 
3. if required, call FC to construct new feature(s) New 

to add to Act; 
4. if Act is large, prune to eliininate less useful features. 

Figure 2: Concept learning w i th feature construction. 

2 Feature Cons t r uc t i on Based on S B L 
O u t p u t 

FRINGE [Pagallo, 1989] and C I T R E [Matheus, 1989] 
are two members of a class of concept learning algo-
rithms CL that incorporate feature construction. Given 
a set of pr imit ive attr ibutes and corresponding data 
annotated wi th class-membership values, CL learns a 
concept by iterating two basic steps: (1) at tempt to 
learn the concept through some standard induction 
method, and (2) use the output to construct new fea­
tures and repeat the process. This algorithm schema 
also summarizes other approaches to feature construc­
t ion (e.g., [Devijver and Ki t t ler , 1982; Schlimmer, 1987; 
Seshu et a/., 1989]). 

Figure 2 shows more detail. Although step 2 could use 
any attribute-based induction algori thm, we confine this 
discussion to SBL methods that output decision trees 
(e.g., [Breiman et a/., 1984; Quinlan, 1983]). To detect 
whether feature construction FC is appropriate, step 3 
might base its decision on accuracy or the size of Tree 
[Matheus, 1989; Pagallo, 1990; Rendell and Seshu, 1990], 
but in our simplified approach, the loop's stopping crite­
rion is failure to produce new features. Step 4 is impor­
tant for difficult problems [Devyver and Ki t t ler , 1982; 
Pagallo, 1990; Seshu et al, 1989], but is not part of the 
algorithms we test. 

Henceforth, the acronym FC refers to feature con­
struction based on decision Tree output of SBL. Since 
feature construction is complex, appropriate bias is es­
sential. The following sections present increasingly in­
volved attempts to utilize the structure of Tree to pro­
duce useful new features. 

2.1 F i r s t A t t e m p t s a t E f fec t i ve C o n s t r a i n t 

One scheme for construction is to form exactly one fea­
ture for each positive branch in Tree. Each branch pro­
duces a conjunction, e.g., Figure 1 would give three con­
junctions, one of which is This sort of con­
struction is not very useful. 

A more interesting technique is to retain the branch 
oriented approach but to restrict the conjunction to 
a binary operation. This restriction effectively allows 
multiple conjunction, but only after further i teration of 
the SBL procedure. On a variety of problem domains, 
Matheus [1989] tried three choices of operands for binary 

Figure 4: Binary operations used by FC. 

conjunction: the two nodes at the root of a branch, the 
two at the fringe (the leaf and its predecessor [Pagallo, 
1989]), and any two adjacent nodes. The best accuracy 
was usually attained using the Fringe method, although 
in some cases Adjacent had slightly better accuracy (but 
poorer efficiency). 

2.2 F R I N G E 

Pagallo [1989; 1990] and Pagallo and Haussler [1990] re­
ported results using a different set of schemes, but again 
the best choice was FR INGE (Fig. 3). (Pagallo applies 
this name to her entire algorithm analogous to CL; we 
use F R I N G E to denote the feature construction scheme 
only.) Construction proceeds by conjoining the parent 
and grandparent nodes of all positive fringes in the tree; 
the position of the leaf node relative to the parent and 
grandparent determines whether the parent and grand-
parent occur negated in the conjunction (Fig. 4). 

FR INGE alleviates the replication problem. In her 
analysis, Pagallo [1990] noted that even a simple boolean 
concept such as causes replication. For 
example if we traverse the decision tree for C in Figure 1, 
we f ind Replication 
causes inconciseness and inaccuracy because H is divided 
into more disjunctive components than necessary, thus 
dispersing the training examples. In contrast, F R I N G E 
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SymFringe( Tree) 
New = NIL 
for every Leaf at depth 2 in Tree 

Feature = Conjoin (Leaf) 
New = New + Feature 

return( New) 

Figure 5: SymFringe (Symmetric FRINGE) . 

DCFringe(Tree) 
New = NIL 
for every Leaf at depth 2 in Tree 

if Leaf is a positive leaf then 
if (sibling of Leaf is a negative leaf) and 

(parent's sibling of Leaf is a positive leaf) then 
Feature = Disjoin(Leaf) 

else 
Feature — Conjoin(Leaf) 

New = New + Feature 
return(New;) 

Figure 6: DCFringe, improved feature construction. 

prevents dispersion by constructing conjunctive features 
such as which tend to be selected early in another 
round of SBL. 

Pagallo [1990] demonstrated the value of FRINGE for 
several DNF expressions, most of which used 16 to 80 
attributes wi th 6 to 16 terms of length 3 to 7, and two of 
which had more terms. But she also noted l imited suc­
cess on pari ty concepts, and anticipated problems wi th 
CNF-type concepts. CNF-type refers to concepts whose 
CNF representations are more compact than the corre­
sponding DNF-type concept expression. 

2.3 Paga l lo 's I m p r o v e m e n t s t o F R I N G E 
Pagallo [1989] proposed that the CNF problem can be 
attacked wi th a dual heuristic for negative leaves, us­
ing disjunction instead of conjunction. Later, Pagallo 
[1990] implemented an algor i thm Symmetric FR INGE 
that combines the constructions of FR INGE and Dual 
FR INGE. 

Figure 5 shows the symmetric version, whose name we 
abbreviate to SymFringe. Technically, SymFringe differs 
f rom Symmetric F R I N G E in that SymFringe performs 
conjunction for both positive and negative leaves. How­
ever, the two versions produce the same features, modulo 
negation. Conjunction of positive leaves in SymFringe 
is identical to the F R I N G E component of Symmetric 
FR INGE; conjunction of negative leaves in SymFringe 
is equivalent to negation of disjunctions in the Dual 
FR INGE component. Pagallo [1990] showed that Dual 
FR INGE and Symmetric F R I N G E give better accuracy 
on two difficult CNF-type concepts that have more than 
a thousand terms when expressed in DNF form. 

2.4 A n I m p r o v e d C o n s t r u c t i o n M e t h o d 
Shown in Figure 6, DCFringe is like SymFringe except 
that DCFringe guides construction using more detailed 
properties of the tree output by SBL. Whereas Sym­
Fringe chooses disjunction or conjunction according to 

Figure 7: Patterns near the fringe of a decision tree. 
Right (Left) branch implies feature tests true (false). 

the sign of a single leaf node, DCFringe makes its choice 
based on addit ional information. To understand the di f-
ference between SymFringe and DCFringe, consider first 
a simpler relationship between DCFringe and the origi­
nal FR INGE. 

Figure 7 depicts all possible patterns that can occur 
near the fringe of a binary decision tree. The crucial ob-
servation is that patterns reveal useful ways to combine 
features. Al though both FR INGE and DCFringe use 
this observation, DCFringe considers more of the con­
text in which the pattern occurs before deciding which 
feature to construct. FR INGE performs the construction 
shown in Figure 7a regardless of the node types of the 
sibling and the parent's sibling. In contrast, DCFringe 
constructs a disjunctive feature when the sibling is a leaf 
and the parent's sibling is a positive leaf, i.e., for pat­
terns typical of trees representing CNF-type concepts as 
depicted in Figure 7b. Otherwise DCFringe performs 
the same conjunction operation as FRINGE. The signs 
wi th in the new conjunction or disjunction depend on 
whether the current node lies in the left (false) branch or 
the right (true) branch of its parent node, and also the 
relative position of the parent node to the grandparent 
node (Fig. 4). 

Compared wi th DCFringe, SymFringe is less selective 
because it forms all conjunctions and disjunctions, re­
gardless of the tree structure. SymFringe produces more 
features, which can proliferate in mult iple iterations. 

2.5 S u m m a r y a n d D iscuss ion o f M e t h o d s 
A l l our FC algorithms perform the binary operations of 
conjunction and/or disjunction, applying them to nodes 
in the decision tree output by SBL. The more interesting 
implementations are summarized in Table 1. Matheus' 
[1989] results demonstrate another interesting point. In 
addit ion to Root and Adjacent, he also tested heuris­
tics such as Root-Fringe, which is the combination of 
Root and Fringe. The features generated by these vari­
ations have the following relationships: Fringe, Root 
Root-Fringe Adjacent. Intuit ively, Adjacent should be 
most accurate since it generates a superset of the other 
heuristics' features. However, Matheus' results are not 
consistent w i th this intui t ion. For most of the cases, Ad ­
jacent is inferior to Fringe. Unnecessary features con­
fuse SBL evaluation and cause overfitt ing, which sug-
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Tab le 1 : Four b i na r y feature cons t ruc t i on schemes. 

Name Construct ion 
Method 

Appl ica t ion 
Condit ion(s) 

Adjacent Conjunct ion 
anywhere in branch 

Nodes adjacent on 
branch 

F R I N G E Conjunct ion 
at leaves 

Positive leaves only 

SymFringe Conjunct ion Positive and 
negative leaves 

DCFringe Conjunct ion or 
dis junct ion 

Choice depends on 
pat tern 

gests t h a t since DCFr inge SymFr inge , D C F r i n g e m a y 
work be t te r t h a n SymFr inge . In Sect ion 3 we present 
and analyze exper imen ts on th is and o ther re la t ionsh ips 
a m o n g F R I N G E , SymFr inge a n d D C F r i n g e . 

3 E x p e r i m e n t a l Resul ts and Analys is 
We compare the behav io r o f three feature cons t ruc t i on 
a l go r i t hms , by v a r y i n g size o f t r a i n i n g sample a n d t y p e 
of concept . We also discuss the s t reng ths a n d weaknesses 
o f the approaches. 

3 . 1 E x p e r i m e n t a l D e s i g n 

T h e three systems, F R I N G E , SymFr inge , a n d D C F r i n g e , 
were r u n on 160 r a n d o m l y generated concepts over 10 
a t t r i b u t e s . M o r e precisely, 10 concepts each were gener-
a ted f r o m 16 p re -de te rm ined classes, each class a four -
d imens iona l boo lean choice. T h e boo lean d imens ions 
were D N F versus C N F , m o n o t o n e versus n o n - m o n o t o n e , 
m versus non-M, and 4 / 2 versus An expression is 
m o n o t o n e i f a l l i ts l i te ra ls are pos i t i ve . A concept is M-
D N F i f each a t t r i b u t e occurs i n a t mos t one 
t e r m (clause) o f i t s D N F ( C N F ) expression [Ehrenfeucht 
et ai, 1988]. 

For each of the 160 ta rge t concepts, N t r a i n i n g ex­
amples a n d 200 tes t ing examples were generated such 
t h a t no t w o examples were the same. T h e values o f 
N were de te rm ined emp i r i ca l l y to be w i t h i n the range 
where D C F r i n g e is mos t effective [Yang , 1 9 9 l ] ; th is gave 
values of N = 30, 60, a n d 90. 2 T h e u n d e r l y i n g S B L sys­
t e m was P L S 1 , w h i c h pe r fo rms m u c h l ike I D 3 [Rendel l 
and C h o , 1990]. A l t h o u g h the i r s p l i t t i n g c r i t e r i a di f fer , 
th is fac to r has been shown to have a m i n o r effect on the 
behav ior of a decis ion tree learner [B re iman et a/., 1984; 
M ingers , 1989; Rende l l a n d C h o , 1990]. 

In t he f o l l o w i n g three sections we present a n d discuss 
results f r o m ou r exper iments w i t h the three fea ture con­
s t r uc t i on schemes. F i r s t we compare the i r overa l l per­
fo rmance ; the c r i t e r i a are p red ic t i ve accuracy, l ea rn ing 
eff iciency, a n d tree conciseness. T h e n we invest igate t h e 

1 We use the nota t ion k/l to signify a D N F expression hav­
ing exactly k terms of exactly I l i terals, or a C N F expression 
having k clauses of / l i terals. Note that ' is equiv­
alent t o non- , a n d i s equivalent t o 
non   

2 I n cont inuing experiments, the size of the t ra in ing sample 
is being varied over a wider range. 

Tab le 2 : Behav io r o f three cons t ruc t i on a l go r i t hms . 

effect o f t r a i n i n g set size on accuracy i m p r o v e m e n t . F i ­
na l ly , we show h o w lea rn ing behav ior depends on concept 
//-ness, w h i c h leads to a discussion of the l i m i t a t i o n s of 
the FC a l g o r i t h m s s tud ied . 

3 .2 G e n e r a l U t i l i t y o f t h e D i f f e r e n t A l g o r i t h m s 

Tab le 2 prov ides a compar i son of the overa l l pe r fo rmance 
of each a l g o r i t h m . Values are averaged over a l l 160 runs 
for 90 t r a i n i n g d a t a . Each en t r y represents a 9 5 % con­
f i dence i n t e r v a l for the cor respond ing a l g o r i t h m . T h e 
f i rs t r o w shows f i na l predictive accuracy (separate test 
sample) a f ter convergence (several rounds o f S B L and 
FC). T h e second r o w gives the difference between th is 
value a n d the basic S B L a l g o r i t h m . T h e t h i r d row i n d i ­
cates the tree conciseness as measured by the number 
o f leaves i n the f i n a l t ree. T h e f o u r t h and f i f t h rows i n ­
d icate learning efficiency as the number of new features 
and the n u m b e r o f i t e ra t i ons before convergence. 

F R I N G E generates con junc t i ve features on ly , and i s 
incapab le o f l ea rn ing C N F - t y p e concepts [Yang , 1 9 9 l ] . 
Since h a l f o f the 160 ta rge t concepts are C N F - t y p e , 
F R I N G E canno t p e r f o r m wel l o n average. SymFr inge 
and D C F r i n g e generate app rop r i a te d is junc t i ve features 
i n a d d i t i o n t o con junc t i ve features. T h e y b o t h p e r f o r m 
be t te r t h a n F R I N G E . D C F r i n g e i s even more accurate 
t h a n S y m F r i n g e ( the t va lue for imp rovemen t in accu­
racy is 1.7, w h i c h imp l ies a conf idence level of 9 0 % ) . 

In t e rms o f eff iciency, D C F r i n g e i s be t te r t h a n S y m -
Fr inge. D C F r i n g e generates s ign i f icant ly fewer features 
t h a n S y m F r i n g e a n d uses a lmos t the same number o f 
i t e ra t i ons . F R I N G E sacrifices accuracy a n d conciseness 
to be faster t h a n D C F r i n g e . 

In t e rms o f conciseness, SymFr inge and D C F r i n g e are 
s ign i f i can t ly be t te r t h a n F R I N G E . D C F r i n g e a n d S y m ­
Fr inge have the smal lest f i na l trees. A reduc t i on in tree 
size no t o n l y fac i l i ta tes h u m a n comprehens ib i l i t y , b u t 
also prov ides be t te r s ta t i s t i ca l suppo r t for s p l i t t i n g de­
cisions since the sample size w i t h i n a node increases. 

3 .3 A c c u r a c y I m p r o v e m e n t v s . S a m p l e S i z e 

Tab le 3 shows how t r a i n i n g set size inf luences accuracy 
for each a l g o r i t h m . Here we consider the 80 M concepts 
on ly . T h e resul ts fo r F R I N G E are re ta ined m a i n l y as a 
baseline for compar i son . T h e t values l is ted in the last 
c o l u m n compare D C F r i n g e w i t h SymFr inge . T h e entr ies 
under t he a l g o r i t h m names show the 9 5 % conf idence i n ­
te rva l fo r predictive accuracy improvement beyond the 
basic S B L a l g o r i t h m . 

T h i s tab le ind icates t h a t D C F r i n g e s ign i f i can t ly ou t ­
pe r fo rms S y m F r i n g e i n te rms o f accuracy. D C F r i n g e 
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Tab le 3 : V a r i a t i o n o f accuracy i m p r o v e m e n t w i t h sample 
E x t e n d e d f e a t u r e c o n s t r u c t i o n p r o c e d u r e FC/2. 

Using the SBL Tree, and possibly knowledge, create 
a set of patterns; 

Grouping these patterns by class-membership values 
and other constraints, f o rm candidate pattern classes. 

Convert stronger pa t te rn classes in to new features 
to add to New. 

Return New to CL. 

has consis tent ly be t te r accuracy across t r a i n i n g set size. 
( T h e t value of 1.8 in t he second row corresponds to a 
signi f icance level o f a b o u t 9 7 % , a n d the consistent t r e n d 
substant ia tes the c l a i m f u r t h e r . ) 

T h e e x t r a features generated by SymFr inge confuse 
the feature select ion mechan ism in the unde r l y i ng S B L 
sys tem. T h i s effect a n d possible over f i t cause SymFr inge 
to p e r f o r m less wel l t h a n m i g h t be expected. 

3 ,4 A c c u r a c y v s . C o n c e p t D i f f i c u l t y 

F igu re 8 shows the accuracy i m p r o v e m e n t ob ta ined by 
D C F r i n g e a n d S y m F r i n g e , as a f u n c t i o n o f concept / i -
ness. D C F r i n g e a t t a i ns s ign i f i can t ly bet ter accuracy i m -

No. of training examples No. of training examples 

F igure 8 : Accu racy i m p r o v e m e n t w i t h SymFr inge and 
D C F r i n g e for concepts (a) a n d concepts (b) 

p rovement t h a n S y m F r i n g e for a l l t r a i n i n g sets on /x con­
cepts ( F i g . 8a) . B u t t he tendencies are less clear fo r 
non-fi concepts ( F i g . 8b ) . T h e super io r i t y o f D C F r i n g e 
over SymFr inge has van ished , a n d the re la t ionsh ip even 
seems to reverse, a l t h o u g h n o t s ign i f icant ly . 

O u r con jec ture to exp la in th i s phenomenon i s t h a t 
h a r d concepts have degrees o f concept d i f f i cu l ty . F r o m 
the perspect ive o f t he decis ion tree o u t p u t o f S B L , t he 
rep l i ca t ion p r o b l e m is j u s t one man i fes ta t i on o f d i f f i ­
cu l ty . W h e n concepts are the d i f f i ­
cu l t y i s res t r ic ted in t w o ways. F i r s t , the number o f 
l i te ra ls in a w concept is l i m i t e d to the d imens iona l i t y 
o f the instance space, whereas concepts become more 
d i f f i cu l t f o r S B L r o u g h l y as the number o f l i te ra ls (a t ­
t r i b u t e occurrences) increases [Ehrenfeucht et a/., 1988; 
Rende l l a n d Seshu, 1990]. Second, our p r e l i m i n a r y ex­
per iments ind ica te t h a t concepts o f ten have rep l ica­
t ions , whereas non- concepts exh ib i t less rep l i ca t ion 
( a l t h o u g h they have obscure pa t te rns o f a t t r i b u t e d u ­
p l i ca t i on ) . On n o n - / i concepts , D C F r i n g e i s n o t more 

3Accuracies relative to SBL are shown as percentage point 
differences. 

F igure 9: Ref ined cons t ruc t i on f r o m a decision t ree. 

accurate t h a n SymFr inge because the features generated 
by D C F r i n g e help rep l ica t ions on ly . 

Moreover , a l l th ree FC m e t h o d s we evaluated i m p r o v e 
accuracy o n l y m a r g i n a l l y w i t h concepts. T h i s e lu ­
cidates the l i m i t a t i o n o f t he basic F R I N G E approach . 
T h e FC me thods we tested are un l ike ly to generate use­
f u l features i f t he decision t ree does no t exh ib i t repl ica­
t i o n . 

4 Discussion and Fu tu re W o r k 

O u r expe r imen ta l analys is has raised several issues. One 
i s t he general u t i l i t y o f F R I N G E - l i k e a l go r i t hms . I f t hey 
p r i m a r i l y he lp concepts, these a lgo r i t hms have l i m i t e d 
p rac t i ca l value. Of a l l possible boolean concepts, the 
p r o p o r t i o n o f concepts is large, and increases w i t h 
the number o f a t t r i b u t e s . I n h a r d p rac t i ca l p rob lems, 

concepts (or the i r non-boo lean analogues) o f ten 
occur since low- leve l p r i m i t i v e a t t r i bu tes tend to par ­
t i c ipa te repeated ly i n m a n y h igh- level features. To u n ­
ders tand more precisely w h e n F R I N G E - l i k e a l go r i t hms 
w o r k , we need to address the p r o b l e m of character iz­
i n g concepts. A l t h o u g h concept charac ter iza t ion is i t -
self p rob lema t i c [Ragavan a n d Rende l l , 1990], the basic 
i n t u i t i o n is t h a t concepts become more d i f f i cu l t as the 
numbers of l i te ra ls and te rms increase [Ehrenfeucht e t 
al., 1988], i.e., as feature i n te rac t i on worsens [Rendel l 
and Seshu, 1990]. 

G i ven a su i tab le measure of concept d i f f i cu l ty for S B L , 
a n d af ter us ing t h a t measure to ascer ta in the l i m i t s o f 
cur ren t fea tu re cons t r uc t i on , we an t i c ipa te several pos­
sible imp rovemen ts to FC. For non-M concepts, the Tree 
regular i t ies m a y be more comp lex t h a n the rep l icat ions 
enjoyed by D C F r i n g e , requ i r i ng more subt le feature con­
s t r u c t i o n . F igu re 9 out l ines an extended version 
o f FC, fo r boo lean a n d non-boo lean prob lems for w h i c h 
we m a y have some knowledge or hunches. 

Ana logous to the con junc t i ve cons t ruc t ion o f FC, 
Step 1 of FC/2 f o rms con junc t ions as patterns. One 
way to o b t a i n pa t t e rns i s to con jo in a t t r i bu tes t h a t oc­
cur f requen t l y in m u l t i p l e branches of the t ree: a cand i ­
date p a t t e r n i s favored i f i ts a t t r i bu tes appear in m a n y 
branches. A second way to decide good pa t te rns m a y be 
comb ined w i t h the f i r s t : G i v e n a p a t t e r n p roposed by 
the b ranch p o p u l a r i t y m e t h o d , one or more con junc ts 
m a y be d r o p p e d f r o m o r added t o t h a t i n i t i a l p a t t e r n 
for var ious reasons. One reason for d r o p p i n g a con junc t 
i s to respond to over f i t . A n o t h e r reason for d r o p p i n g 
or a d d i n g specific con junc ts i s to m a t c h avai lable k n o w l ­
edge or pa t te rns f r o m other branches, to make a more 
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coherent set o f pa t t e rns . 
For h a r d p rob lems w i t h m u c h fea tu re i n t e r a c t i o n , cor­

rect pa t t e rns are d i f f i cu l t to de te rm ine because greedy 
S B L i s l i m i t e d even when a ided by F R I N G E - l i k e a lgo­
r i t h m s [Pagal lo , 1990]. We need to s t u d y the t radeof fs 
between re l axa t i on of S B L greediness [B re iman et al., 
1984, chapter 5 ] a n d overa l l l ea rn ing behav io r . 

Step 2 of FC/2 f o rms pattern classes, w h i c h are po ten ­
t i a l d i s junc t i ons . A p a t t e r n class is a set of s imi la r p a t ­
te rns . T w o pa t t e rns are s im i la r i f t he i r c lass-membership 
values are a l ike , a n d i f t h e y share some syn tac t i c or 
semant ic c o m m o n a l i t y to i m p r o v e the i r coherence ( i .e . , 
u n i f y i n g p r inc ip le [ S m i t h a n d M e d i n , 1 9 8 l ] ) . I n rea l -
w o r l d p rob lems , pieces o f knowledge are o f ten ava i l ­
able t h a t can he lp f o r m p a t t e r n classes [Ma theus , 1990; 
Rende l l a n d Seshu, 1990]. 

Especia l ly w h e n l i t t l e knowledge i s avai lab le fo r h a r d 
p rob lems , FC/2 w i l l encounter ex t reme p rob lems invo l v ­
i n g large numbers o f pa t t e rns and p a t t e r n classes. Since 
large numbers o f features aggravate p rob lems o f over-
f i t and eva lua t i on , we need sensit ive measures of feature 
u t i l i t y [Ragavan a n d Rende l l , 1990]. Step 3 of FC/2 
shou ld create new features on ly a f ter t hey a t t a i n credi ­
b i l i t y i n te rms o f s u p p o r t f r o m d a t a , p a t t e r n coherence, 
a n d general a n d specif ic knowledge. We also need ef­
fec t ive means to comb ine m u l t i p l e measures o f s u p p o r t 
[Gunsch , 1991]. 
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