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Abst ract 
Consistency Techniques have been studied ex-
tensively in the past as a way of tackling Con-
straint Satisfaction Problems (CSP). In par­
ticular various arc consistency algorithms have 
been proposed, originating from Waltz's filter-
ing algorithm [20] and culminating in the op-
t imal algorithm AC-4 of Mohr and Henderson 
[13]. AC-4 runs in 0(ed2) in the worst case 
where e is the number of arcs (or constraints) 
and d is the site of the largest domain. Being 
applicable to the whole class of (binary) CSP, 
these algorithms do not take into account the 
semantics of constraints. 
In this paper, we present a new generic arc 
consistency algorithm AC-5. The algorithm is 
parametrised on two specified procedures and 
can be instantiated to reduce to AC-3 and AC-
4. More important, AC-5 can be instantiated to 
produce an 0(ed) algorithm for two important 
classes of constraints: functional and mono-
tonic constraints. 
We also show that AC-5 has an important 
application in Constraint Logic Programming 
over Finite Domains [18]. The kernel of the 
constraint-solver for such a programming lan­
guage is an arc consistency algorithm for a set 
of basic constraints. We prove that AC-5, in 
conjunction wi th node consistency, provides a 
decision procedure for these constraints run­
ning in time 0(ed). 

1 In t roduc t i on 
Many important problems in areas like artificial intelli­
gence, operations research and hardware design can be 
viewed as Constraint Satisfaction Problems (CSP), A 
CSP is defined by a finite set of variables taking val­
ues from finite domains and a set of constraints between 
these variables. A solution to a CSP is an assignment 
of values to variables satisfying all constraints and the 
problem amounts to finding one or all solutions. Most 
problems in this class are NP-complete which mean that 
backtracking search is an important technique for solv-
ing them. 

Many search algorithms (e.g. [ l , 4, 5, 6, 9, 15]), 
preprocessing techniques and constraint algorithms (e.g. 

[20, 14, 10, 12, 13]) have been designed and anal­
ysed for this class of problems. See the reviews 111, 
16] for a comprehensive overview of this area. In this 
paper, we are mainly concerned with (network) consis­
tency techniques, and arc consistency in particular. Con­
sistency techniques are constraint algorithms that reduce 
the search space by removing, from the domains and con­
straints, values that cannot appear in a solution. Arc 
consistency algorithms work on binary CSP and make 
sure that the constraints are individually consistent. Arc 
consistency algorithms have a long story on their own. 
They originates from Waltz filtering algorithm [20] and 
were refined several times [10] to culminate in the opti­
mal algorithm AC-4 of Mohr and Henderson [13]. AC-4 
runs in 0(ed2) where e is the number of arcs in the net­
work and d is the size of the largest domain. 

Consistency techniques have recently1 been applied in 
the design of Constraint Logic Programming (CLP) lan-
guages, more precisely in the design and implementa-
tion of CHIP [18, 3]. CHIP allows for the solving of a 
variety of constraints over finite domains, including nu­
merical, symbolic, and user-defined constraints. It has 
been applied to a variety of industrial problems preserv­
ing the efficiency of imperative languages, yet shorten-
ing the development time significantly. Examples of ap-
plications include graph-coloring, warehouse locations, 
car-sequencing and cutting stock (see for instance [2, 
18]). The kernel of CHIP for finite domainB is an arc 
consistency algorithm, based on AC-3, for a set of ba­
sic binary constraints. Other (non-basic) constraints are 
approximated in terms of the basic constraints. 

This research originated as an attempt to improve fur-
ther the efficiency of the kernel algorithm. This paper 
contains two contributions. 

First we present a new generic arc consistency algo­
rithm AC-5. The algorithm is generic in the sense that 
it is parametrised on two procedures that are specified 
but whose implementation is left open. It can be reduced 
to AC-3 and AC-4 by proper implementations of the two 
procedures. Moreover, we show that AC-5 can be spe­
cialised to produce an 0(ed) arc consistency algorithm 
for two important classes of constraints; functional and 
monotonic constraints. 

Second we show that the kernel of CHIP consists pre­
cisely of functional and monotonic constraints and that 
AC-5, in conjunction with node consistency, provides a 
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1 Although Mackworth already mentioned as early as 1977 
[lO] the potential value of consistency techniques for program­
ming languages. 
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decision procedure for the basic constraints running in 
time 0(ed). 

The rest of this paper is organized in the following 
way. Section 2 fixes the notation used in this paper 
and contains the basic definitions. Section 3 describes 
the generic arc consistency algorithm AC-5 and speci-
fies two abstract procedures A R C C O N S and L O C A L A R -
CCONS. Sections 4 and 5 show how an 0(ed) algorithm 
can be achieved for functional and monotonic constraints 
by giving particular implementations of the two proce­
dures. Section 6 presents various representations for the 
domains while Section 7 shows that AC-5, in conjunction 
with node consistency, provides an 0(ed) decision proce-
dure for the basic constraints of CLP over finite domains. 
Section 8 contains the conclusion of this research. 

3 The new Arc Consistency A lgo r i t hm 
Al l algorithms for arc consistency work with a queue 
containing elements to reconsider. In AC-3, the queue 
contains arcs ( i , j) while ACM contains pairs ( i ,v ) where 
i is a node and v is a value. The novelty in AC-5 is to 
have a queue containing elements < ( i , j ) , ID > where 
(i,j) is an arc and w is a value which has been removed 
from Dj and justifies the need to reconsider arc (i, j ) . As 

a consequence, AC-5 can be specialized to obtain either 
AC-3 or AC-4 by giving a particular implementation of 
Procedures A R C C O N S and L O C A L A R C C O N S . Moreover, 
for certain class of constraints, AC-5 can be specialized 
to give an 0(ed) algorithm. 

To present AC-5, we proceed in several steps. We 
first present the necessary operations on queues. Then 
we give the specification of the two abstract procedures 
A R C C O N S and L O C A L A R C C O N S . Finally we present the 
algorithm itself and prove a number of results. 

3.1 Opera t ions on Queues 
The operations we need are described in Figure 1, 

Procedure I N I T Q U E U B simply initialises the queue to an 
empty set. Function E M P T Y Q U E U E tests i f the queue is 
empty. Procedure E N Q U E U E ( I , Q) is used when the 
set of values has been removed from Di. It introduces 
elements of the form < (k, i),v > in the queue Q where 
(k, i) is an arc of the constraint graph and v Proce-
dure D E Q U E U E dequeues one element from the queue. In 
all specifications, we take the convention that a parame-
ter p subscripted with 0 (i.e., po) represents the value of 
p at call t ime. 

A l l these operations on queues but Procedure EN­
QUEUE can be achieved in constant time. Procedure 
E N Q U E U E can be implemented to run in O(s) where s 
is the size of A. The only difficulty in fact is Proce­
dure ENQUEUE. I t requires a direct access from a vari­
able to its arcs (which is always assumed in arc con­
sistency algorithms) and a lazy distribution of v on the 
arcs. To achieve this result, the queue could be organized 
to contain elements of the form < v,{A1,.., Am} > 
where Ak is an arc and v is a value. Procedure 
E N Q U E U E ( I , V) adds an element < v, {A1..., Am} > 
to the queue, where the Ak are arcs of the form (j,i), for 
each v Procedure D E Q U E U E picks up an element 
< w,>, {A1..., Am} > wi th m > 0, remove an Ak = (i,j) 
from the set, and returns i , j , and w. 

3.2 Spec i f ica t ion o f t h e P a r a m e t r i c Procedures 
Figure 2 gives the specification of the two subprob-

lems* Their implementations for various kinds of con-
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straints wi l l be given in the next sect ions. They can also 
be specialized to produce AC-3 and AC-4 from AC-5, 

Procedure ARcCONs(i, j , A) computes the set of val-
ues A for variable i that are not supported by Dj. Pro-
cedure L O C A L A R C C O N S ( I , J,W, A) is used to compute 
the set of values in Di no longer supported because of 
the removal of value w from Dj. 

Note that the specification of L O C A L A R C CONS gives 
us much freedom for the result A to be returned. It is 
sufficient to compute A1 to guarantee the correctness of 
AC-5, However the procedure gives the opportunity to 
achieve more pruning (up to A2) while stil l preserving 
the soundness of the algorithm. Interestingly enough, 
the ability to achieve more pruning turns out to be fun­
damental, for some classes of constraints (e.g. monotonic 
constraints), in producing an 0(ed) algorithm. 

3.3 A l g o r i t h m A C - 5 
We are now in position to present Algorithm AC-5. 

The algorithm is depicted in Figure 3 and has two main 
steps. In the first step, all arcs are considered once and 
arc consistency is enforced on each of them. Procedure 
R E M O V E ( A , D) removes the set of values A from D. The 
second step applies L O C A L A R C C O N S on each of the el­
ement of the queue possibly generating new elements in 
the queue. The correctness of the algorithm is an imme­
diate consequence of the correctness of Algorithm AC-
3 [10] that it generalises. AC-3 is a particular case of 
AC-5 where the value w is never used in the implemen­
tation of Procedure L O C A L A R C C O N S , AC-4 is a partic-
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for reasons that wi l l become clear later.3 The additional 
sophistication is necessary to achieve the bound 0(ed) 
for monotonic constraints. These primitive operations 
are assumed to take constant t ime. 

4 Funct ional Constraints 
D e f i n i t i o n 5 A constraint C is functional wrt a domain 
D iff for all v (resp. w) D there exists at most one 
w (resp. v) D such that C(v,w); 

Note that the above definition is parametrized on a 
domain D. Some constraints might not be functional 
in general but become functional when restricted to a 
domain of values. 

Conven t i on 6 If C is a functional constraint, we de-
note by fc(v) the value w such that C(v, w) and (w) 
the value v such that C[v, w). Since AC-5 works on arcs, 
we associate a function fij to each arc ( i , j) in such a way 
that, for constraint C i j, are ( i , j) is assigned fci j and arc 
( j , i) is assigned  

The results presented in the paper assume that it takes 
constant time to compute the functions fc and in 
the same way as arc consistency algorithms assume that 
C(v, w) can be computed in constant time. 

We are now in position to present Procedures A R C -
CONS and L O C A L A R C C O N S for functional constraints. 
They are depicted in Figures 6 and 7. 

It is clear that the procedures fulf i l l their specifica­
tions. Only one value per arc needs to be checked in 
Procedure A R C CONS since the constraint is functional. 
Procedure LOCALARCCONS computes the set in this 
case and only one value needs to be checked. Proce-
dures A R C C O N S and L O C A L A R C C O N S are respectively 
0(d) and O ( l ) for functional constraints. Hence we have 
an optimal algorithm. 

Note that if D is made up of several on connected domains 
with distinct orderings, it is always possible to transform the 
underlying partial ordering into a total ordering. 
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T h e o r e m 11 Procedure AC-5 is 0(ed) for monotonia 
constraints wrt D. 

It is also clear that AC-5 can be applied at the same 
t ime to funct ional and monotonic constraints keeping the 
same complexity. 

6 Implementa t ion of Domain 
In the previous sections, we assume that the pr imi ­

tive operations on domains can be performed in constant 
t ime. In this section, we present two data-structures that 
enable to achieve this result. 

The first data-structure assumes a domain of consec-
utive integer values and is depicted in Figure 10. The 
fields min and max are used to pick up the min imum and 
maximum values, the field element to test if a value is in 
the domain, and the two fields pred and succ to access 
in constant t ime the successor or predecessor of a value 
in the domain. The operation R E M O V E E L E M E N T must 
take care updat ing al l fields to preserve the semantics. 
This can be done in constant t ime. 

When the domain is sparse, the representation is ba­
sically the same but it reasons about indices instead of 
values and uses an hash-table to test membership to the 
domain. Al though the t ime complexity of membership 
is theoretically not 0 (1 ) , under reasonable assumption, 
the expected t ime to search for an element is O ( l ) . 

7 Appl icat ion 
We describe the application of AC-5 to Constraint Logic 
Programming over finite domains. 

Constraint Logic Programming [7] is a class of Ian-
guageB whose main operation is constraint-solving over 
a computation domain. A step of computation amounts 
to check the satisfiability of a conjunction of constraints. 

Constraint Logic Programming over finite domains 
has been investigated in [19, 17, 18]. It is a com­
putat ion domain where constraints are equations, in­
equalities and disequations over natural number terms 
or equations and disequations over constants. Natu­
ral number terms are constructed from natural num­
bers, variables ranging over a finite domain of natural 
numbers, and the standard ari thmetic operators ( i , x 
. . . . ) . Also some symbolic constraints are provided to 
increase the expressiveness and the user has the abil­
i ty to define its own constraints. This computation do­
main is available in CHIP [3] and its constraint-solver is 
based on consistency techniques, arithmetic reasoning, 
and branch & bound. It has been applied to numer­
ous applications in combinatorial opt imizat ion such as 
graph-coloring, warehouse location, scheduling and se­
quencing, cutting-stock, assignment problems, and mi ­
crocode labeling to name a few (see for instance [2, 
18]. 

Space does not allow us to present the operational se­
mantics of the language. Let us just mention that the 
kernel of the constraint-solver is an arc consistency al­
gor i thm for a set of basic constraints. Other (non-basic) 
constraints are approximated in terms of the basic con­
straints and generate new basic constraints. The basic 
constraints are either domain constraints or arithmetics 
constraints, and are as follows (variables are represented 
by upper case letters and constants by lower case letters): 

These constraints have been chosen carefully in order 
to avoid having to solve an NP-complete constraint sat­
isfaction problem. For instance, allowing two variables 
in disequations or three variables in inequalities or equa­
tions leads to NP-complete problems. 

We now show that AC-5 can be the basis of an efficient 
decision procedure for basic constraints. 

D e f i n i t i o n 12 A system of constraints 5 is a pair 
(AC, DC) where AC is a set of arithmetic constraints 
and DC is a set of domain constraints such that any 
variable occurring in an arithmetic constraint also oc­
curs in some domain constraint of 5. 

Let us define a solved form for the constraints. 
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8 Conclus ion 
A new generic arc consistency algor i thm AC-5 has been 
presented whose specializations include, not only AC-
3 and AC-4, but also an O(ed) algorithms for an im­
portant subclass of networks containing functional and 
monotonic constraints. An application of AC-5 to Con­
straint Logic Programming over finite domains has been 
described. Together w i th node consistency, it provides 
the main algorithms for an 0(ed) decision procedure for 
basic constraints. From a software engineering perspec­
tive, AC-5 has the advantage of uni formity. Each con­
straint may have a part icular implementat ion, based on 
AC-3, AC-4, or some specific techniques, wi thout influ­
encing the main a lgor i thm. As a consequence, many 
different implementat ion techniques can be interleaved 
together in a natural setting. 

Future research on this topic includes the search for 
other subclasses whose properties allow for an 0(ed) al­
gor i thm. Path consistency has not been considered seri­
ously in CLP languages and generalizations of the above 
ideas to path consistency and support for path consis­
tency in CLP languages deserve future at tent ion. Fi­
nally, while arc-consistency of functional constraints can 
also be solved through a reduction to 2-sat [8], it is an 
open issue to find out if a similar reduction exists for 
monotonic constraints. 
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