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Abstract

In the logical semantics of knowledge bases
(K8) the handling of contradictions poses a
problem not solvable by standard logic. An
adequate logic for KBs must be capable of
tolerating inconsistency in a KB without los-
iIng its deductive content. This is also the
bottom line of so-called paraconsistent logics.
But paraconsistent logic does not address the
question whether contradictory information
should be accepted or not in the derivation
of further information depending on it. We
propose two computational logics based on
the notions of support and acceptance han-
dling contradictions in a conservative, resp.
skeptical, manner: they neither lead to the
break-down of the system nor are they ac-
cepted as valid pieces of information,

1 Introduction

Dating back to Aristotle, the classical principle ex con-
tradictionc sequitur quodlibet has been considered funda-
mental by most logicians and philosophers. Clearly, it
makes sense for mathematics’ where it amounts to the
postulate that contradictions in a theory must not be tol-
erated and have to be removed, otherwise the theory as a
whole should be rejected as meaningless. This postulate,
however, is neither acceptable for the logical modeling
of cognitive processes nor for a semantics of databases,
respectively knowledge bases, where the logic is required
to be an adequate tool for information processing rather
than a metaphysically correct theory.

In Al, notably in the field of knowledge representation
and automated reasoning, inconsistency handling plays a
crucial role:

* it is a real problem for expert system shells which
don't seem to deal with it in a principled way

*The present paper extends ideas presented in [ Wagner 1990a].
'But even for mathematics some people, e.g. Wittgenstein
[1956], have questioned it.
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* it is the main issue of many nonmonotonic for-
m maliamssuch as default logic, inheritance networks,
defeasible reasoning and belief revision

it will be a major issue in logic programming where
- this is a forecast - negative conclusions will be
allowed in future systems®

There have been several suggestions to apply paraconsis
tent logics in Al But the principle of paraconsistency
{p,~p} ¥ ¢, does not imply an answer to the questior
whether a derivation may rely on possibly contradictory
information or not. Also in the aforementioned work thi
question was not addressed.* Usually, in paraconsisten!
logics contradictory sentences are accepted as a basis fo)
further derivations. This corresponds to the ‘dialethic
standpoint of e.g. Priest {1989] according to which a con
tradictory sentence counts as both true and false, simul
taneously: {p,~p}t p as well as {p, ~p} F ~p.

From an information processing point of view, how
ever, 1t seems to be more natural to discard contradictory
information as neither true nor false, so it cannot be usec
in the derivation of further information: {p,~p} ¥ p a
well as {p,~p} ¥ ~p. This view seems to be sharec
by Perlis {1989]: “when a contradiction is found in ou
reasoning we tend to notice that fact and take corrective
action, such as temporarily suspending beliefs in one o
both conflicting beliefs”

While in many other formalisms (in belief revision®
for instance) the logic is extended by adding a certair
higher-level apparatus, our aim is to establish a basic
level logical system capable of handling contradictory in-
formation in a satisfactory way.

2The theoretical basis for this is discussed in [Pearce & Wagne
1989, [Gelfond & Lifschitz 1990], [Kowalski & Sadri 1990), [Wagne:
1990h).

Se.g. [Blair & Subrahmanian 1989)], [Kifer & Lozinskii 1989]
[da Costa et al. 1980], [Subrahmanian 1990]

{Subrahmanian [1990] remarks as a criticism of the 4-valuec
approach of [Blair & Subrahmanian 1989] that we should not by
allowed to use inconsistent information to draw further conclusions
However, no solution Lo this problem is offered.

*cf. [Girdenfors 1988]



2 Informal Presentation

We assume that a KB consists of rules, conclusion
premise” representing positive, resp. negative, conditional
information. A fact can be represented as a rule with
an empty premise, or, in an alternative notation, with
premise 1, the verum, which is trivially accepted. Instead
of conclusion +— 1 we shall also simply write conclusion
as an abbreviation. The following is an example of a KB
in this sense:

Example 1 KBy = {p,~¢,s,~p,¢ — p,r — ¢}

2.1 Liberal Reasoning

The notions of liberal support and acceptance are defined
by the following clauses:

(1) 1 is supported.

(support) A conclusion is supported if the KB contains
a rule for it the premise of which is supported.

(accept) A conclusion is accepted if it is supported,

We denote the consequence operation collecting all lib-
erally accepted conclusions by LC,

LC(KB)) = {p,q,~p.~q,1,5)

Notice that certain conclusions are accepted together
with their resp. contraries i.e. they are simultaneously
accepted and rejected. In order to avoid this strange
situation acceptance should be defined in another way.

2.2 Semi-liberal Reasoning

The simplest contradiction banning modification of lib-
eral reasoning would be to delete all contradictory con-
clusions from LC(KB). The definitions of (1) and (sup-
port) from liberal reasoning are retained. Additionally,
we have

(doubt) A conclusion is doubted if its contrary is sup-
ported.

(accept) A conclusion is accepted if it is supported and
not doubted.

(reject) A conclusion is rejected if it is doubted and not
supported.

The resulting consequence operation, collecting all semi-
liberally accepted conclusions, is denoted by LC'. In
our example KBi, p and g are no longer accepted con-
sequences, since they are not only supported but also
doubted. Only r and s are accepted, LC'(KB) = {rs}.
At first glance this looks like we had cleaned up the mess
of LC(KBi). But if we really don't want to accept con-
tradictory conclusions we should also ban them from en-
tering into derivations. Consequently, r should not be
derivable since it depends on g which is contradictory-

One possible solution consists in a seemingly small
change in the definition of support.

2.3 Conservative Reasoning

Conservative reasoning requires the premise of a rule to
be accepted (and not only supported) in order that the
conclusion be supported. (1), (doubt), (accept) and (re-
ject) are as above. Additionally, we have now

(support) A conclusion is supported if the KB contains
a rule for it the premise of which is accepted.

Concerning KB4, this means that p is not accepted, since
it is both supported and doubted, consequently g is not
supported by g — p, but only doubted, by ~q, hence
~q Is accepted. Also, s is accepted, and r is not. Thus,
we obtain the following set of conservative consequences,
CC(KB1) — {~q,s}. The interesting point here is that,
by our redefinition of support, we have also redefined the
concept of contradiction. So, in comparison with liberal
and semi-liberal reasoning, we not just lose conclusions
based on contradictions, but we also lose contradictions,
and consequently, gain new conclusions.

2.4 Skeptical Reasoning

We might not want to rely on conclusions which are, al-
though not conservatively, but liberally doubted. As real
skeptics we are not willing to accept any possibly incon-
sistent information. That is, we would not accept ~q
as a conclusion from KB4, since there is some evidence
for the premise of a contrary rule, p (though there is evi-
dence for ~p, as well). This is achieved by (1), (support),
(accept) and (reject) as in conservative reasoning, and a
stronger notion of doubt,

(doubt) A conclusion is doubted if its contrary is liber-
ally supported.

According to skeptical reasoning we obtain the following
set of skeptical consequences, SC(KB41) — {s},

2.5 Discussion

LC, CC and SC are nonmonotonic: the addition of new
information to the KB may cause new contradictions in-
validating previously accepted conclusions. The question
now is: which of LC, LC, CC and SC is the most appro-
priate consequence operation for knowledge bases. From
the above example it becomes clear that LC is not a
good choice. It represents a bad compromise between
liberal and skeptical reasoning. Obviously, LC is compu-
tationally cheaper than CC and SC which require two-
fold recursion.® So, it could make sense first to check the
liberal derivability of a query, and if it succeeds, check

°SC seems to be computationally cheaper than CC.
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In a second step whether it is grounded in noncontradic-
tory information, i.e. conservatively, or even skeptically,
derivable.

But there might also be domains of application where
the liberal rationale is perfectly reasonable and the con-
servative and skeptical reasoning procedures are too re-
strictive.

Example 2 Consider

treatment_A +- symptom.] A fever
KB = treatment_.B — symptom_l A ~fever
fever +«- measure(z) Az > 37
~fever « measure(z) Az <37

It is conceivable that tn certain cases both treatments are
applicable since, due to the vagueness of the measure-
ment method, the first measurement might yield 37.3 and
the second one 36.8, so we would obtain fever and also
~ fever by liberal reasoning. Both by conservative and
skeptical reasontng the patient would not get any treat-
ment, since neither fever nor ~ fever would hold.

The difference between conservative and skeptical rea-
soning consists in the resp. concept of contradiction. A
conclusion is considered contradictory if it is both sup-
ported and doubted. Skeptical doubt is much stronger
than its conservative counterpart which allows for con-
clusions not acceptable to a skeptic.

We propose to use LC, CC and SC as complementary
options in knowledge-based reasoning.

3 The Formal System

The language of KBs consists of the logical operator sym-
bols A, V, ~ and 1 standing {or conjunction, disjunction,
negation and the verum, respectively, predicate symbols,
constant symbols, and variables. Notice that there are
no function symbols and no expheit quantifiers.

A hiteral is either an atom or a negated atom (if it
1s neither 1 nor ~1 1t is called proper). We use a,b, . .
[ k,...and F, G, H,... as metavariables for atoms, liter-
als and formulas, respectively. A variable-free expression
15 called ground. A KB consists of clauses of the form
| «— F. We consider such clauses as specific inference
rules expressing conditional facts, and not as implica-
tional formulas. A rule with premise 1 is also called a
fact, and we abbreviate { — 1 by {. Examples of clauses
are ~ flies(z) — emu(x)Vpenguin(z) or switch_on.light
+— dark A ~1llummated.

We consider a KB containing non-ground clauses as a
dynamic representation of the corresponding set of
ground clauses formed by means of the current domain

of individuals U/ and deroted by [KB]y. Formaily,

[KBly = {lo —~ Fo:l— F KB, and
o: Var(l, F) — U}

540 Knowledge Representation

where a ranges over all mappings from the set of vari-
ables of/ and F into the Herbrand universe U . We call a
a ground substitution for /| <— F and [KB]Ju the Herbrand
expansion of KB with respect to a certain Herbrand uni-
verse U. We shall write [KB] for the Herbrand expansion
of KB with respect to the Herbrand universe Ugg of KB.

We shall formulate our system proof-theoretically’ by
defining a derivability relation between a KB and a well-
formed formula in the style of a natural deduction system
by means of the introduction rules (1)(A),(~A), (~~)
and {x).° We first present the deduction rules for com-
plex formulas. We write "KB h F,G" as an abbreviation
of "KBh Fand KB KG".

(A) KB+ F,G (o) KB F
KBF FAG KBt e F

(~A) KBt ~F KBF ~G
KBF~(FAG) KB F ~(FAG)

where F' and G are ground formuas, and a non-ground
formula is provable if some ground instance of it 1s,

(z) KBt F(¢) for some constant c
| KB+ F(z)

We also stipulate that for any KB, KB + 1. The rules
for disjunction, (V) and (~ V), are derivable according to
the DeMorgan identities.

In order to complete this definition of derivability rel-
ative to a KB we have to specify what it means for a
ground literal to be derivable, i.e. the rule (I). While
liberal, conservative and skeptical derivabiltity have the
same rules for complex formulas, (A}, (~ A), (~~), {z),
they differ in the base case, ({}, which is defined in the
next sections.

Notice that we do not have a ‘trivialization rule’, so as
to conclude anything from a contradiction. The principle
ex contradictione sequilur quodlibel, {F,~ F} F (G, which
1s fundamental in classical and intuitionistic logic, has
been dropped. Furthermore, in the conservative and in
the skeptical system, we replace it by the principle ez
contradictione nihsl sequitur,

4 Well-founded KBs

Concerning the recursive structure of a KB, the most
straightforward way to define liberal dersvability for
ground literals is the following

(I KBr ! iff 3 —F)e[KB]:KBH F

"Notice that this seems to be the most natural way to define
cognitively interesting nonstandard logics such as relevance logics,
default logic, or the defeasible reasoning procedure of Nute, which
all have in common that they have no simple and intuitively con-
vincing mode] theory.

8 There is no need for elimination rules because - does not allow
for arbitrary formulas in the premise.



However, this definition only works for ‘well-behaved’
KBs which we call well-founded according to the defi-
nition below. In other cases it enters a loop.°

In order to say what 1t means for a KB to be well-
founded we need a few definitions. We define DNS(F),
the disjunctive normal set of a formula F as follows:

DNS(l) = {{I}}
DNS(FAG) = {KUL : K € DNS(F),
L € DNS{(G)}
DNS(~{F AG)) = DNS(~F)UDNS(~Q)
DNS{~~F} = DNS(F)

With this the disjunciive normal form of a formula &
can be obtained as
\/ A K

DNF(G) =
K £ DNS(G)

For a ground literal { we define Pre!(!), the set of its
single-step literal predecessors, Pre*({), the set of its ith-
step literal predecessors, and Pre({), the set of all proper
ground literals preceeding it in KB:

Pre'() = [ J{K-{1}: K € DNS(F)
& | — F e KB]}
Pre't'(t) = | J{Pre'(k): k€ Pre'(})}
Pre(l) = Pre!(l) U | J{Pre(k): k € Pre' (1)}

Intmtively speaking, Pre({) collects all ground hterals on
which the derivability of { possibly depends.

A KB is called well-founded, if for every { — F € [KB]
we have | g Pre(l). It 1s called strongly well-founded il
for every | — F € [KB| we have [ & Pre(!) and also
[ ¢ Pre(l}), where ~a = a and @ = ~«,

For example, KB = {q,p — ¢.¢ — ~p} 15 well-
founded but not strongly well-founded since ~p € Pre(p).

For strongly well-founded KBs we can define conser-
valive and skeplical dertvabihity, . and -, as follows:

(e KBF.1 if 3~ F)e[KB]: KB}, F, and
V(I — G) € [KB] : KBV, G

)y KBF,! if 3(i— F)e[KB]:KBF, F, and
V(iI— G)e [KB) :KBW, G

Notice that these definitions are twofold recursive.
Conservative derivability excludes only those contradic-
tory information the derivation of which does not itself
rest on other contradictions, whereas skeptical derivabil-
ity also discards information as contradictory if its incon-
sistency is caused by other contradictory information.

We denote the resp. consequence operations associat-
ing the set of liberal, conservative and skeptical conse-
quences with a KB, {F : KB h* F} where * = l,c,s, by
LC(KB), CC(KB) and SC(KB).

This problem does not arise in standard logic where the notion
of derivability is not operational but simply requires the existence
of a proof.

Observation 1 SC(KB) C CC{KB)C LC(KB)
Example 3 KBy ={~p r g—~p, s —#r ~g+—1r
~F—p,~§—gAr} as strongly well-founded. Thus,
applying the resp. recursive dervability procedures we ob-
fain

LC(KBs) = {~p,r.q,~gq,5,~s]
CC(KBz) = {~p,r,s}
SC(KBy) = {~p,r}

5 Non-Well-Founded KBs

The simplest case of a non-well-founded knowledge base
18 KB = {p — p}. Clearly, we are interested in a decid-
able denivation procedure yielding KB I/ p. In order to
intercept such looping situations in the course of deriva-
tion we introduce an ‘index’ to the derivability relation.
Let L be an arbitrary set of ground literals. First, we
stipulate that (KB, L) -, 1 for » = 1, ¢, s. Then we de-
fine

(KB,L)Fi! iff 3( — F) € [KB]3K € DNS(F) :
(1) Kn(Lu{l})=10, and

(i) ¥Yee K (KB, LU{I})F &k

Natural cases of not strongly well-founded rules arse, for
example, when incompatibility between predicates 1s ex-
pressed like in KBy = {r(n), ~¢(x) — r(z), ~r(z) —
¢g{z)} where r and ¢ (‘being a republican’ and ‘being a
quaker’) are incompatible. Although such incompatibil-
ity rules are not strongly well-founded we want to employ
them in derivations if possible. So, we want to be able to
conclude from KBj3 that Nixon, since being a republican,
1s not a quaker. For an arbitrary set A of ground atoms
and an arbiytrary KB we define:

(KB, A) k. I iff 3~ F)e[KB]3K € DNS(F)
(1) Kn(Au{{}) =20, and
(i} Yke K : (KB, Au{}) .k, and
(iii) ¥(I — G) € [KB]YK € DNS(G)
e K:(KB,AU{IN Y, k
(KB, A+, ! if 3(I— F)e{KB])3K € DNS(F):
(1)) Kn(Au{i}) =0, and
(1) VkeK :{KB,AU{E})I-, k. and
(i) ¥(I —G) e [KB]VA € DNS(G)
ke N (KB, Au{l}) &

wherca=~a=aand K = {k kE N}
Notice that condition (i) in the above definitions pro-
vides a kind of loop-checking.

Observation 2 (1) For every well-founded KB, KBt
I iff (KB, L ‘
(it) For every stromgly well-founded KB, KB F. I off
(KB,9}F. ! forx=c¢,s.
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This is because well-founded ness guarantees that condi-
tion (i) of the definition will be satisfied (proof by induc-
tion on the degree of /). Thus, we can define derivability
for general, not necessarily (strongly) well-founded, KBs

(). KBF.! iff (KB,0)+, I

fors=1¢s5

Example 4 The following KB (about the barber shav-
ing anyone not shaving himself) is not strongly well-

founded
s(b,z) ~— ~s(z, )
KBq -_ ""-'S[b,b)
~§(¢, ¢)

We have SC(KB4) = {~3(b, ), ~s(c, c), s(b, )} since the
only contrary rule for ~s(b,b) fails through the loop
check: (KB4, {~&(b,b)}} ¥, s(b,b).

6 Relation to Other Formalisms

The logics of liberal, conservative and skeptical reasoning
are non-classical- For instance, the law of the excluded
middle is not a tautological consequence: In general,
pV~p is neither valid in liberal, nor in conservative, nor
In skeptical reasoning. Rather, liberal derivability cor-
responds to a certain fragment of the paraconsistent
constructive logic N of Nelson [1949; Almukdad &
Nelson 1984].

While liberal derivability is adequate with respect to
general partial models'®, or, equivalently, 4-valued mo-
dels'', the model theory for conservative and skeptical
reasoning is still under investigation- It seems that a
preferred model approach within general partial se-
mantics is needed.

Conservative and skeptical reasoning can be viewed
as generalizations of ambiguity-blocking and ambiguity-
propagating skeptical inheritance. In fact, Ex. 1 is
the logical representation of a net which illustrates the
difference between these two strategies.

Conservative reasoning corresponds to Nute's de-
feasible reasoning procedure in the following way. if
all clauses of a KB are considered to be defeasible rules
in the sense of [Nute 1988], then our concept of conser-
vative consequence essentially agrees with the concept
of consequence in Nute's formalism (without specificity
defeat).

There 15 also a close connection to the partial logic of
normal defaults'? which is defined as follows. Let I be
a set of normal ‘conclusion unary’ defaults, F : 1/, and
I'p an operator taking a set of literals to a set of hterals,
['p: 2Lt oLt with Ip(X ) defined as the smallest set
such that { € I'p(X) whenever I'p{X)}F F & I ¢ X for

10¢f. [Langholm 1988]
. [Belnap 1977]
12Default logic was introduced by Reiter [1980].

542 Knowledge Represeniation

all ground defaults F : 1 /1 € [D]. E is called a partial
defaull extension for D if I'p(E) = E. Now, if all the
clauses of a KB are considered to be normal defaults, 1.e.
| — F is1dentified with F : { / {, we can state

Observation 3  For every KB, and every parlial de-
fault extension E of KB, we have SC(KB) C E C
LC(KB).

/ Future Work

The logics of liberal conservative and skeptical reason-
Ing can be extended by adding another negation allow-
ing for the processing of implicit negative information
in the spirit of negation-as-failure. This has been done
for liberal reasoning in [Wagner 1991] where the resulting
system is called vivid logic. This system and its conserva-
tive and skeptical variants seem to be a kind of common
background logic for such areas like default logic, defea-
sible inheritance, generalized deductive databases' and
generalized logic programs’®.

For the model theory of the above systems we think
that general partial semantics is a promising framework.
As soon as we want to add a genuine implication to our
systems we expect to end up with some kind of possible
worlds semantics.

The addition of inconsistent hypothesis to a KB does
not require any belief revision in our system. It should
be interesting to compare the approach to inconsistency
handling described in this paper with the 'consistency
maintenance' approach of belief revision formalisms
where contradictions have to be detected and eliminated.
We expect computational advantages of our approach.

8 Concluding Remarks

We have presented a simple and natural nonmonotonic
formalism for dealing with contradictory information.
Since it is given by a recursive proof theory, it is computa-
tionally feasible."”® By comparison with default logic and
defeasible inheritance we obtained some evidence that it
might be the logical kernel of inconsistency-tolerant rea-
soning.
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