
REPRESENTATIONS OF 

L. S. Hornem de Mello 
The Robotics Institute 

Carnegie Mellon University 
Pittsburgh, Pennsylvania 15213-3890 

Abstract 

This paper analyses four representations for assembly sequences 
which are based on directed graphs, on AND/OR graphs, on es­
tablishment conditions, and on precedence relationships. The latter 
includes two types: precedence relationships between the establish­
ment of one connection between parts and the establishment of 
another connection, and precedence relatioships between the es­
tablishment of one connection and states of the assembly process. 
The paper discusses how each representation is related to the 
others. The correctness and completeness of these representations 
are also addressed. The results presented are needed to prove the 
correctness and completeness of algorithms for the generation of 
mechanical assembly sequences. 

1. Introduction 
Choosing the representation of assembly sequences is an impor­

tant decision both in creating an assembly sequence planner and in 
designing an intelligent control for the assembly process. 

Several methodologies for representing assembly sequences 
have been utilized. These include representations based on 
directed graphs, on AND/OR graphs, on establishment conditions, 
and on precedence relationships. Those based on directed graphs 
and on AND/OR graphs are explicit representations since there is a 
mapping from the assembly tasks into the elements of the represen­
tations. Those based on establishment conditions and on 
precedence relationships are implicit representations because they 
consist of conditions that must be satisfied by the assembly se­
quences. Despite the diversity of representations, there is a lack of 
understanding of how each representation maps into the others and 
of how one representation can be derived from the others. Further­
more, the correctness and completeness of the implicit represen­
tations have not received adequate attention. By correctness of the 
representation we mean that only feasible sequences satisfy' the 
conditions. By completeness we mean that all the feasible se­
quences satisfy the conditions. A prerequisite for a proof of 
correctness and completeness of algorithms that generate assembly 
sequences [Bourjault 84, De Fazio and Whitney 87, Homem de 
Mello and Sanderson 89] is a proof that the representation of 
assembly sequences used is correct and complete. 

This paper analyses these four representations and shows how 
they are interrelated. The correctness and completeness of these 
representations are also addressed. 

2. Background 
A mechanical assembly is a composition of parts interconnected 

forming a stable uniL Each part is a solid object. Parts are 
interconnected whenever they have one or more surfaces in con-

SEMBLY SEQUENCES 

A. C. Sanderson 
Electrical, Computer, and Systems Engineering Department 

Rensselaer Polytechnic Institute 
Troy, New York 12180-3590 

tact. Surface contacts between parts reduce the degrees of freedom 
for relative motion. A cylindrical contact, for example, prevents 
any relative motion that is not a translation along the axis or a 
rotation around the axis. Attachments may act on surface contacts 
and eliminate all degrees of freedom for relative motion. For 
example, if a cylindrical contact has a pressure-fit attachment, then 
no relative motion between the parts is possible. 

A subassembly is a nonempty subset of parts that either has only 
one element or is such that every part has at least one surface 
contact with another part in the subset Although there are cases in 
which it is possible to join the same pair of parts in more than one 
way, a unique assembly geometry wil l be assumed for each pair of 
parts. This geometry corresponds to their relative location in the 
whole assembly. A subassembly is said to be stable if its parts 
maintain their relative position and do not break contact spon­
taneously. Al l one-part subassemblies are stable. 

The assembly process consists of a succession of tasks, each of 
which consists of joining subassemblies to form a larger sub­
assembly. The process starts with all parts separated and ends with 
all parts properly joined to form the whole assembly. For the 
current analysis, it is assumed that exactly two subassemblies are 
joined at each assembly task, and that after parts have been put 
together, they remain together. 

It is also assumed that whenever two parts are joined all con­
tacts between them are established. Due to this assumption, an 
assembly can be represented by a simple undirected graph (P , C ) 
in which P - {p1 ,p2,.... ,PN ) is the set of nodes, and C - { c1 , 
c 2 ' ' ' ' ' CL }is the set of edges. Each node in P corresponds to a 
part in the assembly, and there is one edge in C connecting every 
pair of nodes whose corresponding parts have at least one surface 
contact. The elements of C are referred to as connections, and the 
graph {P, C) is referred to as graph of connections. Figure 1 
shows an assembly in exploded view, and figure 2 shows its 
corresponding graph of connections. The state of the assembly 
process can be characterized by the connections that have already 
been established, and it can be represented by an L-dimensional 
binary vector x= [x1,x2 ,..... ,xL} in which the the component xi is 
T or F respectively if the ith connection is established in that state 
or not. 

Furthermore, it is assumed that whenever a subassembly is 
formed all connections between its parts are established. There­
fore, any subassembly can be characterized by its set of parts, and 
any state of the assembly process can be characterized by a par­
tition of the set of parts of the whole assembly. For example, the 
initial state of the assembly process of the assembly shown in 
figure 1 is characterized by | |CAP), {RECEPTACLE), {STICK}, 
{HANDLE) ) whereas the final state is characterized by { {CAP, 
RECEPTACLE, STICK, HANDLE) ). In the rest of this paper, 
references to subsets of parts should be understood as references to 
the subassemblies made up of those parts. It will always be clear 
from context what the whole assembly is. 

de Mello and Sanderson 1035 



Figure 2: The graph of connections for the 
product shown in Figure 1 

There are partitions of the set of parts of the whole assembly 
that cannot characterize a state of the assembly process. For 
example, the partition { {CAP, HANDLE}, {RECEPTACLE}, 
{HANDLE} } cannot characterize a state of the assembly process for 
the assembly shown in figure 1 because the subset {CAP, HANDLE} 
does not characterize a subassembly. Partitions that characterize a 
state of the assembly process wi l l be referred to as stale partitions, 
and partitions that don't characterize a state w i l l be referred to as 
nonslate partitions. 

Similarly, not all L-dimensional binary vectors can characterize 
a state. For example, for the product shown in figure 1, the 
5-dimensional binary vector [T, T, F, F, F] does not correspond to a 
state because if connections C1 and C2 are established then connec­
tion C3 should also be established. L-dimensional binary vectors 
that characterize a state w i l l be referred to as state vectors whereas 
L-dimensional binary vectors mat don't characterize a state w i l l be 
referred to as nonslate vectors. 

We wi l l use the subassembly predicate sa to determine whether 
a subset of parts makes up a subassembly. The argument to this 
predicate is a subset of parts, and its value is either T or F depend­
ing on whether that subset of parts corresponds to a subassembly. 
For example, for the assembly shown in figure 1, 
sa( { RECEPTACLE. HANDLE } ) = T, whereas sa( { CAP, HANDLE } ) = 
F. From the assembly's graph of connections it is straight forward 
to compute sa for any given subset of parts. Similarly, we w i l l use 
the subassembly-stability predicate st to determine whether a sub­
assembly described by its set of parts is stable. The computation 
of st has been addressed elsewhere [Blum et aL 
70, Boneschanscher et al. 88]. 

Given two subassemblies characterized by their sets of parts 6 
and θj, we say that joining θi and θ is an assembly task if the set 
θk = θiUθi characterizes a subassembly. For example, for the 
assembly shown in figure 1, if θi={ RECEPTACLE } and 0 = 
{ HANDLE } then joining θi and θ jis an assembly task, whereas if 

θi={ CAP } and θj={ HANDLE ) then joining 0. and 0 is not an 
assembly task. The subassemblies θi and θj are the input subas­
semblies of the assembly task, and θk is the output subassembly of 
the assembly task. Due to the assumption of unique geometry, an 

assembly task can be characterized by its input subassemblies only. 

An assembly task is said to be geometrically feasible if there is a 
collision-free path to bring the two subassemblies into contact 
from a situation in which they are far apart And an assembly task 
is said to be mechanically feasible if it is feasible to establish the 
attachments that act on the contacts between the two sub­
assemblies. We wi l l use the geometric-feasibility predicate gf and 
the mechanical-feasibility predicate mf to determine whether two 
subsets of parts characterize, respectively, a geometrically feasible 
and a mechanically feasible assembly task. These predicates take 
as argument a set of two subassemblies, each characterized by its 
set of parts. The computation of these predicates is discussed 
elsewhere [Homem de Mello and Sanderson 89]. 

Given an assembly that has N parts, an ordered set of N -1 
assembly tasks is an assembly sequence if there are no two tasks 
that have a common input subassembly, the output subassembly of 
the last task is the whole assembly, and the input subassemblies to 
any task Ti is either a one-part subassembly or the output sub­
assembly of a task that precedes Ti. To any assembly sequence 

T1,T2,......,TN-1 there corresponds an ordered sequence S1,S2' 

• • • SN of states of the assembly process. The state s1 is the state 
in which all parts are separated The state sN is the state in which 
al l parts are joined forming the whole assembly. And any two 
consecutive states si and si+1 are such that only the two input 
subassemblies of task Ti are in si and not in si+1, and only the 
output subassembly of task Ti is in si+1 and not in si. Therefore, an 
assembly sequence can also be characterized by an ordered se­
quence of states. 

An assembly sequence is said to be feasible if all its assembly 
tasks are geometrically and mechanically feasible, and the input 
subassemblies of all tasks are stable. 

Since one assembly sequence can be represented by an ordered 
list of tasks, it is possible to represent the set of all assembly 
sequences by a set of lists, each corresponding to a different 
assembly sequence. Since many assembly sequences share com­
mon subsequences, attempts have been made to create more com­
pact representations that can encompass all assembly sequences. 
The next sections discuss different approaches towards represent­
ing all assembly sequences of a mechanical assembly. 

3. Directed Graph Representation of Assembly 
Sequences 
Given an assembly whose graph of connections is ( P , C ) , a 

directed graph can be used to represent the set of all assembly 
sequences. The nodes in this directed graph correspond to stable 
state partitions of the set P. These are the partitions 0 of P such 
that if 0 € 6 then 0 is a stable subassembly of P. The edges in 
this directed graph are ordered pairs of nodes. For any edge, there 
are only two subsets θi and θj in the state partition corresponding 
to the first node that are not in the state partition corresponding to 
the second node. Also, there is only one subset θk in the state 
partition corresponding to the second node that is not in the state 
partition corresponding to the first node, and θk=,θi UθjFurther­
more, the assembly task that joins θi and θj is feasible. Therefore, 
each edge corresponds to an assembly task. This graph is referred 
to as directed graph of feasible assembly sequences, and it can be 
formally defined as follows: 

Definit ion 1: The directed graph of feasible assembly 
sequences of an assembly whose set of parts is P is the directed 
graph (Xp , Tp) in which 

1036 Planning, Scheduling, Reasoning About Actions 



is the assembly's set of feasible state transitions. 

The notation A ( P ) has been used to represent the set of all 
partitions of P, and U({ A ,B , • • • ,Z } )=AUBU • • • UZ. As an 
example, figure 3 shows the directed graph of feasible assembly 
sequences for the product shown in figure 1. 

A path in the directed graph of feasible assembly sequences 
(Xp, Tp) whose initial node is Ө1 = { {p1 }, { p 2 } , • • • , { pN ) } 
and whose terminal node is ӨF = { { p1, p2, • • • , pN } } cor­
responds to a feasible assembly sequence for the assembly P, and 
conversely. In such a path, the ordered sequence of edges cor­
responds to the ordered sequence of tasks, while the ordered se­
quence of nodes corresponds to the ordered sequence of states of 
the assembly process. 

4. AND/OR Graph Representation of Assembly 
Sequences 

In our previous work [Homem de Mello and Sanderson 86], we 
introduced an AND/OR graph representation of assembly sequences. 
The nodes in this AND/OR graph are the subsets of P that charac­
terize stable subassemblies. The hyperarcs correspond to the 
geometrically and mechanically feasible assembly tasks. Each 
hyperarc is an ordered pair in which the first element is a node that 
corresponds to a stable subassembly Өk the second element is a set 
of two nodes { Өi ,Өj } such that ӨiUӨj = Өk and the assembly task 
characterized by θi and θj is feasible. This AND/OR graph can be 
formally defined as follows: 

Defini t ion 2: The AND/OR graph of feasible assembly 
sequences of an assembly whose set of parts is P = {P1 , , p2 , • • • , 

PN }, is the AND/OR graph (Sp , Dp) in which 

S p = { θ ε Tl(P)\sa(B)ASt(B)} 

is the set of stable subassemblies, and 

An assembly tree induces a partial order among its hyperarcs: 
hyperarc h • is said to precede hyperarc hj if there is a node nk in the 
assembly tree such that hi is incident from nk and hi is incident to 
n,. At least one sequence of the hyperarcs of an assembly tree is 
consistent with this partial order. Furthermore, every sequence of 
the hypearcs that is consistent with the partial order corresponds to 
a feasible assembly sequence. 

de Mel lo and Sanderson 1 0 3 7 

is the set of feasible assembly tasks. 

The notation ∏ (P) has been used to represent the set of all 
subsets of P. As an example, figure 4 shows part of the AND/OR 
graph for the assembly shown in figure 1. Each node in that graph 
is associated with a subset of parts that corresponds to a sub­
assembly. There are only two stable subassemblies of the product 
shown in figure 1 whose corresponding nodes were not included in 
figure 4; they are the subassembly made up of the cap, the recep­
tacle, and the handle, and the subassembly made up of the cap, the 
stick, and the handle. They were not included to avoid cluttering 
the figure. 

From the AND/OR graph of feasible assembly sequences one can 
define feasible assembly trees as follows: 

Def ini t ion 3: Given the AND/OR graph of feasible assembly 
sequences of an assembly whose set of parts is P = {p1, p2, ..... 
pN ), any AND/OR path having { p 1 , p2 ,........ PN ) as its initial 
node, and having {p1 }, { p 2 ), .... (PN ) as its terminal nodes is 
a feasible assembly tree of that assembly. 



• The Correspondence between the Directed Graph and the 
AND/OR Graph 

Every feasible assembly sequence in the directed graph of 
feasible assembly sequences corresponds to a feasible assembly 
tree in the AND/OR graph of feasible assembly sequences. And 
every feasible assembly tree in the ANDADR graph of feasible as­
sembly sequences corresponds to one or more feasible assembly 
sequences in the directed graph of feasible assembly sequences. 
The two theorems below establish the correspondence between 
assembly trees and assembly sequences. Proofs of these theorems 
are presented elsewhere [Homem de Mello 89]. 

Theorem 4: Given an assembly tree of an assembly, if h1, h2 

.... , h i = ( σ i , , Ө i , ) , ..... hN-1 is a sequence of all the hyperarcs 
of that assembly tree that is consistent with the partial order in­
duced by the tree, then the sequence in which 

Ω1 = { P1), { P2 ) ..... {P2)}, and 
is a feasible assembly sequence of the assembly. 

Theorem 5: If is an assembly sequence of 
an assembly whose set of parts is P = { p 1 , p2, ..... pN ) and 

5. Establishment Condition Representation of 
Assembly Sequences 

If we represent the states of the assembly process by 
L-dimensional binary vectors, then a set of logical expressions can 
be used to encode the directed graph of feasible assembly se­
quences. Let Ei= { x1,x2,........xKi}be the set of states ftom 

which the ith connection can be established without precluding the 
completion of the assembly. The establishment condition for the 
i th connection is the logical function 

the edges leaving each of the nodes that correspond to states from 
which the assembly can be completed. The establishment con­
ditions can also be obtained from the AND/OR graph of feasible 
assembly sequences by systematically looking at the hyperarcs of 
each assembly tree. 

As an example, the establishment conditions for the assembly 
shown in figure 1 are: 

The first establishment condition (F1 (x1,x2,x3 ,x4,x5 )) cor­
responds to the fact thai the only states in which connection C1 (i.e. 
the connection between the cap and the stick) can be established 
without precluding the completion of the assembly are either the 
state in which no connection has been established (node 1 in figure 
3), or the state in which only connection c2 is established (node 2), 
or the state in which only connection c3 is established (node 4), or 
the state in which only connection c5 is established (node 5), or the 
state in which only connections C2 and C4 are established (node 9), 
or the state in which only connection C1 and C2 are not established 
(node 12). It should be noticed that there is no term corresponding 
to the state in which only connection C4 is established (node 6); 
although it is feasible to establish connection C1, the resulting state 
(node 10) is a dead-end from which the assembly cannot be com­
pleted. Using the rules of boolean algebra the first establishment 
condition can be rewritten as 

Although further simplification is still possible, in this paper it is 
assumed that a boolean function even when simplified is a sum of 
products. Depending on the application it may be useful to drop 
this restriction and to further simplify the boolean functions. 

Any assembly sequence ( X1,X2,,......,XN) that is feasible is such 

that if the ith connection is established in task Tk then Fi(Xk) = T. 
And any assembly sequence is feasible if for any of all its tasks Tk 

are such that if the ith connection is established in Tk then 
Fi(Xk) = T. Therefore, the set of establishment conditions is a 
correct and complete representation of assembly sequences. 

1038 Planning, Scheduling, Reasoning About Actions 

where the sum and the product are the logical operations OR and 
AND respectively, and ykl is either the symbol xl if the lth com­
ponent of xk is T, or the symbol xl if the l th component of xk is F. 
Clearly, every element xk of Ei is such that Fi( xk) = T. It is often 
possible to simplify the expression of Fi using the rules of boolean 
algebra. 

The establishment conditions can be obtained from the directed 
graph of feasible assembly sequences by systematically looking at 

then (Sp, Hp ) is an assembly tree of that assembly. 

The useful feature of the AND/OR graph representation for as­
sembly sequences is that for assemblies of more than 5 parts it 
encompasses all possible assembly sequences with a reduced num­
ber of nodes than the directed graph of assembly states [Homem de 
Mello and Sanderson 88]. Furthermore, it explicitly shows the 
possibility of simultaneous execution of assembly tasks. 



The establishment conditions as defined in this paper can only 
discriminate between feasible and nonfeasible assembly sequences. 
There are sequences of states that ''satisfy" the establishment con­
ditions but are not assembly sequences and therefore cannot be 
feasible assembly sequences. 

Knowing F1,F2,......FL, and the assembly's graph of connec­
tions, it is straight forward to construct the assembly's directed 
graph of assembly states. 

6. Precedence Relationship Representation of 
Assembly Sequences 

T w o types of precedence relationships can be used to represent 
assembly sequences: precedence relationships between the es­
tablishment of one connection and the establishment of another 
connection, and precedence relationships between the establish­
ment of one connection and states of the assembly process. 

• Precedence relat ionships between the establishment of one 
connect ion and the establishment of another connection 

We w i l l use the notation C i < C j to indicate the fact that the 
establishment of connection c i must precede the establishment of 

connection c . And we w i l l use the notation c i< c j to indicate the 
fact that the establishment of connection c i must precede or be 
simultaneous wi th the establishment of connection c •. Further­
more, we w i l l use a compact notation for logical combinations of 
precedence relationships; for example, we w i l l write c i < c j ck 

when we mean ( ci < cj) /\(CI < ck), and we w i l l write ci + cj < ck 

when we mean ( ci < ck) v ( cj < ck). 

Each feasible assembly sequence of a given assembly can be 
uniquely characterized by a logical expression consisting of the 
conjunction of precedence relationships between the establishment 
of one connection and the establishment of another connection. 
For example, for the assembly shown in figure 1, the assembly 
sequence x 1 = [ F , F , F , F , F ] , X2 = [ T , F , F , F , F ] , x3 = [ T , T , T , F , 
F ] , and x4 = [ T , T , T, T, T ] can be uniquely characterized by the 
fo l lowing conjunction of precedence relationships 

(C1 < C 2 ) /\ (C 2 < C4) /\ ( c 2 < r 3 ) /\ ( r 3 < r 2 ) / \ 

( C4 < C5) A ( c 5 < c4 ) 

The set of all M feasible assembly sequences can be uniquely 
characterized by a disjunction of M conjunctions of precedence 
relationships in which each conjunction characterizes one as­
sembly sequence. Clearly, this logical combination of precedence 
relationships constitutes a correct and complete representation for 
the set of all assembly sequences. 

It is often possible to simpl i fy this logical combination of 
precedence relationships using the rules of boolean algebra. Fur­
ther simplif ication is possible if one notices that there are logical 
combinations of precedence relationships that cannot be satisfied 
by any assembly sequence. For the assembly shown in figure 1, 
for example, the combination ( C1< c 2 ) / \ ( c 2 < c 3 ) / \ ( c 3 < c4 ) 

A ( c 4 < c5) cannot be satisfied by any assembly sequence. These 
combinations can be set as don't care conditions in the simplifica­
tion process. 

For the assembly shown in figure 1, the precedence relationship 

Unl ike the logical combination of precedence relationship ob­
tained directly f rom the feasible assembly sequences, this logical 
combination of precedence relationships is satisfied by some se­
quences that are not assembly sequences. It can only discriminate 
the feasible assembly sequences from the unfeasible assembly se­
quences. This is due to the introduction of don't care conditions. 

• Precedence relat ionships between the establishment of one 
connection and states of the assembly process 

We w i l l use the notation ci —> Sk ( x ) to indicate that the es­
tablishment of the ith connection must precede any state of the 
assembly process for which the value of the logical function Sk ( x ) 
is T. The argument of Sk(x) is an L~dimensional binary vector. 
We w i l l also use a compact notation for logical combinations of 
precedence relationships. For example, we w i l l write 
C i + C j → Sk(x) when we mean [ci → S k ( x ) ] v [c j —> S k ( x ) ] . 

Let ψ = { x1,x2, • • • ,j } be a set that includes al l unstable 
assembly states plus the stable states from which the f inal state 
cannot be reached plus the states that cannot be reached from the 
iniual state. Every element x of ψ is such that the value of the 
logical function G (x j) is T, where 

(Eq. 1) 

where gj ( x ) is the product of a subset of { x1, x2, ......., xL, x1, x2, 

• • • , XL } that does not include both xi and xi for any i. Each term 
gj{x) can be rewritten grouping all the nonnegated variables first 
and all the negated variables last, i.e., gj(x) = 

J 
Xa ,Xb Xh. . Xn . X X_. a h n p q z 

Any assembly sequence that includes a state xi for which 
G ( x i) = T (i.e. x i € ψ ) i s not a feasible sequence. Therefore, a 
necessary condition for an assembly sequence (x1 ,x2,......xN) 
to be feasible is that G ( x 1 ) = G ( x 2 ) =.... = G (xN) = F. This 
condition is equivalent to gj(xi) = F for i = 1 , 2 , • • • ,7V and for 

j= 1 , 2 , .... , / ' . For a special class of assemblies, this necessary 
condition is also sufficient. This class is composed of the as­
semblies that satisfy the fol lowing condition: 

• If it is /easible to establish the ith connection f rom a state in 
which the set of all connections that are established is T, then it is 
also feasible to establish the ith connection from any state in 
which the set of all connections that are established is a subset of 
r. 

If C = { c1,C2,....,cL } is the assembly's set of connections 

between parts and (x1,x2,... xN) is an assembly sequence, the 
condition gj(x 1) = gj(x2) = ... = gj(xN) = F corresponds to 
a precedence relationship. The fo l lowing theorem establishes the 
correspondence. A proof of this theorem is presented 
elsewhere [Homem de Mel lo 89]. 

de Mello and Sanderson 1039 

is sufficient to discriminate the feasible assembly sequences from 
the unfeasible assembly sequences. 

The sum and the product in equation 1 are the logical operations 
OR and AND respectively, and yj1 is either the symbol X1 if the lth 

component of x is T, or the symbol x, if the 7 th component of x j is 
F. In many cases the expression of G ( x ) can be simplif ied using 
the rules of boolean algebra. A l low ing for simplifications, but 
maintaining the assumption that a boolean function is a sum of 
products, equation 1 can be rewritten as 

(Eq.2) 



with the product being the logical operation AND. 
Each of the terms on the right side of equation 2 leads to one 

precedence relationship between the establishment of one connec­
tion and states of the assembly process. As a consequence of 
theorem 6, for assemblies that satisfy the condition stated above, if 
an assembly sequence is such that all precedence relationships 
are satisfied, then that sequence is feasible, and conversely. There­
fore, the set of precedence relationships is a correct and com­
plete representation of the set of all feasible assembly sequences. 

For the assembly shown in figure 1, which satisfies the con­
dition stated above, and whose directed graph of assembly states is 
shown in figure 3, includes and 

In this case the expression of G(x) cannot be further simplified; 
the precedence relationships are: 

(Set 1) 

A simpler set of precedence relationships can be obtained if in 
the simplification of we set the nonstate vectors as don't 
care conditions. For the assembly shown in figure 1, the set of 
precedence relationships 

was obtained in the same fashion as Set 1, except for setting the 
nonstate vectors as don't care conditions. Set 2 is simpler and yet 
equivalent to Set 1. 

Both set 1 and set 2 of precedence relationships can only dis­
criminate feasible from non-feasible assembly sequences. 

7. Conclusion 
Four types of representations for assembly sequences were 

reviewed: the directed graph of feasible assembly sequences, the 
AND/OR graph of feasible assembly sequences, the set of establish­
ment conditions, and the set of precedence relationships. The 
mappings of one representation into the others have been es­
tablished. The correctness and completeness of these represen­
tations have also been established. To the author's knowledge no 
previous precedence relationship representation of assembly se­
quences has been shown to be correct and complete. 

In previous work [Homem de Mello and Sanderson 89], we 
have presented an algorithm for the generation of the AND/OR 
graph of feasible assembly sequences and a proof of its correctness 
and completeness. Depending on the application, other represen­
tations of assembly sequences might be preferred. The results 
presented in this paper allows us to construct the other three types 

of representation and to guarantee their correctness and complete­
ness. 

Furthermore, there has been other work on the generation of 
assembly sequences [Bourjault 84, De Fazio and Whitney 87]. To 
the author's knowledge the correctness and completeness of these 
other algorithms have not been established. The results presented 
in this paper allow the proof of the correctness and completeness 
of algorithms for the generation of assembly sequences that yield 
precedence relationships or establishment conditions. 

Acknowledgements 

We thank Thomas L. De Fazio and Daniel E. Whitney for 
helpful discussions, and James Darnell for making the software for 
simplification of boolean functions available to us. The respon­
sibility for the paper, of course, remains with the authors. 

This research was supported by the Conselho Nacional de 
Desenvolvimento Cientifico e Tecnologico (Brazil), the Jet Propul­
sion Laboratory of the California Institute of Technology, and The 
Robotics Institute of Carnegie Mellon University. 

References 

[Blum et al. 70] M. Blum et al. A Stability Test for Configurations 
of Blocks. Art i f ic ial Intelligence Memo 188, Massachusetts 
Institute of Technology, Feb, 1970. 

[Boneschanscher et al. 88] N. Boneschanscher et al. Subassembly 
Stability. In Proceedings AAAI-88 Seventh National Con­
ference on Artificial Intelligence, pages 780-785. American 
Association for Art i f icial Intelligence, Morgan Kaufman, 
Aug, 1988. 

[Bourjault 84] A. Bourjault. Contribution a une Approche 
Methodologique de L' Assemblage Automatisi: Elaboration 
Automatique des Sequences Operatoires. These d'Etat, 
Universite de Franche-Comte, Besancon, France, Nov, 1984. 

[De Fazio and Whitney 87] T. L. De Fazio and D. E Whitney. 
Simplified Generation of A l l Mechanical Assembly Se­
quences. IEEE Journal of Robotics and Automation 
RA-3(6):640-658, Dec, 1987. See corrections on same jour­
nal, RA-4(6):705-708, Dec, 1988. 

[Homem de Mello 89] L. S. Homem de Mello. Task Sequence 
Planning for Robotic Assembly. PhD Thesis, Carnegie Mel­
lon University, 1989. 

[Homem de Mello and Sanderson 86] L. S. Homem de Mello and 
A. C. Sanderson. AND/OR Graph Representation of As­
sembly Plans. In Proceedings AAAI-86 Fifth National Con­
ference on Artificial Intelligence, pages 1113-1119. 
American Association for Art i f icial Intelligence, Morgan 
Kaufmann Publishers, 1986. 

[Homem de Mello and Sanderson 88] L. S. Homem de Mel lo and 
A. C. Sanderson. Task Sequence Planning for Assembly. In 
IMACS World Congress '88 on Scientific Computation. Paris, 
Jul, 1988. 

[Homem de Mello and Sanderson 89] L. S. Homem de Mel lo and 
A. C. Sanderson. A Correct and Complete Algori thm for the 
Generation of Mechanical Assembly Sequences. In 
Proceedings of the 1989 IEEE International Conference on 
Robotics and Automation. IEEE Computer Society Press, 
Washington D.C., May, 1989. 

1040 Planning, Scheduling, Reasoning About Actions 


