An Efficient Arc Consistency Algorithm for a Class of CSP Problems

Yves Deville*

University of Namur, 21 rue Grandgagnage

B-5000 Namur (Belgium)
Email:yde@infoiundp.ac.be

Abstract

Consistency Techniques have been studied ex-
tensively in the past as a way of tackling Con-
straint Satisfaction Problems (CSP). In par-
ticular various arc consistency algorithms have
been proposed, originating from Waltz's filter-
iIng algorithm [20] and culminating in the op-
timal algorithm AC-4 of Mohr and Henderson
[13]. AC-4 runs in 0(ed?) in the worst case
where e is the number of arcs (or constraints)
and d is the site of the largest domain. Being
applicable to the whole class of (binary) CSP,
these algorithms do not take into account the
semantics of constraints.

In this paper, we present a new generic arc
consistency algorithm AC-5. The algorithm is
parametrised on two specified procedures and
can be instantiated to reduce to AC-3 and AC-
4. More important, AC-5 can be instantiated to
produce an 0O(ed) algorithm for two important
classes of constraints: functional and mono-
tonic constraints.

We also show that AC-5 has an important
application in Constraint Logic Programming

over Finite Domains [18]. The kernel of the
constraint-solver for such a programming lan-
guage is an arc consistency algorithm for a set
of basic constraints. We prove that AC-5, in
conjunction with node consistency, provides a
decision procedure for these constraints run-
ning in time O(ed).

1 Infroduction

Many important problems in areas like artificial intelli-
gence, operations research and hardware design can be
viewed as Constraint Satisfaction Problems (CSP), A
CSP is defined by a finite set of variables taking val-
ues from finite domains and a set of constraints between
these variables. A solution to a CSP is an assignment
of values to variables satisfying all constraints and the
problem amounts to finding one or all solutions. Most
problems in this class are NP-complete which mean that
backtracking search is an important technique for solv-
Ing them.

Many search algorithms (e.g. [I, 4, 5, 6, 9, 13]),
preprocessing techniques and constraint algorithms (e.q.

* Supported by the Belgian National Fund for Scientific
Research as a Research Associate.

Pascal Van Hentenryck
Brown University, Box 1910,
Providence, Rl 02912

Email: pvh@cs.brown.edu

[20, 14, 10, 12, 13]) have been designed and anal-
ysed for this class of problems. See the reviews 111,

16] for a comprehensive overview of this area. In this
paper, we are mainly concerned with (network) consis-
tency techniques, and arc consistency in particular. Con-
sistency techniques are constraint algorithms that reduce
the search space by removing, from the domains and con-
straints, values that cannot appear in a solution. Arc
consistency algorithms work on binary CSP and make
sure that the constraints are individually consistent. Arc
consistency algorithms have a long story on their own.

They originates from Waltz filtering algorithm [20] and
were refined several times [10] to culminate in the opti-
mal algorithm AC-4 of Mohr and Henderson [13]. AC-4
runs in O(ed’) where e is the number of arcs in the net-
work and d is the size of the largest domain.

Consistency techniques have recently’ been applied in
the design of Constraint Logic Programming (CLP) lan-
guages, more precisely in the design and implementa-
tion of CHIP [18, 3]. CHIP allows for the solving of a
variety of constraints over finite domains, including nu-
merical, symbolic, and user-defined constraints. It has
been applied to a variety of industrial problems preserv-
ing the efficiency of imperative languages, yet shorten-
ing the development time significantly. Examples of ap-
plications include graph-coloring, warehouse locations,

car-sequencing and cutting stock (see for instance [2,

18]). The kernel of CHIP for finite domainB is an arc
consistency algorithm, based on AC-3, for a set of ba-
sic binary constraints. Other (non-basic) constraints are
approximated in terms of the basic constraints.

This research originated as an attempt to improve fur-
ther the efficiency of the kernel algorithm. This paper
contains two contributions.

First we present a new generic arc consistency algo-
rithm AC-5. The algorithm is generic in the sense that
it is parametrised on two procedures that are specified
but whose implementation is left open. It can be reduced
to AC-3 and AC-4 by proper implementations of the two
procedures. Moreover, we show that AC-5 can be spe-
cialised to produce an O(ed) arc consistency algorithm
for two important classes of constraints; functional and
monotonic constraints.

Second we show that the kernel of CHIP consists pre-
cisely of functional and monotonic constraints and that
AC-5, in conjunction with node consistency, provides a

' Although Mackworth already mentioned as early as 1977

[I0] the potential value of consistency techniques for program-
ming languages.

Dev/lle and Van Hentenryck 325


mailto:pvh@cs.brown.edu

decision procedure for the basic constraints running in
time 0O(ed).

The rest of this paper is organized in the following
way. Section 2 fixes the notation used in this paper
and contains the basic definitions. Section 3 describes
the generic arc consistency algorithm AC-5 and speci-
fles two abstract procedures ARCCONS and LOCALAR-
CCONS. Sections 4 and 5 show how an 0O(ed) algorithm
can be achieved for functional and monotonic constraints
by giving particular implementations of the two proce-
dures. Section 6 presents various representations for the
domains while Section 7 shows that AC-5, in conjunction
with node consistency, provides an 0(ed) decision proce-
dure for the basic constraints of CLP over finite domains.
Section 8 contains the conclusion of this research.

2 Preliminaries

To describe the CSP, we take the following conven-
tions. Variables are represented by the natural numbers
l,...,n. Each variable i has an associated finite domain
D;. All constraints are binary and relate two distinct
variables. If i and j are variables (i < ), there is at most
one constraint relating them. This constraint is denoted
Ci;. As usual, C;i(v,w) denotes the boolean value ob-
tained when variables i and j are replaced by values v
and w respectively. We also denote D the union of all
domains and d the sige of the largest domain.

Arc consistency algorithms generally work on the
graph representation of the CSP. We associate a graph G
to a CSP in the following way. G has a node § for each
variable 3. For each constraint C;; relating variables ¢
and j (i < j), G has two directed arcs, (i, ) and (j,1).
The constraint associated to arc {%,j) i8 C;; while the
constraint associated to (j,1) is Cj; which is similar to
Ci; except that its arguments are interchanged. We de-

note by ¢ the number of arcs in G. We also use are(G)
and node(G) to denote the set of arcs and the set of
nodes of graph G.

We now reproduce the standard definitions of arc con-
sistency for an arc and a graph.

Definition 1 Let (i,j) € arc(G). Arc (4, j) is arc con-
sistent wrt D; and D; 1ff Vv € D;, 3w € D; : G (v, w).

Definition 2 Let P be Dy x ... x D,. A graph G is
arc consisient wri P iff V (4, j) € are(G) : Fi, j) is arc
consistent wrt D; and D;.

The next definition is useful to specify the outcome of
an arc consistent algorithm.

Definition 3 Let Pbe Dy x ... x D,. Let PP CP. G
is a maximally arc consistent wrt P’ in P iff G 18 are
consistent wrl P’ and there is po other P” with P’ C
P C P such that G is arc consistent wrt P".

The purpose of an arc consistency algorithm is to com-
pute, given a graph & and a set P, a set P’ such that G
is maximally arc consistent wrt P/ in P.

3 The new Arc Consistency Algorithm

All algorithms for arc consistency work with a queue
containing elements to reconsider. In AC-3, the queue
contains arcs (i, j) while ACM contains pairs (i,v) where
i is a node and v is a value. The novelty in AC-5 is to
have a queue containing elements < (i,j),ID > where
(i) 1is an arc and w is a value which has been removed
from Dj and justifies the need to reconsider arc (i, j). As

326 Automated Reasoning

procedure JNITQUEUE(out Q)

Post: @ = {}.

function EMPTYQUEBUE(In @): Boolean
Post: EMPTYQURBUR & (@ = {} ).
procedure ENQUBUE(in 1, A, inout Q)
Pre: A C D; and i € node(G).

Post: Q@ = Qo U {< (k,1),v >| (k, 1) € are(G) and v € A}.
procedure DEQUBUE(inout @, out 1, 3, w)

Post: < (i,j),w >€ Qo and @ = Qo\ < (i,7),w >.

Figure 1: The QUEVE Module

procedure ARcCoNs(in i, j, out A)
Pre: (1, 7) € are(G).
Post: A = {v € D; | Yw € D; : ~Ci;{v, w)}.

procedure LocaLARCCONS(in 1, j, w, ont A)

Pre: (i,7) € are(G) and w & D;.

Post: Ay C A C Az,

with A, = {v € D; | Cij{v,v) and VYu' € D; : ~Ci;{v, w')},
Ay ={ve D;|Vu € D;:~Cij(v,uw)}.

Figure 2: Specification of the Procedures

a consequence, AC-5 can be specialized to obtain either
AC-3 or AC-4 by giving a particular implementation of
Procedures ARCCONS and LOCALARCCONS. Moreover,
for certain class of constraints, AC-5 can be specialized
to give an O(ed) algorithm.

To present AC-5, we proceed in several steps. We
first present the necessary operations on queues. Then
we give the specification of the two abstract procedures
ARCCONS and LOCALARCCONS. Finally we present the
algorithm itself and prove a number of results.

3.1 Operations on Queues

The operations we need are described in Figure 1,
Procedure INITQUEUB simply initialises the queue to an
empty set. Function EMPTYQUEUE tests if the queue is
empty. Procedure ENQUEUE(I, A, Q) is used when the
set of values A has been removed from D,. It introduces
elements of the form < (k, i),v > in the queue Q where
(k, i) is an arc of the constraint graph and v € A. Proce-
dure DEQUEUE dequeues one element from the queue. In
all specifications, we take the convention that a parame-
ter p subscripted with O (i.e., po) represents the value of
p at call time.

All these operations on queues but Procedure EN-
QUEUE can be achieved in constant time. Procedure
ENQUEUE can be implemented to run in O(s) where s
Is the size of A. The only difficulty in fact is Proce-
dure ENQUEUE. It requires a direct access from a vari-
able to its arcs (which is always assumed in arc con-
sistency algorithms) and a lazy distribution of v on the
arcs. To achieve this result, the queue could be organized

to contain elements of the form < v, {A..., Ay} >
where Ay, Is an arc and v is a value. Procedure
ENQUEUE(I, A,V) adds an element < v, {A;..., Ay >

to the queue, where the Ay are arcs of the form (j,i), for
each v € A. Procedure DEQUEUE picks up an element
< w,> {Asn.., Aypt > with m > 0, remove an Ax = (i)
from the set, and returns i, j, and w.

3.2 Specification of the Parametric Procedures

Figure 2 gives the specification of the two subprob-
lems* Their implementations for various kinds of con-



Algorithm AC-5
Post:let Po =Dy x ... x Dy,
P=D,x%x...x Dy
G 1 maximally arc consistent wrt P in P;.
begin AC-5
INITQUEUR(Q)
for each (1, 5) € are(G) do
begin
AncCons(s,1,A);
ENQUEUE(3,A,Q);
ReMove(A,D;)
end;
while not EMprYQueur(Q) do
begin
10 DEQUEUE(Q,i,7,w);
11 LocALARCCoNS(s,7,w,A);
12 ENQUBUB(1,A,Q);
13 ReMove(A,D;)
14 end
end AC-5

OO0 =] 0N OF b G B =t

Figure 3: The Arc Consistency Algorithm AC-5

procedure INITQUEUE(cut Q)
Post: ¥ (k,t) € are(G) : Status[(k,1),v] = present if v € D;

= rejoected if v & D;

function EMPTYQUEUE(in Q)
Post: ¥ (k,1) € arc(G) Vv : Statusi(k, 1), v] # suspsnded.

procedure ENQUEBUE(In 1, A, inout Q)
Pre: ¥ (k,1) € arc(G) Vo € A : S!utus[ik, 1), v] = present.
v

Post: ¥ (k,1) € arc(G) Vv € A : Status (_k,ig ] = suspended.

procedure DEQUEUE(inout Q, out ¢, 7, w
Post: Status{(i, j), w] = rejected.

Figure 4: The QUEUE Module on Structure STATUS

straints will be given in the next sect ions. They can also
be specialized to produce AC-3 and AC-4 from AC-5,

Procedure ARcCONSs(i, j, A) computes the set of val-
ues A for variable i that are not supported by Dj. Pro-
cedure LOCALARCCONS(I, Jw, A) is used to compute
the set of values in D; no longer supported because of
the removal of value w from Dj.

Note that the specification of LOCALARCCONS gives
us much freedom for the result A to be returned. It is
sufficient to compute A; to guarantee the correctness of
AC-5, However the procedure gives the opportunity to
achieve more pruning (up to A;) while still preserving
the soundness of the algorithm. Interestingly enough,
the ability to achieve more pruning turns out to be fun-
damental, for some classes of constraints (e.g. monotonic
constraints), in producing an O(ed) algorithm.

3.3 Algorithm AC-5

We are now in position to present Algorithm AC-5.
The algorithm is depicted in Figure 3 and has two main
steps. In the first step, all arcs are considered once and
arc consistency is enforced on each of them. Procedure
REMOVE(A, D) removes the set of values A from D. The
second step applies LOCALARCCONS on each of the el-
ement of the queue possibly generating new elements in
the queue. The correctness of the algorithm is an imme-
diate consequence of the correctness of Algorithm AC-
3 [10] that it generalises. AC-3 is a particular case of
AC-5 where the value w is never used in the implemen-
tation of Procedure LOCALARCCONS, AC-4 is a partic-

ular case of AC-5 where the implementation of Proce-
dure LOCALARCCONS does not use node i. Of course,
the data-structures used in AC-4 are more sophisticated
than those of AC-3.

In order to prove various results on AC-5, we introduce
a new data-structure STATUS which is a two-dimensional
array, the first dimension being on arcs and the second on
values, We also give the effect of the procedures manip-
ulating the queue on STATUS in Figure 4. Note that the
actual implementation does not need to perform these
operations. They are just presented here to ease the

presentation and simplify the theorem.
~Algorithm AC-5 preserves the following invariant on
lines 2 and 8 for STATUS.

STATUS[(k,1),v] = present iff v € D;,
= suspended if v ¢ D; & i k.31, v} € Q,
= rejected iff v @& D, & ((k,1),v) ¢ Q.

We are now In position to prove the following theorem.

Theorem 4 Algorithm AC-5 has the following three
properties: (1) The invariant on data-structure STATUS
holds on lines 2 and 8. (2) AC-5 enqueues and dequeues
at most O(Edg elements and hence the size of the queue
is at most O(ed). (3) If s,,...,s, are the size of A on

each iteration at lines 12, then 8; +... 4 5, < Ofed).

Proof

Property 1 holds initially. Assuming that it holds in
line 2, it also holds after an iteration of lines 4 to 6. Line
5 makes sure that < (j,{), v > is suspended forallv € A
and put them on the queue while line 6 removes A from
D;. So the invariant holds at the first execution of line
8. Execution of lines 10 to 13 preserves the invariant.
Lines 10 and 11 maintain it on their own. Lines 12 and
13 respectively make sure that < (j,1),v > is rejected
for all v € A and remove A from D;.

Property 2 holds because each element of STATUS is
only allowed to make two transitions: one from present
to snspended through Procedure ENQUEUR and one
from suspended to rejected through Procedure De-
QUEUE. Hence there can only be O(ed) dequeues and
enqueues.

Property 3 is a direct consequence of Property 2 and
the preconditions of ENQUEUE on the data-structure
STaTUS, [

The above theorem can be used to deduce the over-
all complexity of AC-5 from the complexity of Proce-
dures ARCCoONS and LocaLARrRcCons. In particular,
in AC-3 and AC-4, Procedure ARCCONS is necessar-
ily O(d?) which implies that the overall complexity is
at least O(ed?) since lines 4 to 6 are executed e times.
There is no other possibility to reduce the complexity
than considering particular classes of constraints, allow-
ing to implement, in particular, Procedure ARCCONS
in O{d). Note also that an algorithm in O(ed) will be

optimal for a subclass of constraints since it 1s reason-
able to assume that we need to check at least once each
value in each domain. In the next two sections, we char-
acterize two classes of constraints that guarantee that
Procedure ARCCoNS is O(d) and Procedure LOCALAR-
cCoNs is linearly related to the size of its output set A
resulting in an AC-5 algorithm for these classes, running
in time O(ed). In these sections, we assume a number
of primitive operations on domains that are depicted in
Figure 5. As the reader will notice, the operations we
define on the domains are more sophisticated than those
usually required by arc consistency algorithms. In par-
ticular, they assume a total ordering on the domain D

Deville and Van Hentonryck 327



procedure REMOVEELEM(in v, inout D)
Post: D = Dy \ {v}.

function M in v, D): Boolean
Post: MERMBER #Sﬂ € D).

funciion MIN(in DI}): Value

Post: MmN = min{v € D}.

function Max(in D): Value

Post: MAX = maz{v € D}.

function Suoc(in v, D): Value
Poat: Suco = min{v' € D |v' > v}.
function PRED(in v, D): Value
Paost: PRED = maz{v' € D | v/ < v}

Figure 5: The DOMAIN module

procedure ARCCONs(in 1, 7, out A)
begin
Aq=B
for each v € D; do
if fi;(v) ¢ D; then
A= AU {v}

e LAY e

end

Figure 6: ARCCoONS for Functional Constraints

for reasons that will become clear later.> The additional
sophistication is necessary to achieve the bound 0(ed)
for monotonic constraints. These primitive operations
are assumed to take constant time.

4 Functional Constraints

Definition 5 A constraint C is functional wrt a domain
D iff for all v (resp. w) & D there exists at most one
w (resp. v) € D such that C(v,w),

Note that the above definition is parametrized on a
domain D. Some constraints might not be functional
in general but become functional when restricted to a
domain of values.

Convention 6 If C is a functional constraint, we de-
note by fc(v) the value w such that C(v, w) and fEl (w)
the value v such that C/v, w). Since AC-5 works on arcs,
we associate a function f; to each arc (i,j) in such a way

that, for constraint C;;, are (i,]) is assigned f.; and arc
(j, i) is assigned fE:

The results presented in the paper assume that it takes

constant time to compute the functions fc and fEl in
the same way as arc consistency algorithms assume that
C(v, w) can be computed in constant time.

We are now in position to present Procedures ARC -
CONS and LOCALARCCONS for functional constraints.
They are depicted in Figures 6 and 7.

It is clear that the procedures fulfill their specifica-
tions. Only one value per arc needs to be checked in
Procedure ARCCONS since the constraint is functional.
Procedure LOCALARCCONS computes the set Aj in this
case and only one value needs to be checked. Proce-
dures ARCCONS and LOCALARCCONS are respectively
O(d) and O(l) for functional constraints. Hence we have
an optimal algorithm.

Note that if D is made up of several on connected domains
with distinct orderings, it is always possible to transform the
underlying partial ordering into a total ordering.

328 Automated Reasoning

procedure LocALARCCoNs(in {, j, w, out A)
begin
if f;i(w) € D; then
A = {f(w)}
else

A=9

e T BD i

end
Figure 7: LocaLARrRcConNs for Functional Constraints

procedure ARCCONS(in i, §, out A)
begin
1 A=
2 for each v € I}; do
3 if - Cij{v, firat(D;)) then
4 A=AuU{v
end

Figure B: ARCCoONSs for Monotonic Constraints

Theorem 7 Algorithm AC-5 is Ofed) for functional
constraints wri D.

Note that functional constraints do not add apy re-
quirement for the basic operations on the domains com-
pared to traditional algorithmas.

5 Monotonic Constraints

We now consider another class of constraints in this sec-
tion. This class of constraints requires a total ordering
< on D, as mentioned previously. Moreover we assume
that, {for any constraint C and element v € D, there
exists elements w;, w; (not necessarily in D) such that
C(v, wlg and C(w3z,v) hold. This last constraint is used
to simplify the algorithms but it is not restrictive in na-
ture.

Definition 8 A constraint C is monotonic wrt D iff
there exists a total ordering on D such that, for any
value v, w in D, C(v, w) holds implies C(v’, w’) holds for
all vaiues ', w' in D such that v < v and w’ > w.

Convention 9 Since AC.5 18 working with arcs, we as-
sociate to each arc (3, j) three functions f;;, first;;, and
nezt;; and a relation »-;;. Given a monotonic constraint
Ci;, the functions and relation for arc (%, j) are as fol-
lows fij(w) = maz{v | C(v,w)}, first;; = Max,
nezt;; = PRED, »;; = > while those for arc (j,1]
are f,-.;('u) = min{w | C(ﬂ,‘lﬂ)}, fif‘stji = MIN,
nezt;; = Succe, »ji = <.

Moreover, since Procedures ARCCONS and LOCALARC-
CoNs only use f;j, firsty;, nezt;;, and »i; for arc (3, 3),

procedure LOCALARCCONS(In i, §f, in w, out A)

begin
1 A =8
2 v = first(D;);
3 while v » f(first(D;)) do
4 begin
b A= A U {v};
6 v ;= nezi(v, D;)
T end
end

Figure 8: LocALARCCoONS for Monotonic Constraints



Let §={%...,B

Di={v1,...,um} C § with vx < va+1 and m > 0.
Syntax

Di.man : 1nteger € S

Di;.maz : Integer € 5§

D;.element : array [b...B] of booleans

Di.suecc : array [b...Bjf of integers € §

D; pred : array |b...B] of integers € S
Semantics

Dimin=u

Dimar = vy

D;.element{v]iff v € D

D;.sucelva) = vy (1 g k <

Di.pred|veg,] = vy %1 <k< ;

Figure 10: DoMAIN of Consecutive Values.

we omit the subscripts in the presentation of the algo-
rithms.

We are now in position to describe the implementa-
tion of Procedures ARCCONS and LocaALArcCons for

monotonic constraints. They are depicted in Figures 8
and 9.

l.ernma 10 Procedures ARCCoONS and LOCALARC-
CoNs fulfill their specifications.

Proof The result for Procedure ARcCons follows from
the monotonicity of the constraint that make sures that
the value v can be checked only wrt an extremal value
(minimum or maximum depending on the arc).

Procedure LOCALARCCONS computes the set A =
{v € Dy | v~ f(first(D;))}. By monotonicity of
the constraint, A C Ag, and Agnfv € D; | v <
f(first(D; )} = 0. Hence A = A; and the postcon-
dition is satisfied. O

Note that, for monotonic constraints, it is more com-
plicated to compute the set A a8 we have no guarantee
that the extremal value corresponding to w for variable
118 1n its domain. If the value is not in the domain, then
we have no way to use Procedures PRED and Succ, and
this eads to a non-optimal aigorithm.

Procedures ARCCONS is O{d). Procedure LOCALAR-
cCONs has as many iterations in lines 5 and 6 as ele-
ments in the resulting set A. Hence it follows that we
have an optimal algorithm.

Theorem 11 Procedure AC-5 is 0(ed) for monotonia
constraints wrt D.

It is also clear that AC-5 can be applied at the same
time to functional and monotonic constraints keeping the
same complexity.

6 Implementation of Domain

In the previous sections, we assume that the primi-
tive operations on domains can be performed in constant
time. In this section, we present two data-structures that
enable to achieve this result.

The first data-structure assumes a domain of consec-
utive integer values and is depicted in Figure 10. The
fields min and max are used to pick up the minimum and
maximum values, the field element to test if a value is in
the domain, and the two fields pred and succ to access
in constant time the successor or predecessor of a value
in the domain. The operation REMOVEELEMENT must
take care updating all fields to preserve the semantics.
This can be done in constant time.

When the domain is sparse, the representation is ba-
sically the same but it reasons about indices instead of
values and uses an hash-table to test membership to the
domain. Although the time complexity of membership
is theoretically not 0(1), under reasonable assumption,
the expected time to search for an element is O(l).

7/ Application

We describe the application of AC-5 to Constraint Logic
Programming over finite domains.

Constraint Logic Programming [7] is a class of lan-
guageB whose main operation is constraint-solving over
a computation domain. A step of computation amounts
to check the satisfiability of a conjunction of constraints.

Constraint Logic Programming over finite domains
has been investigated in [19, 17, 18]. It is a com-
putation domain where constraints are equations, in-
equalities and disequations over natural number terms
or equations and disequations over constants. Natu-
ral number terms are constructed from natural num-
bers, variables ranging over a finite domain of natural
numbers, and the standard arithmetic operators (i, X
....). Also some symbolic constraints are provided to
Increase the expressiveness and the user has the abil-
ity to define its own constraints. This computation do-
main is available in CHIP [3] and its constraint-solver is
based on consistency techniques, arithmetic reasoning,
and branch & bound. It has been applied to numer-
ous applications in combinatorial optimization such as
graph-coloring, warehouse location, scheduling and se-
gquencing, cutting-stock, assignment problems, and mi-
crocode labeling to name a few (see for instance [2,

18].

Space does not allow us to present the operational se-
mantics of the language. Let us just mention that the
kernel of the constraint-solver is an arc consistency al-
gorithm for a set of basic constraints. Other (non-basic)
constraints are approximated in terms of the basic con-
straints and generate new basic constraints. The basic
constraints are either domain constraints or arithmetics
constraints, and are as follows (variables are represented
by upper case letters and constants by lower case letters):

cee1@n )i

o arithmetic constraints: aX b, aX = bY +
c, aX < bY +¢, aX > bY 4 ¢ with ¢,a;,b,c > 0
and a # o.

These constraints have been chosen carefully in order
to avoid having to solve an NP-complete constraint sat-
isfaction problem. For instance, allowing two variables
in disequations or three variables in inequalities or equa-
tions leads to NP-complete problems.

We now show that AC-5 can be the basis of an efficient
decision procedure for basic constraints.

e domain constraint: X € {a;,

Definition 12 A system of constraints 5 is a pair
(AC, DC) where AC is a set of arithmetic constraints
and DC is a set of domain constraints such that any
variable occurring in an arithmetic constraint also oc-
curs in some domain constraint of 5.

Definition 13 Let S = (AC, DC) be a system of con-
straints. The set D, is the domain of z in S {or in DC)

iff the domain constraints of zin DC arexz € Iy,...,z €
D, and D; is the intersection of the D;’s.

Let us define a solved form for the constraints.

Deville and Vbn Hentenryck 329



Definition 14 Let S be a system of constraints. S is 1n
solved form iff any unary constraint C(X) in S is node

consistent® wrt the domain of X in §, and any binary
constraint C(X,Y ) in 5 is arc consistent wrt the domains

of X,Y in S.

We now study a number of properties of systems of con-
straints in solved form.

Property 15 Let C(X,Y) be the binary constraint
aX < bY 4+ c or aX > bY + ¢, arc cousistent wrt
Dx = {v1,...,va}, Dy = {wy,...,wn}. Assume also
that v; < ... < v, and w; < ... < Wy,. Then we have
C is monotonic and C(v;, w;) and C(vg,, wy,) hold.

Property 16 Let C(X,Y) be the binary constraint
aX = bY 4 ¢ with a,bd # 0, arc consistent wrt Dy =
{vi,.-.,vn}, Dy = {w1,...,wm}. Assume also that
v < ... < ¥, and w3 < ... < Wyy. Then we have C
is functional, n = m, and C(v;, w;) holds.

The satisfiability of a system of constraints in solved
form can be tested in a straightforward way.

Theorem 17 Let S = (AC, DC) be a system of con-

straints in solved form. S is satisfiable iff {#, DC) is
satisfiable.

Proof It is clear that (9, DC) is not satisfiable iff the
domain of some variable is empty in DC. If the domain
of some variable 18 empty in DC, then S is not satisfi-
able. Otherwise, it 18 possible to construct a solution to
S. By properties 15 and 186, all binary constraints of S
hoid if we assigh to each variable the amallest value in
its domain. Moreover, because of node consistency, the
unary constraints also hold for such an assignment. O

It remains to show how to transform a system of con-
straints into an equivalent one in solved form. This is
precisely the purpose of the node and arc consistency
algorithms.

Algorithm 18 To transform the system of constraints
S into a system in solved form 5';

1. apply a node consistency algorithm to the unary
constraints of S = (AC, DC) to obtain {(AC, DC'};

2. apply an arc consistency algorithm to the binary
constraints of {AC, DC") to obtain 8’ = {AC, DC").

Theorem 19 Let S be a system of constraints. Algo-
rithm 18 produces a system of constraints in solved form
equivalent to S.

We now give a complete constraint-solver for the basic
constraints. Given a system of constraints S, Algorithm
20 returns true if S is satisfiable and false otherwise.

Algorithm 20 To check the satisfiability of a system
of constraints S: (1) apply Algorithm 18 to S to obtain
S’ = (AC, DC) and (2) if the domain of some variable

is empty in DC’, return false; otherwise return true.

In summary, we have shown that node and arc consis-
tency algorithms provide us with a decision procedure for
basic constraints. The complexity of the decision proce-
dure 18 the complexity of the arc consistency algorithm.
Uninﬁ the specialisation of AC-5 for basic constraints,
we obtain an O(ed) decision procedure.

As usual, » unary constraint C is node consistent wrt D
iff Yo € D : C{v).

330 Automated Reasoning

o) Conclusion

A new generic arc consistency algorithm AC-5 has been
presented whose specializations include, not only AC-
3 and AC-4, but also an O(ed) algorithms for an im-
portant subclass of networks containing functional and
monotonic constraints. An application of AC-5 to Con-
straint Logic Programming over finite domains has been
described. Together with node consistency, it provides
the main algorithms for an 0O(ed) decision procedure for
basic constraints. From a software engineering perspec-
tive, AC-5 has the advantage of uniformity. Each con-
straint may have a particular implementation, based on
AC-3, AC-4, or some specific techniques, without influ-
encing the main algorithm. As a consequence, many
different implementation techniques can be interleaved
together in a natural setting.

Future research on this topic includes the search for
other subclasses whose properties allow for an 0O(ed) al-
gorithm. Path consistency has not been considered seri-
ously in CLP languages and generalizations of the above
ideas to path consistency and support for path consis-
tency in CLP languages deserve future attention. Fi-
nally, while arc-consistency of functional constraints can

also be solved through a reduction to 2-sat [8], it is an
open issue to find out if a similar reduction exists for
monotonic constraints.

References

[I] R. Dechter and J. Pearl. Network-based heuristics for constraint
satisfaction problems. Aftificial Intttligince, 34:1-38, 1988-

[2] M. Dincbas, H. Simonii, and P. Van Hentenrjck. SoWing Large
Combinatorial Problems in Logic Programming. Journal of Logic
Programming, 8(1-2):76-93, 1990.

[3] M. Dincbas and al The Constraint Logic Programming Language
CHIP- In FGCS S8, Tokyo, 1988.

[4] B.C. Freuder.
21:958-966, 1978.

[5] J. Gaschnig. A Constraint Satisfaction Method for Inference Mak-
ing. In Annual Conf. on Circuit System Theory, 1974,

[6] R,M. Haralick and G.L. Elliot. Increasing Tree Search Effi-
ciency for Constraint Satisfaction Problems, Artificial Intelli-
gence, 14:263-313, 1980.

[7] J. Jaffar and S. Michaylov. Methodology and Implementation of
a CLP System. In ICLP-87, Melbourne 1987.

[8] S. Kasil On the Parallel Complexity of Discrete Relaxation in
Constraint Satisfaction Networks. Al Journal, 45:275-286, 1990.

[9] J-L. Lauriere. A Language and a Program for Stating and Solving
Combinatorial Problems. Atrtificial Intelligence, 10(1), 1978.

[10] A.K. Mack worth. Consistency in Networks of Relations. Al Jour-
nal; B(1):99-118, 197T7.

[11] A.K- Mackworth. Constraint  Satisfaction,
of Artificial Intelligence. Wiley, 1987.

[13] A,K. Mackworth and E.G. Freuder. The Complexity of some Poly-
nomial Network Consistencj Algorithms for Constraint Satisfac-
tion Problem™. Artificial Intelligence, 25:65-74, 1985.

[13] R. Mohr and T.C Henderson. Arc and Path Consistency Revis-
ited. Artificial Intelligence, 28:225-233, 1986.

[14] U. Montanari, Networks of Constraints : Fundamental Propertics
and Applications to Picture Processing, Information Science,
7(2):96-132, 1974.

[15] Montanari, U and Rossi, F. Constraint Relaxation May Be Perfect
In To Appear in Artificial Intelligence.

[16] B. Nadel, Constraint Satisfaction Algorithms.
Intelligence, 5(4):288-324, 1989.

[17] P. Van Hentenrjck. A Framework for Consistency Techniques in
Logic Programming, In IJGAI-87, Milan, 1987.

[18] P. Van Hentenrjck, Constraint Satisfaction in Logic Program
ming- The MIT Press, Cambridge, MA, 1989.

[19] P. Van Hentenrjck and M. Dincbas. Domains in Logic Program-
ming* In AAAI-86, Philadelphia, PA, August 1986.

[20] D- Waits. Generating Semantic Descriptions from Drawing* of
Scenes with Shadows. Technical Report AlI271, MIT, MA, 1973.

Synthesizing Constraint Expressions. CACM,

volume Encyclopedia

Computational



