A Scheme for Feature Construction and
a Comparison of Empirical Methods*

Der-Shung Yang

Larry Rendell

Gunnar Blix

Beckman Institute and Computer Science Department
University of lllinois at Urban a-Champaign
405 N. Mathews Ave., Urbana, IL 61801.
yang@cs.uiuc.edu rendell@cs.uiuc.edu blix@cs.uiuc.edu

Abstract

A class of concept learning algorithms CL aug-
ments standard similarity-based techniques by
performing feature construction based on the
SBL output. Pagallo and Hausslcr's FRINGE,
Pagallo's extension Symmetric FRINGE (Sym-
Fringe) and a refinement we call DCFringe are
all instances of this class using decision trees as
their underlying representation. These meth-
ods use patterns at the fringe of the tree to
guide their construction, but DCFringe uses
limited construction of conjunction and dis-
junction. Experiments with small DNF and
CNF concepts show that DCFringe outper-
forms both the purely conjunctive FRINGE
and the less restrictive SymFringe, in terms of
accuracy, conciseness, and efficiency. Further,
the gain of these methods is linked to the size
of the training set. We discuss the apparent
limitation of current methods to concepts ex-
hibiting a low degree offeature interaction, and
suggest ways to alleviate it. This leads to a
feature construction approach based on a wider
variety of patterns restricted by statistical mea-
sures and optional knowledge.

1 Introduction

Supervised concept learning is the problem of finding a
description of an unknown class of objects for which we
are given a set of training examples. The most common
approaches to this problem can be collectively referred to
as similarity-based learning (SBL), including agglomera-
tive learning systems and splitting algorithms [Breiman
et a/., 1984; Quinlan, 1983].

The effectiveness of most SBL algorithms is influenced
by concept difficulty, variously measured as feature in-
teraction [Devijver and Kittler, 1982; Rendell and Seshu,
1990], concept dispersion [Rendell and Cho, 1990], cross
entropy [Ragavan and Rendell, 1990], and term and lit-
eral complexity [Ehrenfeucht et a/., 1988]. These studies

*The authors gratefully acknowledge the support of NSF
grant IRl 8822031. Blix is supported by the Royal Norwegian
Research Council for Science and Humanities and University
of lllinois CS Fellowships.

Figure 1: Decision tree representation for xx, VxsXs.

show that SBL concept difficulty affects the accuracy
and conciseness of machine learning systems.

Concepts used to test similarity-based learning sys-
tems are often not difficult, because their corresponding
feature set is selected with the aid of human experience.
However, for many interesting and important concepts
the appropriate level of abstraction is not directly avail-
able. A shift ofinductive bias through feature construc-
tion may help construct an instance space at a proper
level of abstraction for conventional SBL system to work
[Utgoff, 1986; Matheus, 1989]. This paper discusses a
general approach to feature construction and compares
specific approaches based on the FRINGE algorithm.

FRINGE [Pagallo and Haussler, 1990; Pagallo, 1989] is
a feature construction algorithm for decision-tree learn-
ing designed to combat the replication problem. The
replication problem is the duplication of a sequence of
tests in different branches of a decision tree (Fig. 1),
leading to an inconcise representation that also tends to
have low predictive accuracy. Although replications are
inherent to the decision tree representation rather than
the concept itself, the replication problem is a manifes-
tation of underlying concept characteristics that is ac-
centuated for difficult concepts [Yang et a/., 1991].

Section 2 presents a generalized algorithm schema
based on FRINGE that utilizes the output of similarity-
based learning for feature construction. We present some
specific approaches captured by this algorithm schema.
Section 3 summarizes and interprets the results of ex-
periments with three feature construction algorithms.
Finally, section 4 discusses inherent limitations and re-
search directions.

Yang, Rendell, and Blix 699

Concept learning algorithm CL

Let Prm be the set of primitive user-given attributes.
Input the Data expressed using Prm, each
with its class-member ship value.
Initialize active feature set Act <— Prm.
Repeat until some stopping criterion is met:
1. convert Data from ground Prm to active form Act;
2. perform SBL(Act, Data, Tree)
(build a decision tree using splitting algorithm);
3. ifrequired, call FC to construct new feature(s) New
to add to Act;

4. if Act is large, prune to eliininate less useful features.

Figure 2: Concept learning with feature construction.

2 Feature Construction Based on SBL
Output

FRINGE [Pagallo, 1989] and CITRE [Matheus, 1989]
are two members of a class of concept learning algo-
rithms CL that incorporate feature construction. Given
a set of primitive attributes and corresponding data
annotated with class-membership values, CL learns a
concept by iterating two basic steps: (1) attempt to
learn the concept through some standard induction
method, and (2) use the output to construct new fea-
tures and repeat the process. This algorithm schema
also summarizes other approaches to feature construc-
tion (e.g., [Devijver and Kittler, 1982; Schlimmer, 1987;
Seshu et a/., 1989]).

Figure 2 shows more detail. Although step 2 could use
any attribute-based induction algorithm, we confine this
discussion to SBL methods that output decision trees
(e.g., [Breiman et a/., 1984; Quinlan, 1983]). To detect
whether feature construction FC is appropriate, step 3
might base its decision on accuracy or the size of Tree
[Matheus, 1989; Pagallo, 1990; Rendell and Seshu, 1990],
but in our simplified approach, the loop's stopping crite-
rion is failure to produce new features. Step 4 is impor-
tant for difficult problems [Devyver and Kittler, 1982;
Pagallo, 1990; Seshu et al, 1989], but is not part of the
algorithms we test.

Henceforth, the acronym FC refers to feature con-
struction based on decision Tree output of SBL. Since
feature construction is complex, appropriate bias is es-
sential. The following sections present increasingly in-
volved attempts to utilize the structure of Tree to pro-
duce useful new features.

2.1 First Attempts at Effective Constraint

One scheme for construction is to form exactly one fea-
ture for each positive branch in Tree. Each branch pro-
duces a conjunction, e.g., Figure 1 would give three con-
junctions, one of which is &y &2®azs4. This sort of con-
struction is not very useful.

A more interesting technique is to retain the branch
oriented approach but to restrict the conjunction to
a binary operation. This restriction effectively allows
multiple conjunction, but only after further iteration of
the SBL procedure. On a variety of problem domains,
Matheus [1989] tried three choices of operands for binary

700 Learning and Knowledge Acquisition

FRINGE(Tree)
New = NIL
for every Leaf at depth > 2 in Tree
if Leaf is a positive leef then
Feature = Conjoin(Leef)
New = New - Feature
return(New)

Figure 3: FRINGE feature construction.

Conjoin(Leaf)
if Leaf is lefi child of Parent then
if Parent is Jeft child of Grandparent then
retwrn{~Parent & ~GrandParent)
else
return{—Farent & GrandParent)
clse
if Parent is left child of Grandparent then
return(Parent & - GrandParent)
clse
return(Parent & GrandParent)
Disjoin{ Leaf)
if Leaf is left child of Parent then
if Parent is left child of Grandparent then
return(—Parent ¥V GrandParent)
else
return(—Parent V¥ —~GrandParent)
else
if Parent is left child of Grandparent then
return(Parent v GrandParent)
else
return{ Parent V ~ GrandParent)

Figure 4: Binary operations used by FC.

conjunction: the two nodes at the root of a branch, the
two at the fringe (the leaf and its predecessor [Pagallo,
1989]), and any two adjacent nodes. The best accuracy
was usually attained using the Fringe method, although
in some cases Adjacent had slightly better accuracy (but
poorer efficiency).

22 FRINGE

Pagallo [1989; 1990] and Pagallo and Haussler [1990] re-
ported results using a different set of schemes, but again
the best choice was FRINGE (Fig. 3). (Pagallo applies
this name to her entire algorithm analogous to CL; we
use FRINGE to denote the feature construction scheme
only.) Construction proceeds by conjoining the parent
and grandparent nodes of all positive fringes in the tree;
the position of the leaf node relative to the parent and
grandparent determines whether the parent and grand-
parent occur negated in the conjunction (Fig. 4).
FRINGE alleviates the replication problem. In her
analysis, Pagallo [1990] noted that even a simple boolean
concept such as &' = 21&2 V 2g&4 causes replication. For
example if we traverse the decision tree for C in Figure 1,
we find H = 2123 V e12azs V 21232324, Replication
causes inconciseness and inaccuracy because H is divided
into more disjunctive components than necessary, thus
dispersing the training examples. In contrast, FRINGE

SymFringe(Tree)
New = NIL
for every Leaf at depth > 2in Tree
Feature = Conjoin (Leaf)
New = New + Feature
return(New)

Figure 5: SymFringe (Symmetric FRINGE).

DCFringe(Tree)
New = NIL
for every Leaf at depth > 2 in Tree
if Leaf is a positive leaf then
if (sibling of Leaf is a negative leaf) and

(parent's sibling of Leafis a positive leaf) then

Feature = Disjoin(Leaf)
else
Feature — Conjoin(Leaf)
New = New + Feature
return(New;)

Figure 6: DCFringe, improved feature construction.

prevents dispersion by constructing conjunctive features
such as #a#4, Which tend to be selected early in another
round of SBL.

Pagallo [1990] demonstrated the value of FRINGE for
several DNF expressions, most of which used 16 to 80
attributes with 6 to 16 terms oflength 3 to 7, and two of
which had more terms. But she also noted limited suc-
cess on parity concepts, and anticipated problems with
CNF-type concepts. CNF-type refers to concepts whose
CNF representations are more compact than the corre-
sponding DNF-type concept expression.

2.3 Pagallo's Improvements to FRINGE

Pagallo [1989] proposed that the CNF problem can be
attacked with a dual heuristic for negative leaves, us-
ing disjunction instead of conjunction. Later, Pagallo
[1990] implemented an algorithm Symmetric FRINGE
that combines the constructions of FRINGE and Dual
FRINGE.

Figure 5 shows the symmetric version, whose name we
abbreviate to SymFringe. Technically, SymFringe differs
from Symmetric FRINGE in that SymFringe performs
conjunction for both positive and negative leaves. How-
ever, the two versions produce the same features, modulo
negation. Conjunction of positive leaves in SymFringe
is identical to the FRINGE component of Symmetric
FRINGE; conjunction of negative leaves in SymFringe
is equivalent to negation of disjunctions in the Dual
FRINGE component. Pagallo [1990] showed that Dual
FRINGE and Symmetric FRINGE give better accuracy
on two difficult CNF-type concepts that have more than
a thousand terms when expressed in DNF form.

24 An Improved Construction Method

Shown in Figure 6, DCFringe is like SymFringe except
that DCFringe guides construction using more detailed
properties of the tree output by SBL. Whereas Sym-
Fringe chooses disjunction or conjunction according to

(@) (8) (8) (&) (8)
Pl © o © @ b o &
(s) + + (s) (s) + + ()
~p-~g p&g ~p&pg

p&-g
(b) @
+ (P} + + +
- + + - - + + -
Pvg ~PvB Py ~“Puv-8
Figure 7: Patterns near the fringe of a decision tree.

Right (Left) branch implies feature tests true (false).

the sign of a single leaf node, DCFringe makes its choice
based on additional information. To understand the dif-
ference between SymFringe and DCFringe, consider first
a simpler relationship between DCFringe and the origi-
nal FRINGE.

Figure 7 depicts all possible patterns that can occur
near the fringe ofa binary decision tree. The crucial ob-
servation is that patterns reveal useful ways to combine
features. Although both FRINGE and DCFringe use
this observation, DCFringe considers more of the con-
text in which the pattern occurs before deciding which
feature to construct. FRINGE performs the construction
shown in Figure 7a regardless of the node types of the
sibling and the parent's sibling. In contrast, DCFringe
constructs a disjunctive feature when the sibling is a leaf
and the parent's sibling is a positive leaf, i.e., for pat-
terns typical of trees representing CNF-type concepts as
depicted in Figure 7b. Otherwise DCFringe performs
the same conjunction operation as FRINGE. The signs
within the new conjunction or disjunction depend on
whether the current node lies in the left (false) branch or
the right (true) branch of its parent node, and also the
relative position of the parent node to the grandparent
node (Fig. 4).

Compared with DCFringe, SymFringe is less selective
because it forms all conjunctions and disjunctions, re-
gardless of the tree structure. SymFringe produces more
features, which can proliferate in multiple iterations.

2.5 Summary and Discussion of Methods

All our FC algorithms perform the binary operations of
conjunction and/or disjunction, applying them to nodes
in the decision tree output by SBL. The more interesting
implementations are summarized in Table 1. Matheus'
[1989] results demonstrate another interesting point. In
addition to Root and Adjacent, he also tested heuris-
tics such as Root-Fringe, which is the combination of
Root and Fringe. The features generated by these vari-
ations have the following relationships: Fringe, Root €
Root-Fringe: € .Adjacent. Intuitively, Adjacent should be
most accurate since it generates a superset of the other
heuristics' features. However, Matheus' results are not
consistent with this intuition. For most ofthe cases, Ad-
jacent is inferior to Fringe. Unnecessary features con-
fuse SBL evaluation and cause overfitting, which sug-

Yang, Rendell, and Blix 701

Table 1: Four binary feature construction schemes.

Construction Application
Name Method Condition(s)
. Conjunction Nodes adjacent on
Adjacent .
anywhere in branch | branch
FRINGE | Coniunction Positive leaves only
at leaves
SymFringe | Conjunction P05|t|ye and
negative leaves
DCFringe C'omunc.tlon or Choice depends on
disjunction pattern

gests that since DCFringet € SymFringe, DCFringe may
work better than SymFringe. In Section 3 we present
and analyze experiments on this and other relationships
among FRINGE, SymFringe and DCFringe.

3 Experimental Results and Analysis

We compare the behavior of three feature construction
algorithms, by varying size of training sample and type
ofconcept. We also discuss the strengths and weaknesses
of the approaches.

3.1 Experimental Design

The three systems, FRINGE, SymFringe, and DCFringe,
were run on 160 randomly generated concepts over 10
attributes. More precisely, 10 concepts each were gener-
ated from 16 pre-determined classes, each class a four-
dimensional boolean choice. The boolean dimensions
were DNF versus CNF, monotone versus non-monotone,
m versus non-M, and 4/2 versus 2/4.1 An expression is
monotone if all its literals are positive. A concept is M-
DNF (p-CNF) if each attribute occurs in at most one
term (clause) ofits DNF (CNF) expression [Ehrenfeucht
et ai, 1988].

For each of the 160 target concepts, N training ex-
amples and 200 testing examples were generated such
that no two examples were the same. The values of
N were determined empirically to be within the range
where DCFringe is most effective [Yang, 199I]; this gave
values of N = 30, 60, and 90.2 The underlying SBL sys-
tem was PLS1, which performs much like ID3 [Rendell
and Cho, 1990]. Although their splitting criteria differ,
this factor has been shown to have a minor effect on the
behavior of a decision tree learner [Breiman et a/., 1984;
Mingers, 1989; Rendell and Cho, 1990].

In the following three sections we present and discuss
results from our experiments with the three feature con-
struction schemes. First we compare their overall per-
formance; the criteria are predictive accuracy, learning
efficiency, and tree conciseness. Then we investigate the

"We use the notation k/I to signify a DNF expression hav-
ing exactly k terms of exactly / literals, or a CNF expression
having k clauses of / literals. Note that 2/4 u-CNF is equiv-
alent to non-g 16/2-DNF, a 4/2 u-CUNF equivalent to
non-i 16/4-DNF.

2In continuing experiments, the size of the training sample
is being varied over a wider range.

702 Learning and Knowledge Acquisition

Table 2: Behavior of three construction algorithms.

| | FRINGE [SymFringe | DCFringe |
Aceuracy (%) 93.7+1.0 | 950209 | 9651 0.7
Acc. Improv. (%) | 2.5+1.0 421409 5.7+0.7
Leaves 8.7+ 0.6 46+04 4.8+ 0.5
Features 134+1.6) 301 4+29 | 17.73 2.0
lterations 2.7-4+0.3 4.1+ 0.4 4.3+ 0.5

effect of training set size on accuracy improvement. Fi-
nally, we show how learning behavior depends on concept
/I-ness, which leads to a discussion of the limitations of
the FC algorithms studied.

3.2 General Utility of the Different Algorithms

Table 2 provides a comparison ofthe overall performance
of each algorithm. Values are averaged over all 160 runs
for 90 training data. Each entry represents a 95% con-
fidence interval for the corresponding algorithm. The
first row shows final predictive accuracy (separate test
sample) after convergence (several rounds of SBL and
FC). The second row gives the difference between this
value and the basic SBL algorithm. The third row indi-
cates the tree conciseness as measured by the number
of leaves in the final tree. The fourth and fifth rows in-
dicate learning efficiency as the number of new features
and the number of iterations before convergence.

FRINGE generates conjunctive features only, and is
incapable of learning CNF-type concepts [Yang, 199l].
Since half of the 160 target concepts are CNF-type,
FRINGE cannot perform well on average. SymFringe
and DCFringe generate appropriate disjunctive features
in addition to conjunctive features. They both perform
better than FRINGE. DCFringe is even more accurate
than SymFringe (the t value for improvement in accu-
racy is 1.7, which implies a confidence level of 90%).

In terms of efficiency, DCFringe is better than Sym-
Fringe. DCFringe generates significantly fewer features
than SymFringe and uses almost the same number of
iterations. FRINGE sacrifices accuracy and conciseness
to be faster than DCFringe.

In terms of conciseness, SymFringe and DCFringe are
significantly better than FRINGE. DCFringe and Sym-
Fringe have the smallest final trees. A reduction in tree
size not only facilitates human comprehensibility, but
also provides better statistical support for splitting de-
cisions since the sample size within a node increases.

3.3 Accuracy Improvement vs. Sample Size

Table 3 shows how training set size influences accuracy
for each algorithm. Here we consider the 80 M concepts
only. The results for FRINGE are retained mainly as a
baseline for comparison. The t values listed in the last
column compare DCFringe with SymFringe. The entries
under the algorithm names show the 95% confidence in-
terval for predictive accuracy improvement beyond the
basic SBL algorithm.

This table indicates that DCFringe significantly out-
performs SymFringe in terms of accuracy. DCFringe

Table 3: Variation ofaccuracy improvement with sample

l # Data I FRINGE l SymFringe | DCFringe | t I

e e
30 —0.5+0.9° 1.0+1a 1.6+ 1.1 | 0.79
50 23115 3.7TL1316 59417 | 1.84
a0 39%186 55114 T4+14 | 1.97

has consistently better accuracy across training set size.
(The t value of 1.8 in the second row corresponds to a
significance level ofabout 97%, and the consistent trend
substantiates the claim further.)

The extra features generated by SymFringe confuse
the feature selection mechanism in the underlying SBL
system. This effect and possible overfit cause SymFringe
to perform less well than might be expected.

3,4 Accuracy vs. Concept Difficulty

Figure 8 shows the accuracy improvement obtained by
DCFringe and SymFringe, as a function of concept /i-
ness. DCFringe attains significantly better accuracy im-

% (@ “a_ (b
'+ M Tringe -1 & Fringe
ut| @ SymFringe t— & SymFringe
8 1| ® DCFringe Es_ @ DCPringe
[
> P e
E
g 1~ B
oy o 2.
E_]
I a— T T TE
No. of training examples No. of training examples
Figure 8: Accuracy improvement with SymFringe and

DCFringe for g concepts (a) and nom-g «concepts (b)

provement than SymFringe for all training sets on /x con-
cepts (Fig. 8a). But the tendencies are less clear for
non-fi concepts (Fig. 8b). The superiority of DCFringe
over SymFringe has vanished, and the relationship even
seems to reverse, although not significantly.

Our conjecture to explain this phenomenon is that
hard concepts have degrees of concept difficulty. From
the perspective of the decision tree output of SBL, the
replication problem is just one manifestation of diffi-
culty. When concepts are g DNF (g CNF} the diffi-
culty is restricted in two ways. First, the number of
literals in a g concept is limited to the dimensionality
of the instance space, whereas concepts become more
difficult for SBL roughly as the number of literals (at-
tribute occurrences) increases [Ehrenfeucht et a/., 1988;
Rendell and Seshu, 1990]. Second, our preliminary ex-
periments indicate that g concepts often have replica-
tions, whereas non-gt concepts exhibit less replication
(although they have obscure patterns of attribute du-
plication). On non-/i concepts, DCFringe is not more

®Accuracies relative to SBL are shown as percentage point
differences.

Extended feature construction procedure FC/2.

Using the SBL Tree,
a set of patterns;
Grouping these patterns by class-membership values
and other constraints, form candidate pattern classes.
Convert stronger pattern classes into new features
to add to New.
Return New to CL.

and possibly knowledge, create

Figure 9: Refined construction from a decision tree.

accurate than SymFringe because the features generated
by DCFringe help replications only.

Moreover, all three FC methods we evaluated improve
accuracy only marginally with mon-g concepts. This elu-
cidates the limitation of the basic FRINGE approach.
The FC methods we tested are unlikely to generate use-
ful features if the decision tree does not exhibit replica-
tion.

4 Discussion and Future Work

Our experimental analysis has raised several issues. One
is the general utility of FRINGE-like algorithms. Ifthey
primarily help g4 concepts, these algorithms have limited
practical value. Of all possible boolean concepts, the
proportion ofmon-g concepts is large, and increases with
the number of attributes. |In hard practical problems,
non-g concepts (or their non-boolean analogues) often
occur since low-level primitive attributes tend to par-
ticipate repeatedly in many high-level features. To un-
derstand more precisely when FRINGE-like algorithms
work, we need to address the problem of characteriz-
ing concepts. Although concept characterization is it-
self problematic [Ragavan and Rendell, 1990], the basic
intuition is that concepts become more difficult as the
numbers of literals and terms increase [Ehrenfeucht et
al., 1988], i.e., as feature interaction worsens [Rendell
and Seshu, 1990].

Given a suitable measure of concept difficulty for SBL,
and after using that measure to ascertain the limits of
current feature construction, we anticipate several pos-
sible improvements to FC. For non-M concepts, the Tree
regularities may be more complex than the replications
enjoyed by DCFringe, requiring more subtle feature con-
struction. Figure 9 outlines FC/2, an extended version
of FC, for boolean and non-boolean problems for which
we may have some knowledge or hunches.

Analogous to the conjunctive construction of FC,
Step 1 of FC/2 forms conjunctions as patterns. One
way to obtain patterns is to conjoin attributes that oc-
cur frequently in multiple branches of the tree: a candi-
date pattern is favored if its attributes appear in many
branches. A second way to decide good patterns may be
combined with the first: Given a pattern proposed by
the branch popularity method, one or more conjuncts
may be dropped from or added to that initial pattern
for various reasons. One reason for dropping a conjunct
is to respond to overfit. Another reason for dropping
or adding specific conjuncts is to match available knowl-
edge or patterns from other branches, to make a more

Yang, Rendell, and Blix 703

coherent set of patterns.

For hard problems with much feature interaction, cor-
rect patterns are difficult to determine because greedy
SBL is limited even when aided by FRINGE-like algo-
rithms [Pagallo, 1990]. We need to study the tradeoffs
between relaxation of SBL greediness [Breiman et al,
1984, chapter 5] and overall learning behavior.

Step 2 of FC/2 forms pattern classes, which are poten-
tial disjunctions. A pattern class is a set of similar pat-
terns. Two patterns are similar iftheir class-membership
values are alike, and if they share some syntactic or
semantic commonality to improve their coherence (i.e.,
unifying principle [Smith and Medin, 198I]). In real-
world problems, pieces of knowledge are often avail-
able that can help form pattern classes [Matheus, 1990;
Rendell and Seshu, 1990].

Especially when little knowledge is available for hard
problems, FC/2 will encounter extreme problems involv-
ing large numbers of patterns and pattern classes. Since
large numbers of features aggravate problems of over-
fit and evaluation, we need sensitive measures of feature
utility [Ragavan and Rendell, 1990]. Step 3 of FC/2
should create new features only after they attain credi-
bility in terms of support from data, pattern coherence,
and general and specific knowledge. We also need ef-
fective means to combine multiple measures of support
[Gunsch, 1991].

Acknowledgments

Discussions with Tom Dietterich, Chris Matheus, Ed-
uardo Perez, Harish Ragavan, Raj Seshu, and Larry
Watanabe contributed to this paper.

References

[Breiman et al, 1984] Leo Breiman, Jerome H. Fried-
man, Richard A. Olshen, and Charles J. Stone. Clas-

sification and Regression Trees. Wadsworth, Belmont,
CA, 1984.

[Devijver and Kittler, 1982] P. A. Devijver and J. Kit-
tier. Pattern Recognition: A Statistical ~ Approach.

Prentice Hall, Englewood Cliffs, New Jersey, 1982.

[Ehrenfeucht et aL, 1988] Andrzej Ehrenfeucht, David
Haussler, Michael Kearns, and Leslie Valiant. A gen-
eral lower bound on the number of examples needed
for learning. In Proceedings of the conference on Com-
putational Learning Theory, pages 139-154, 1988.

[Gunsch, 1991] Gregg H. Gunsch. Opportunistic Con-
structive Induction: Using Fragments of Domain
Knowledge to Guide Construction. PhD thesis, Uni-
versity of lllinois at Urbana-Champaign, 1991. Forth-
coming.

[Matheus, 1989] Christopher J. Matheus. Feature Con-
struction: An Analytical Framework and an Applica-

tion to Decision Trees. PhD thesis, University of Illi-
nois at Urbana-Champaign, December 1989.

[Matheus, 1990] Christopher J. Matheus. Adding do-
main knowledge to SBL through feature construction.
In Proceedings of the Eighth National Conference on
Artificial Intelligence, pages 803-808, 1990.

704 Learning and Knowledge Acquisition

[Mingers, 1989] John Mingers. An empirical compari-
son of selection measures for decision-tree induction.
Machine Learning, 3:319-342, 1989.

[Pagallo and Haussler, 1990] Giulia Pagallo and David
Haussler. Boolean feature discovery in empirical learn-
ing. Machine Learning, 5:71-99, 1990.

[Pagallo, 1989] Giulia Pagallo. Learning DNF by deci-
sion trees. In Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence, 1989.

[Pagallo, 1990] Giulia Pagallo. Adaptive Decision Tree
Algorithms for Learning from Examples. PhD thesis,
University of California at Santa Cruz, June 1990.

[Quinlan, 1983] J. Ross Quinlan. Learning efficient clas-
sification procedures and their application to chess end
games. In R. Michalski, J. Carbonell, and T. Mitchell,
editors, Machine Learning: An Atrtificial Intelligence
Approach, chapter 15, pages 463-482. Tioga Publish-
ing Co., Palo Alto, CA, 1983.

[Ragavan and Rendell, 1990] Harish Ragavan and Larry
A. Rendell. Estimating the utility offeature construc-
tion in empirical learning. Unpublished manuscript,
1990.

[Rendell and Cho, 1990] Larry A. Rendell and Howard
Cho. Empirical learning as a function of concept char-
acter. Machine Learning, 5(3):267-298, 1990.

[Rendell and Seshu, 1990] Larry A. Rendell and Raj Se-
shu. Learning hard concepts through constructive in-

duction: Framework and rationale. Computational In-
telligence, 6:247-270, 1990.

[Schlimmer, 1987] Jeffrey C. Schlimmer. Learning and
representation change. In Proceedings of the Sixth

National Conference on Artificial

511-515, 1987.

[Seshu et al, 1989] Raj Seshu, Larry Rendell, and Dave
Tcheng. Managing constructive induction using op-
timization and test incorporation. In Proceedings of
the Fifth International ~ Conference on Arificial Intel-
ligence Applications, pages 191-197, Miami, FL, 1989.

[Smith and Medin, 198I] E. E. Smith
Medin. Categories and Concepts.
Press, 1981.

[Utgoff, 1986] Paul E. Utgoff. Shift of bias for inductive
concept learning. In R. Michalski, J. Carbonell, and
T. Mitchell, editors, Machine Learning: An Artificial
Intelligence Approach, Vol. Il, chapter 5, pages 107-
148. Morgan Kaufmann Publishers, Inc., Los Altos,
CA, 1986.

Intelligence, pages

and Doug L.
Harvard University

[Yang et ah, 1991] Der-Shung Yang, Gunnar Blix, and
Larry A. Rendell. The replication problem: A con-
structive induction approach. In Proceedings of the
Fifth European Working Session on Learning, Porto,
Portugal, 1991.

[Yang, 1991] Der-Shung Yang. Feature discovery in de-
cision tree representation. Master's thesis, University
of Illinois at Urbana-Champaign, 1991. In prepara-
tion.

