
A Problem Space Approach to Expert System Specification 

Gregg R. Yost and Allen Newell 

School of Computer Science, Carnegie Mellon University 
Pittsburgh, PA 15213 

Abstract 

One view of expert system development separates 
the endeavor into two parts. First, a domain expert, 
wi th the aid of a knowledge engineer, articulates a 
procedure for performing the desired task in some 
external form. Next, the knowledge engineer 
operationalizes the external description within 
some computer language. This paper examines the 
nature of the processes that operationalize natural 
task descriptions. We exhibit a language based on 
a computational model of problem spaces for which 
these processes are quite simple. We describe the 
processes in detail, and discuss which aspects of 
our computational model determine the simplicity 
of these processes.1 

1. Introduct ion 
Viewed abstractly and somewhat simplistically (Figure 1, 
top), one fundamental paradigm of expert system 
development starts with a domain expert who articulates 
the means of performing the task in some language T. A 
knowledge engineer then comprehends the task knowledge 
expressed in T, resulting in a conceptualization of the 
knowledge in terms of the task domain TD. Next, the 
knowledge engineer maps the task knowledge from the 
terms of TD to the terms of some computational domain 
CM (called a computational model). Finally, the 
knowledge engineer composes a set of statements that 
express the computational conceptualization of the task in 
a computer language L. Together, the comprehension, 
domain mapping, and composition are referred to as 
operationalization of the task knowledge. This description 
does not imply that all task knowledge is articulated before 
operationalization begins. In practice, these phases are 

This research was sponsored by the Defense Advanced 
Research Projects Agency (DOD), ARPA Order No. 4976 under 
contract F33615-87-C-1499, and monitored by the A i r Force 
Avionics Laboratory. The research was also supported in part by 
Digital Equipment Corporation. The views and conclusions 
contained in this document are those of the authors and should 
not be interpreted as representing the off icial policies, either 
expressed or implied, of the Defense Advanced Research Projects 
Agency, Digital Equipment Corporation, or the U.S. Government. 

highly interleaved and incremental. The processes 
described apply to individual knowledge fragments, not to 
the body of task knowledge as a whole. 

T must be a language that both the domain expert and 
the knowledge engineer are familiar with, and that permits 
clear and concise description of the task knowledge. Thus, 
T is usually a natural language. In the remainder of this 
paper we assume that T is English. Operationalization 
remains a task for humans, rather than computers, because 
natural language comprehension is routine for humans but 
is much too difficult to perform automatically. Further, 
operationalization remains a task for knowledge engineers, 
rather than domain experts, because the latter rarely are 
skilled in the use of computer languages. Thus, this paper 
assumes a human knowledge engineer and an appropriate 
level of language skills in T and in L (it also assumes that 
the description of task knowledge in T does not pose its 
own difficulties by being a confusing or obscure text). The 
remainder of this paper focuses on the third component of 
operationalization: the conceptual mapping from the task 
domain to the computation domain. 

By separating the notion of a language from the domains 
it describes, we see that improving the state of the art in 
expert system development is not simply an issue of 
making language improvements. We may modify a 
language so that it describes its domains more 
perspicuously, but the fundamental conceptual mismatch 
between the task domain and the computation domain 
remains. This conceptual mismatch accounts for most of 
the difficulty of operationalization. If the processes that 
perform the mapping are complex and open ended, then 
operationalization wi l l be a difficult intellectually-creative 
task. If these processes are simple and routine, then design 
of expert systems wi l l be routine. Different computational 
models could require quite different processes, and thus 
could present quite different degrees of diff iculty. 

This paper illustrates this thesis by describing PSCM 
{Problem Space Computational Model), a computational 
model with a small set of clearly-describable 
operationalization processes (Figure 1, bottom). PSCM is 
a computational model of problem spaces based on the 
Soar architecture (Laird, Newell & Rosenbloom, 1987, 
Laird, 1986). T A Q L {Task Acquisition Language) is the 
language (L) that is based on PSCM; it has a compiler that 

Yost and Newell 621 



converts systems described in T A Q L into Soar, hence into 
running expert systems. Only three types of processes are 
required to operationalize an English task knowledge 
description into T A Q L : identification, representation and 
communication, each of l imited character and complexity 
(given adequate language skills in English and in TAQL) . 

Section 2 describes PSCM. Section 3 describes the 
operationalization processes. Section 4 describes T A Q L 
and gives a brief example of operationalization. Section 5 
discusses the role of the computational model in 
determining the operationalization processes. 

2. The Computat ional Model 
A computational model is a set of entities, some of which 
perform operations on other domain entities. Thus a 
computational model has two kinds of domain entities: 
structural entities, and functional entities. Structural 
entities are the basic objects in the domain. Functional 
entities perform operations on structural entities. Some 
entities may be both structural and functional. For 
example, in the computational model underlying Lisp, 
certain lists may be treated as either programs or data. 

PSCM is a computational model of problem spaces 
abstracted from the Soar problem solving architecture. In 
PSCM, as in Soar, all tasks are represented as finding a 
desired state in a problem space. 

Table 1 lists the entities that comprise PSCM. The first 
row of the table lists the structural entities: tasks, problem 
spaces, states, and operators. Tasks are particular problems 
to be solved. Problem spaces are organizing structures that 
group related knowledge. States consist of the data objects 
relevant to the task. Operators manipulate states with their 
associated data objects. The rest of the table lists the 
functional PSCM entities. They are grouped by the 
structural entity wi th which they are most closely 
associated. In the rest of this paper, these structural and 
functional entities are collectively referred to as PSCM 
components. 

Each PSCM component has a set of aspects that must be 
defined for the component to be meaningful. For example, 
an operator proposal component has three such aspects: 
which problem space the component belongs to; the 

conditions under which the operator should be proposed; 
and the operator object to be proposed, expressed in terms 
of objects in the current problem-solving context. 

A task is represented as a collection of interacting 
problem spaces, each of which performs some portion of 
the task. Problem spaces interact in a variety of ways. For 
example, one problem space may implement an operator 
invoked in another problem space. During problem 
solving, problem spaces are situated within a goal 
hierarchy. Whenever a new goal is created, problem 
solving proceeds in that goal as follows: 

Subgoals are generated whenever problem solving in the 
current problem space cannot proceed until another 
problem space has performed some subtask on its behalf. 
For example, when the available operator selection 
components do not uniquely determine which operator 
should be applied next, PSCM creates a subgoal to choose 
one of the candidate operators. 

Problem solving in PSCM proceeds in general without 
knowledge of a global control structure for the task. 
Rather, PSCM assembles a solution dynamically through 
the application of a sequence of localized problem-solving 
components. Some sets of PSCM components may lead 
PSCM to exhibit the behavior produced by a well-known 
problem solving method. Other sets of components may 
exhibit no easily-characterizable global behavior. 
However, PSCM admits problem-solving methods that 
influence the overall behavior of an entire set of 
components. Such method-based behavior is easily 
produced, but is not required. 

While PSCM and Soar are both computational models of 
problem spaces, PSCM describes tasks at a higher level of 
abstraction than Soar. Soar expresses problem space 
computations in terms of concepts such as productions, 

622 Machine Learning 



working memory, preferences, and impasses. PSCM 
abstracts away from these architectural mechanisms and 
describes problem spaces in their own terms.2 

3. The Operationalization Processes 
The processes that operationalize English descriptions of 
domain knowledge into a given computational model are 
determined by the computational model. As displayed in 
the lower half of Figure 1, the operationalization of English 
task knowledge into T A Q L is produced by a knowledge 
engineer who comprehends the knowledge description, 
maps the comprehended task concepts to components of 
PSCM, and composes a set of T A Q L language statements 
expressing those PSCM components. For PSCM, the 
mapping between domain and computational model 
performs three functions: identify a PSCM component; 
represent a data object; and communicate some 
information from one PSCM component to another. 

In general, while the operationalization processes 
themselves are determined by the computational model, 
their instantiation and application to a given knowledge 
description is strongly determined by the forms of 
expression used in that description. For PSCM, we can 
make an even stronger statement: for descriptions of real-
world tasks expressed naturally and in their own terms, the 
operationalization processes yield a set of PSCM 
components that directly model the forms of expression 
used in the description. In other words, to a large extent, 
the processes involve not design and creative 
reformulation, but comprehension and re-expression of 
English knowledge descriptions in the terms of PSCM. 
This is particularly true for the identification and 
representation processes. The remainder of this paper 
explicates this claim. 

To begin, we describe the three processes in more 
detail.3 Let E denote an English description of the task 
knowledge for a particular task. The first function to be 
performed is to identify PSCM components in E. A l l types 
of PSCM components are identified at this stage, including 
organizational components such as problem spaces; data-
object components that make up the problem solving state; 

Soar also provides a learning mechanism (chunking). PSCM 
does not. 

3 An example of these processes in action appears in Section 4. 

and problem-solving methods, which determine the 
behavior of an entire set of PSCM components. The 
identification proceeds by labeling paragraphs, sentences, 
or phrases in E with the PSCM components that w i l l 
encode the knowledge in those parts of E. In essence, it 
involves segmentation of the text in E. 

The labels are assigned based on comprehension of the 
functional roles of parts of E. For example, a description of 
how to perform some subtask would be labeled wi th the 
name of an operator to perform that subtask, and would be 
classified as an operator-implementation component. 
Components created for related subtasks are grouped into 
problem spaces. A method is identified when E describes 
behaviors that match the behaviors known to be produced 
by the method. A structure that is the target of some action 
described in E is identified as a data object (part of a state). 
The identification of a data object may be further refined 
by classifying it as an instance of an abstract data type: 
such an identification is made when E describes 
manipulations of the identified data object that match the 
computational operations defined on the abstract data type. 

After identification, the next function to be performed in 
the operationalization of E is to represent data objects. 
The identification process yields a conceptualization of the 
task knowledge in terms of abstract problem spaces. At 
this stage, most of the procedural structure of the final 
PSCM solution has been determined. Tasks have been 
assigned to operators, related subtasks have been grouped 
into problem spaces, and the relationships among problem 
spaces have been determined at an abstract level. The 
interactions among operators within a space are also 
known at an abstract level. However, the interactions 
among problem spaces and operators cannot be completely 
determined until data representations have been selected. 
Immediately after identification has completed, objects are 
still in terms of the task domain, except for the occasional 
appearance of abstract data type terms. 

Data representatioas require raw materials out of which 
they can be constructed. The choice of raw materials 
depends to some extent on what is appropriate for the 
computational model. For example, representations built 
from machine-level units such as bytes (e.g., records and 
arrays) have proved appropriate for the computational 
models underlying conventional programming languages 
such as C and Pascal. For PSCM, the representations are 
in terms of attribute/value structures, which have 

Yost and Newe l l 6 2 3 



historically proved useful in computational models for 
expert systems (e.g., OPS5 (Forgy, 1981)) and are used in 
Soar. 

The representations of data objects described in E are 
developed in the same way as the PSCM components were 
assembled. That is, the attribute/value structures are not so 
much designed as they are identified from the structure of 
their descriptions in E. Thus, if E mentions a backplane 
with nine slots, it might be represented as an object of class 
backplane wi th a slots attribute whose value is 9. These 
structures can be hierarchical. For example, if E mentions 
individual backplane slots and their widths, the backplane 
object may be given a slot attribute, the value of which is 
an object of class slot having a width attribute. In the cases 
where the abstract data type of an object has been 
identified, representation is even easier: it is assumed that 
the knowledge engineer is skilled in the expression of 
common abstract data types in the terms of PSCM; thus, 
creativity is not required. 

Once the representation process has been completed, the 
operationalization of E in PSCM is almost finished. Most 
of the interactions among PSCM components are known 
by the time the identification process completes, and the 
components need only be restated in terms of the chosen 
attribute/value representations to become operational in 
PSCM. However, since the components were identified at 
an abstract level (before data representations were known), 
some of these components may now need to be modified or 
refined. 

This fine-tuning of interactions is the province of the 
communicate process. Communication comes in two 
forms: inter-space communication, and inter-operator 
communication. Both forms of communication are driven 
by the need to make available the information operators 
must have to apply correctly and in the proper order. 

The abstract problem space descriptions classify the 
connections among problem spaces. For example, they 
may state that the problem space in a subgoal implements a 
specific operator in the superspace. However, they do not 
indicate in any detail what information in the current goal 
needs to be made available in the subgoal, or what 
information produced by the subgoal needs to be returned 
to the supergoal when the subgoal exits. The communicate 
process fills in the details of this inter-space 
communication. 

Data objects are copied to a subgoal to make them 
readily available to the problem space operating in the 
subgoal, or to any of its subspaces. This is particularly 
important for data objects that are modified by operators in 
the subspace. Data objects are copied from a subgoal to 
the superspace either to make a result available to operators 
in the superspace, or to preserve the value of a data object 
for a future invocation of the same problem space or one of 
its subspaces. 

Inter-operator communication must be refined in two 
situations: 

1. When an operator needs data in a form other 

than the form created by the operator that 
produces the data* 

2. When an operator needs data that was 
available at some point during prior 
computation, but that would not otherwise be 
preserved in the current state. 

The first situation can be resolved by either modifying 
the operators involved so that they represent the data in the 
same way, or by introducing a new operator or elaboration 
component that translates between the two forms. The 
second situation can be resolved by modifying operators 
that had access to the required information in the past so 
that they make this information part of their result states, 
thus preserving it for future use. 

4. The TAQL Specification 
The operationalization processes described in Section 3 
map task knowledge from the terms of the task domain into 
the terms of PSCM. The final requirement in the 
operationalization is to express these computational model 
structures in a formal, compilable language: namely, 
T A Q L . 4 The stages of the complete operationalization 
process are displayed graphically in the left-hand column 
of Figure 2 (we w i l l describe the rest of that figure below). 

T A Q L directly reflects the structure of PSCM. Thus, a 
T A Q L specification consists of a set of TAQL constructs, 
called TCs, each of which describes some aspect of a 
PSCM component. A Common Lisp program compiles 
TCs into Soar productions. When loaded into Soar along 
wi th a small set of runtime support productions, these 
productions implement the task described by the TCs. This 
compilation is ful ly automated and very efficient: it does 
not take noticeably longer to load a file of TCs than it does 
to load the productions generated by those TCs. 

Each TC is a list consisting of the TC type and a name 
for the TC instance, followed by a list of keyword 
arguments. Each keyword specifies some aspect of the 
related PSCM component. An operator-proposal TC 
appears at the bottom of Figure 2. In terms of PSCM, the 
aspects that must be defined for an operator-proposal 
component are the problem space it applies in , the operator 
object to be proposed, and the conditions under which the 
operator should be proposed. These aspects are specified 
directly in the propose-operator TC as the values of the 
:space, :op, and .when keywords, respectively. Data is 
represented in T A Q L using attribute/value structures of the 
form produced by the representation process during 
operationalizati on. 

We now provide a detailed example of the 
operationalization of a small piece of English task 

4See the T A Q L User Manual (Yost, 1988) for a more detailed 
description of T A Q L than is given here. 

5The current version of T A Q L makes no attempt at graceful 
syntactic forms, as the emphasis so far has been on the 
operationalization processes. 

624 Machine Learning 



description. The domain is computer configuration, as 
performed by the R 1 /XCON expert system (McDermott, 
1982). Rl was coded in OPS5. Several years ago, the 
unibus-configuration subtask of Rl was recoded in Soar 
(Rosenbloom, Laird, McDermott, Newell & Orciuch, 
1985). Rl-Soar is an expert system of about 340 rules. 
Since its creation, it has served as a testbed for a number of 
efforts within the Soar project. 

We have produced an English description of the unibus 
configuration task, and have realized this task in T A Q L by 
applying the operationalization processes to that 
description. Figure 2 illustrates how the operationalization 
processes apply to a small piece of the description. The 
two English sentences at the top of the figure express when 
specific instances of an action (backplane cabling) should 
be performed. This is exactly the kind of information a 
PSCM operator-proposal component expresses. Thus, the 
identification process yields two operator-proposal 
components, one for each of the two cable lengths. Only 
the component for cables of length ten is shown in detail in 
the figure. Next, the representation process applies to the 
conditions in the abstract component, and also to the 
operator object that is to be proposed. A straightforward 
mapping from the English description of the abstract 
component yields the attribute/value representations 
shown.6 

The condition that determines whether or not the 
backplane has been filled with modules is naturally 
expressed as a test for the presence of a 
^modules-configured attribute on the state. However, the 
operationalization of the modules-into-backplane operator, 
which fills the backplane7, does not generate this 
information. Thus, the communication process must build 
a link between the modules-into-backplane and cable-bp 
operators. It does so by modifying modules-into-
backplane to return the required modules-configured 
attribute, in addition to any other actions the operator 
already performs. 

Before leaving this example, we say a few words about 
how R1-TAQL compares to R 1-Soar. For the comparisons 
given here, we use an updated version of Rl-Soar that 
reflects the task-oriented conceptual structure of unibus 
configuration more closely than the original Rl-Soar did.8 

Both R I - T A Q L and Rl-Soar use the same seven 
problem spaces. R 1-TAQL has 153 TCs, and RI -Soar has 
337 hand-coded Soar productions. The 153 TCs compile 
into 352 Soar productions. A more useful measure of size 
is the number of words in each description, where a word 
is defined to be the smallest unit that has meaning to the 
T A Q L compiler or to the Soar production compiler. 

6Part of the representation of the configuration structure is 
determined by other parts of the Rl English task description (not 
shown), and is simply reused here. 

This operator is described in a part of the Rl description not 
shown here. 

8This was the joint work of Amy Unruh and Gregg Yost. 

Words include attribute names, variables, and parentheses, 
among other things. The English description of Rl has 
756 words; R 1-TAQL has 5774 words, and Rl-Soar has 
21752 words. Thus the number of words in R l - T A Q L is 
26% of the number of words in Rl-Soar, a significant 
reduction. 

5. The Role of the Computational Model 
We have described PSCM and TAQL , a computational 
model and associated language that require only simple 
processes of operationalization. Existing practice takes the 
creation of expert systems to be a difficult task, although 
the development of knowledge acquisition tools and expert 
system shells has simplified the task for some classes of 
systems at the expense of generality in the tool (Clancey, 
1983, McDermott, 1988). Much of this diff iculty resides 
in operationalization, although articulation of domain 
knowledge (which is outside the scope of this paper) 
clearly contributes as well. 

The desirable course would be to describe the 
operationalization processes for existing expert system 
specification languages, and compare them with the 
processes for TAQL. However, this course is not presently 
feasible, because the operationalization processes for other 
languages cannot yet be specified. A l l that is known is the 
overall complexity of the language in practice. For 
example, Common Lisp, a standard, highly effective, 
general purpose system-building language, still requires 
substantial effort when used to build medium-sized expert 
systems. But to give the operationalization processes for 
coding expert systems in Common Lisp would be to 
describe how to do program synthesis of very substantial 
and complex programs — well beyond current 
understanding. That operationalization processes can be 
described when they are simple (as they are for TAQL) 
does not imply that they can be described when they are 
more complex. 

However, some things can be said. For most 
specification systems, the basic computational model is 
some variant of procedural semantics: data types with 
associated sets of operations, on top of which is provided a 
set of procedural control constructs, built out of the notions 
of execution, sequence, and conditionally. Production 
systems, object-oriented programming, conventional 
programming, and a number of other schemes are all 
variations on this theme. A l l such specification systems 
require specifying such things as programs, methods, 
strategies, reasoning schemes, executives, etc. For simple 
applications, this may be easy, but as the complexity of the 
application grows this becomes a genuine program design 
task. The operationalization processes for using these 
languages must include some way to synthesize the 
required methods, executive organizations and so forth. 
Let us call this operationalization process method-design. 

Method-design is not required for operationalizing into 
TAQL. This is surely a major factor in the simplicity of its 
operationalization processes. Some of the reasons for this 
are presented in Section 2: the mutually supporting 
problem space structure of PSCM provides the 

Yost and Newell 625 



organization into which local control knowledge can be 
placed without having to design any methods or higher-
level organizations. In this respect, PSCM differs from 
RIME (Bachant, 1988), a programming methodology 
based on problem spaces and in some ways similar to 
PSCM. In RIME, each problem space is required to 
specify a single method that wil l determine the course of 
problem solving in that space. In PSCM (as in Soar), 
method-based behavior is an emergent phenomena of 
localized problem-solving decisions. 

Of course, methods can be quite useful. Once coded, 
they can be reused in similar tasks by simply modifying a 
few bits of domain knowledge. Methods determine the 
behavior of an entire set of problem solving components, 
and they can provide very concise specifications in 
appropriate situations. However, if the desired task 
behavior does not very closely match the method's 
behavior, it can be quite difficult to force the task to fit the 
method. The key point here is that PSCM provides the 

flexibility to either use methods or not, depending on 
which is most appropriate in a given situation. TAQL does 
provide a set of methods, which can be used when 
appropriate. However, only one situation occurs in R l -
TAQL where the use of a method (limited depth-first 
search) is more appropriate than a customized set of 
components. An important result of our work is that the 
nature of the PSCM operationalization processes facilitates 
the selection of appropriate sets of these customized 
components. 

6. Conclusions 
This paper has exhibited a computational model and 
associated formal language for which the processes of 
operationalizing naturally-expressed expert system task 
knowledge are quite simple, in particular avoiding method-
design while having a quite general scope. Our explicit 
focus on the processes that transform from the task domain 
to the computation domain is a departure from much of the 
expert system specification literature. Many efforts are 

626 Machine Learning 



involved wi th the invention of new formal languages and 
the description of the processes, sometimes quite complex, 
by which those languages are reduced to some previously-
known operational computing system (for example, GIST 
(London & Feather, 1982) and KEE (Filman, 1988)). 
While such work is both interesting and useful, it is often 
left to the reader's intuition to see why it might be easier to 
use the new language rather than some existing language. 
Our study of the processes that construct T A Q L 
specifications from an informal English description of task 
knowledge is an attempt to articulate these intuitions for a 
particular computational model (PSCM). 

Our future work w i l l proceed along two paths. First, we 
plan to build a tool that helps a knowledge engineer carry 
out the PSCM operationalization processes. The 
knowledge engineer w i l l bring natural English descriptions 
of task knowledge to the tool. The tool w i l l help select and 
apply appropriate iastances of the identification, 
representation, and communication processes, ultimately 
producing a T A Q L implementation of the task. We wi l l 
evaluate the effectiveness of our tool with respect to 
existing tools over a wide range of tasks. 

We do not believe it wi l l be possible in the near future to 
fully automate operationalization in a general-purpose 
expert system development tool, and we wi l l not attempt 
this. The language skills required are well beyond the state 
of the art. Many research effort resolve this problem by 
l imit ing the generality of the tool. We take a different 
approach. Our tool w i l l leave the language skills with a 
human knowledge engineer, who can perform them 
routinely. We focus instead on the aspect of 
operationalization people find most diff icult: mapping 
knowledge from task domain terms to computational 
terms. The PSCM operationalization processes that have 
been the focus of this paper seem sufficiently l imited that a 
computer can provide strong guidance in their application. 

The second path we intend to explore is more 
theoretical. Now that we have some understanding of the 
operationalization processes for T A Q L , we want to 
discover what aspects of the underlying computational 
model determine the simplicity of these processes. As 
discussed in Section 5, that PSCM does not require 
method-design is one such aspect. However, there are 
surely others we have not yet identified. We also want to 
explore whether the processes we have identified apply to 
tasks substantially larger than the unibus configuration 
task, and, if not, we want to explore what higher levels of 
organization might be required for large tasks. 

Acknowledgments 
We wish to thank Amy Unruh, for rewriting much of R l -
Soar to correspond to our English description of the task; 
Erik Altmann, Thad Polk, and Mi l ind Tambe, three T A Q L 
users who have provided much valuable feedback; Paul 
Rosenbloom, for his comments on earlier drafts of this 
paper; and John McDermott for helping us understand the 
Rl task, for his insights into the nature of the expert 
systems development, and for his continued assistance. 

References 
Bachant, J. (1988). RIME: Preliminary w o r k toward a 

knowledge-acquisition tool. In Marcus, S. (Ed.), 
Automating Knowledge Acquisition for Expert 
Systems. Boston, M A : Kluwer Academic 
Publishers. 

Clancey, W. (1983). The advantages of abstract control 
knowledge in expert system design. Proceedings of 
the Third National Conference on Artificial 
Intelligence. Washington, D.C.. 

Filman, R. E. (1988). Reasoning with words and truth 
maintenance in a knowledge-based programming 
environment. Communications of the ACM, 57(4), 
382-401. 

Forgy, C. L. (July 1981). OPS5 user's manual (Tech. Rep. 
CMU-CS-81-135). Carnegie Mellon Univereity, 
Computer Science Department. 

Laird, J. E. (1986). Soar User's Manual: Version 4.0. 
Intelligent Systems Laboratory, Palo Alto Research 
Center, Xerox Corporation. 

Laird, J. E., Newell, A., and Rosenbloom, P. S. (1987). 
Soar: An architecture for general intelligence. 
Artificial Intelligence, 33(1), 1-64. 

London, P. and Feather, M. (1982). Implementing 
specification freedoms. Science of Computer 
Programming, 2(2), 91-131. 

McDermott, J. (1982). R l : A rule-based configurer of 
computer systems. Artificial Intelligence, 19(l), 
39-88. 

McDermott, J. (1988). Preliminary steps toward a 
taxonomy of problem-solving methods. In Marcus, 
S. (Ed.), Automating Knowledge Acquisition for 
Expert Systems. Boston, M A : Kluwer Academic 
Publishers. 

Rosenbloom, P. S., Laird, J. E., McDermott, J., Newell, A., 
and Orciuch, E. (1985). RI-Soar: An experiment in 
knowledge-intensive programming in a problem-
solving architecture. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 7(5), 561-569. 

Yost, G. R. (1988). T A Q L 2.0: Soar Task Acquisition 
Language User Manual. Computer Science 
Department, Carnegie Mellon University, October, 
1988. 

Yost and Newell 627 


