
An Eff icient A r c Consistency A l g o r i t h m for a Class of CSP Problems

Yves Devil le*
University of Namur, 21 rue Grandgagnage

B-5000 Namur (Belgium)
Email: yde@infoiundp.ac.be

Pascal Van Hentenryck
Brown University, Box 1910,

Providence, RI 02912
Email: pvh@cs.brown.edu

Abst ract
Consistency Techniques have been studied ex-
tensively in the past as a way of tackling Con-
straint Satisfaction Problems (CSP). In par­
ticular various arc consistency algorithms have
been proposed, originating from Waltz's filter-
ing algorithm [20] and culminating in the op-
t imal algorithm AC-4 of Mohr and Henderson
[13]. AC-4 runs in 0(ed2) in the worst case
where e is the number of arcs (or constraints)
and d is the site of the largest domain. Being
applicable to the whole class of (binary) CSP,
these algorithms do not take into account the
semantics of constraints.
In this paper, we present a new generic arc
consistency algorithm AC-5. The algorithm is
parametrised on two specified procedures and
can be instantiated to reduce to AC-3 and AC-
4. More important, AC-5 can be instantiated to
produce an 0(ed) algorithm for two important
classes of constraints: functional and mono-
tonic constraints.
We also show that AC-5 has an important
application in Constraint Logic Programming
over Finite Domains [18]. The kernel of the
constraint-solver for such a programming lan­
guage is an arc consistency algorithm for a set
of basic constraints. We prove that AC-5, in
conjunction wi th node consistency, provides a
decision procedure for these constraints run­
ning in time 0(ed).

1 In t roduc t i on
Many important problems in areas like artificial intelli­
gence, operations research and hardware design can be
viewed as Constraint Satisfaction Problems (CSP), A
CSP is defined by a finite set of variables taking val­
ues from finite domains and a set of constraints between
these variables. A solution to a CSP is an assignment
of values to variables satisfying all constraints and the
problem amounts to finding one or all solutions. Most
problems in this class are NP-complete which mean that
backtracking search is an important technique for solv-
ing them.

Many search algorithms (e.g. [l , 4, 5, 6, 9, 15]),
preprocessing techniques and constraint algorithms (e.g.

[20, 14, 10, 12, 13]) have been designed and anal­
ysed for this class of problems. See the reviews 111,
16] for a comprehensive overview of this area. In this
paper, we are mainly concerned with (network) consis­
tency techniques, and arc consistency in particular. Con­
sistency techniques are constraint algorithms that reduce
the search space by removing, from the domains and con­
straints, values that cannot appear in a solution. Arc
consistency algorithms work on binary CSP and make
sure that the constraints are individually consistent. Arc
consistency algorithms have a long story on their own.
They originates from Waltz filtering algorithm [20] and
were refined several times [10] to culminate in the opti­
mal algorithm AC-4 of Mohr and Henderson [13]. AC-4
runs in 0(ed2) where e is the number of arcs in the net­
work and d is the size of the largest domain.

Consistency techniques have recently1 been applied in
the design of Constraint Logic Programming (CLP) lan-
guages, more precisely in the design and implementa-
tion of CHIP [18, 3]. CHIP allows for the solving of a
variety of constraints over finite domains, including nu­
merical, symbolic, and user-defined constraints. It has
been applied to a variety of industrial problems preserv­
ing the efficiency of imperative languages, yet shorten-
ing the development time significantly. Examples of ap-
plications include graph-coloring, warehouse locations,
car-sequencing and cutting stock (see for instance [2,
18]). The kernel of CHIP for finite domainB is an arc
consistency algorithm, based on AC-3, for a set of ba­
sic binary constraints. Other (non-basic) constraints are
approximated in terms of the basic constraints.

This research originated as an attempt to improve fur-
ther the efficiency of the kernel algorithm. This paper
contains two contributions.

First we present a new generic arc consistency algo­
rithm AC-5. The algorithm is generic in the sense that
it is parametrised on two procedures that are specified
but whose implementation is left open. It can be reduced
to AC-3 and AC-4 by proper implementations of the two
procedures. Moreover, we show that AC-5 can be spe­
cialised to produce an 0(ed) arc consistency algorithm
for two important classes of constraints; functional and
monotonic constraints.

Second we show that the kernel of CHIP consists pre­
cisely of functional and monotonic constraints and that
AC-5, in conjunction with node consistency, provides a

* Supported by the Belgian National Fund for Scientific
Research as a Research Associate.

1 Although Mackworth already mentioned as early as 1977
[lO] the potential value of consistency techniques for program­
ming languages.

Dev/lle and Van Hentenryck 325

mailto:pvh@cs.brown.edu

decision procedure for the basic constraints running in
time 0(ed).

The rest of this paper is organized in the following
way. Section 2 fixes the notation used in this paper
and contains the basic definitions. Section 3 describes
the generic arc consistency algorithm AC-5 and speci-
fies two abstract procedures A R C C O N S and L O C A L A R -
CCONS. Sections 4 and 5 show how an 0(ed) algorithm
can be achieved for functional and monotonic constraints
by giving particular implementations of the two proce­
dures. Section 6 presents various representations for the
domains while Section 7 shows that AC-5, in conjunction
with node consistency, provides an 0(ed) decision proce-
dure for the basic constraints of CLP over finite domains.
Section 8 contains the conclusion of this research.

3 The new Arc Consistency A lgo r i t hm
Al l algorithms for arc consistency work with a queue
containing elements to reconsider. In AC-3, the queue
contains arcs (i , j) while ACM contains pairs (i ,v) where
i is a node and v is a value. The novelty in AC-5 is to
have a queue containing elements < (i , j) , ID > where
(i,j) is an arc and w is a value which has been removed
from Dj and justifies the need to reconsider arc (i, j) . As

a consequence, AC-5 can be specialized to obtain either
AC-3 or AC-4 by giving a particular implementation of
Procedures A R C C O N S and L O C A L A R C C O N S . Moreover,
for certain class of constraints, AC-5 can be specialized
to give an 0(ed) algorithm.

To present AC-5, we proceed in several steps. We
first present the necessary operations on queues. Then
we give the specification of the two abstract procedures
A R C C O N S and L O C A L A R C C O N S . Finally we present the
algorithm itself and prove a number of results.

3.1 Opera t ions on Queues
The operations we need are described in Figure 1,

Procedure I N I T Q U E U B simply initialises the queue to an
empty set. Function E M P T Y Q U E U E tests i f the queue is
empty. Procedure E N Q U E U E (I , Q) is used when the
set of values has been removed from Di. It introduces
elements of the form < (k, i),v > in the queue Q where
(k, i) is an arc of the constraint graph and v Proce-
dure D E Q U E U E dequeues one element from the queue. In
all specifications, we take the convention that a parame-
ter p subscripted with 0 (i.e., po) represents the value of
p at call t ime.

A l l these operations on queues but Procedure EN­
QUEUE can be achieved in constant time. Procedure
E N Q U E U E can be implemented to run in O(s) where s
is the size of A. The only difficulty in fact is Proce­
dure ENQUEUE. I t requires a direct access from a vari­
able to its arcs (which is always assumed in arc con­
sistency algorithms) and a lazy distribution of v on the
arcs. To achieve this result, the queue could be organized
to contain elements of the form < v,{A1,.., Am} >
where Ak is an arc and v is a value. Procedure
E N Q U E U E (I , V) adds an element < v, {A1..., Am} >
to the queue, where the Ak are arcs of the form (j,i), for
each v Procedure D E Q U E U E picks up an element
< w,>, {A1..., Am} > wi th m > 0, remove an Ak = (i,j)
from the set, and returns i , j , and w.

3.2 Spec i f ica t ion o f t h e P a r a m e t r i c Procedures
Figure 2 gives the specification of the two subprob-

lems* Their implementations for various kinds of con-

326 Automated Reasoning

straints wi l l be given in the next sect ions. They can also
be specialized to produce AC-3 and AC-4 from AC-5,

Procedure ARcCONs(i, j , A) computes the set of val-
ues A for variable i that are not supported by Dj. Pro-
cedure L O C A L A R C C O N S (I , J,W, A) is used to compute
the set of values in Di no longer supported because of
the removal of value w from Dj.

Note that the specification of L O C A L A R C CONS gives
us much freedom for the result A to be returned. It is
sufficient to compute A1 to guarantee the correctness of
AC-5, However the procedure gives the opportunity to
achieve more pruning (up to A2) while stil l preserving
the soundness of the algorithm. Interestingly enough,
the ability to achieve more pruning turns out to be fun­
damental, for some classes of constraints (e.g. monotonic
constraints), in producing an 0(ed) algorithm.

3.3 A l g o r i t h m A C - 5
We are now in position to present Algorithm AC-5.

The algorithm is depicted in Figure 3 and has two main
steps. In the first step, all arcs are considered once and
arc consistency is enforced on each of them. Procedure
R E M O V E (A , D) removes the set of values A from D. The
second step applies L O C A L A R C C O N S on each of the el­
ement of the queue possibly generating new elements in
the queue. The correctness of the algorithm is an imme­
diate consequence of the correctness of Algorithm AC-
3 [10] that it generalises. AC-3 is a particular case of
AC-5 where the value w is never used in the implemen­
tation of Procedure L O C A L A R C C O N S , AC-4 is a partic-

Deville and Van Hentonryck 327

for reasons that wi l l become clear later.3 The additional
sophistication is necessary to achieve the bound 0(ed)
for monotonic constraints. These primitive operations
are assumed to take constant t ime.

4 Funct ional Constraints
D e f i n i t i o n 5 A constraint C is functional wrt a domain
D iff for all v (resp. w) D there exists at most one
w (resp. v) D such that C(v,w);

Note that the above definition is parametrized on a
domain D. Some constraints might not be functional
in general but become functional when restricted to a
domain of values.

Conven t i on 6 If C is a functional constraint, we de-
note by fc(v) the value w such that C(v, w) and (w)
the value v such that C[v, w). Since AC-5 works on arcs,
we associate a function fij to each arc (i , j) in such a way
that, for constraint C i j, are (i , j) is assigned fci j and arc
(j , i) is assigned

The results presented in the paper assume that it takes
constant time to compute the functions fc and in
the same way as arc consistency algorithms assume that
C(v, w) can be computed in constant time.

We are now in position to present Procedures A R C -
CONS and L O C A L A R C C O N S for functional constraints.
They are depicted in Figures 6 and 7.

It is clear that the procedures fulf i l l their specifica­
tions. Only one value per arc needs to be checked in
Procedure A R C CONS since the constraint is functional.
Procedure LOCALARCCONS computes the set in this
case and only one value needs to be checked. Proce-
dures A R C C O N S and L O C A L A R C C O N S are respectively
0(d) and O (l) for functional constraints. Hence we have
an optimal algorithm.

Note that if D is made up of several on connected domains
with distinct orderings, it is always possible to transform the
underlying partial ordering into a total ordering.

328 Automated Reasoning

T h e o r e m 11 Procedure AC-5 is 0(ed) for monotonia
constraints wrt D.

It is also clear that AC-5 can be applied at the same
t ime to funct ional and monotonic constraints keeping the
same complexity.

6 Implementa t ion of Domain
In the previous sections, we assume that the pr imi ­

tive operations on domains can be performed in constant
t ime. In this section, we present two data-structures that
enable to achieve this result.

The first data-structure assumes a domain of consec-
utive integer values and is depicted in Figure 10. The
fields min and max are used to pick up the min imum and
maximum values, the field element to test if a value is in
the domain, and the two fields pred and succ to access
in constant t ime the successor or predecessor of a value
in the domain. The operation R E M O V E E L E M E N T must
take care updat ing al l fields to preserve the semantics.
This can be done in constant t ime.

When the domain is sparse, the representation is ba­
sically the same but it reasons about indices instead of
values and uses an hash-table to test membership to the
domain. Al though the t ime complexity of membership
is theoretically not 0 (1) , under reasonable assumption,
the expected t ime to search for an element is O (l) .

7 Appl icat ion
We describe the application of AC-5 to Constraint Logic
Programming over finite domains.

Constraint Logic Programming [7] is a class of Ian-
guageB whose main operation is constraint-solving over
a computation domain. A step of computation amounts
to check the satisfiability of a conjunction of constraints.

Constraint Logic Programming over finite domains
has been investigated in [19, 17, 18]. It is a com­
putat ion domain where constraints are equations, in­
equalities and disequations over natural number terms
or equations and disequations over constants. Natu­
ral number terms are constructed from natural num­
bers, variables ranging over a finite domain of natural
numbers, and the standard ari thmetic operators (i , x
. . . .) . Also some symbolic constraints are provided to
increase the expressiveness and the user has the abil­
i ty to define its own constraints. This computation do­
main is available in CHIP [3] and its constraint-solver is
based on consistency techniques, arithmetic reasoning,
and branch & bound. It has been applied to numer­
ous applications in combinatorial opt imizat ion such as
graph-coloring, warehouse location, scheduling and se­
quencing, cutting-stock, assignment problems, and mi ­
crocode labeling to name a few (see for instance [2,
18].

Space does not allow us to present the operational se­
mantics of the language. Let us just mention that the
kernel of the constraint-solver is an arc consistency al­
gor i thm for a set of basic constraints. Other (non-basic)
constraints are approximated in terms of the basic con­
straints and generate new basic constraints. The basic
constraints are either domain constraints or arithmetics
constraints, and are as follows (variables are represented
by upper case letters and constants by lower case letters):

These constraints have been chosen carefully in order
to avoid having to solve an NP-complete constraint sat­
isfaction problem. For instance, allowing two variables
in disequations or three variables in inequalities or equa­
tions leads to NP-complete problems.

We now show that AC-5 can be the basis of an efficient
decision procedure for basic constraints.

D e f i n i t i o n 12 A system of constraints 5 is a pair
(AC, DC) where AC is a set of arithmetic constraints
and DC is a set of domain constraints such that any
variable occurring in an arithmetic constraint also oc­
curs in some domain constraint of 5.

Let us define a solved form for the constraints.

Deville and Vbn Hentenryck 329

330 Automated Reasoning

8 Conclus ion
A new generic arc consistency algor i thm AC-5 has been
presented whose specializations include, not only AC-
3 and AC-4, but also an O(ed) algorithms for an im­
portant subclass of networks containing functional and
monotonic constraints. An application of AC-5 to Con­
straint Logic Programming over finite domains has been
described. Together w i th node consistency, it provides
the main algorithms for an 0(ed) decision procedure for
basic constraints. From a software engineering perspec­
tive, AC-5 has the advantage of uni formity. Each con­
straint may have a part icular implementat ion, based on
AC-3, AC-4, or some specific techniques, wi thout influ­
encing the main a lgor i thm. As a consequence, many
different implementat ion techniques can be interleaved
together in a natural setting.

Future research on this topic includes the search for
other subclasses whose properties allow for an 0(ed) al­
gor i thm. Path consistency has not been considered seri­
ously in CLP languages and generalizations of the above
ideas to path consistency and support for path consis­
tency in CLP languages deserve future at tent ion. Fi­
nally, while arc-consistency of functional constraints can
also be solved through a reduction to 2-sat [8], it is an
open issue to find out if a similar reduction exists for
monotonic constraints.

References
[l] R. Dechter and J. Pearl . Network-based heurist ics for constraint

sat isfact ion problems. Artificial Intttligtnce, 34:1-38, 1988-

[2] M. Dincbas, H. S imon i i , and P. Van Hentenr jck . SoWing Large
Combina to r ia l Problems in Logic Programming . Journal of Logic
Programming, 8 (l - 2) :76 -93 , 1990.

[3] M. Dincbas and al The Constra int Log ic P rog ramming Language
CHIP- In FGCS S8, Tokyo, 1988.

[4] B.C. Freuder. Synthesizing Constra int Expressions. CACM,
21:958-966, 1978.

[5] J. Gaschnig. A Constraint Satisfact ion Me thod for Inference Mak-
ing. In Annual Conf. on Circuit System Theory, 1974.

[6] R ,M. Haral ick and G.L. E l l i o t . Increasing Tree Search Effi­
ciency for Constra int Satisfact ion Problems, Artificial Intelli­
gence, 14:263-313, 1980.

[7] J. Jaffar and S. Michaylov. Methodology and Implementa t ion of
a CLP System. In ICLP-87, Me lbourne 1987.

[8] S. Kasil On the Paral le l Complex i ty of Discrete Relaxat ion in
Constra int Sat isfact ion Networks. AI Journal, 45:275-286, 1990.

[9] J-L. Laur iere. A Language and a Program for Sta t ing and Solving
Combina tor ia l Problems. Artificial Intel l igence, 10(1), 1978.

[10] A . K . Mack wor th . Consistency in Networks of Relat ions. AI Jour -
na l ; B(1):99-118, 19T7.

[11] A .K- Mackwor th . Constraint Satisfaction, volume Encyclopedia
of A r t i f i c i a l Intel l igence. Wi ley, 1987.

[13] A , K . Mackwor th and E.G. Freuder. The Complex i ty of some Poly-
nomia l Network Consistencj A l g o r i t h m s for Constraint Satisfac-
t i on Problem*. Artificial Intel l igence, 25:65-74, 1985.

[13] R. Moh r and T . C Henderson. Arc and Path Consistency Revis-
i ted. Artificial /n te l l igence, 28:225-233, 1986.

[14] U. Mon tanar i , Networks of Constraints : Fundamental Proper t ics
and Appl ica t ions to Pic ture Processing, Information Science,
7(2):96-132, 1974.

[15] Mon tanar i , U and Rossi, F. Constra int Relaxat ion May Be Perfect
In To Appear in Artificial Intelligence.

[16] B. Nadel , Constraint Sat isfact ion A lgo r i t hms . Computa t iona l
Intelligence, 5(4):288-324, 1989.

[17] P. Van Hentenr jck . A Framework for Consistency Techniques in
Log i c Programming , I n I J G A l - 8 7 , M i l a n , 1987.

[18] P. Van Hentenr jck , Cons t ra in t Satisfaction in Logic Program
m ing - The M I T Press, Cambr idge, M A , 1989.

[19] P. Van Hentenr jck and M. Dincbas. Domains in Logic Program-
ming* In AAAI-86, Ph i ladelph ia, PA, August 1986.

[20] D- Wai ts . Generat ing Semantic Descript ions f rom Draw ing* of
Scenes w i th Shadows. Technical Repor t A I 2 7 1 , M I T , M A , 1973.

