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Abstract 
While one can characterize deep and shallow models at a high 
level of abstraction and contrast their relative merits in a 
general way, this provides little direction for knowledge 
engineering. In particular, the field lacks a clear definition of 
'knowledge depth' and lacks guidelines regarding the 
appropriate depth of models for a given application, in this 
paper we provide a very simple operational definition of 
knowledge depth' and use it to examine the opportunities for 
varying depth in Intelligent safety systems. The paper illustrates 
a domain-independent mode of analysis for examining 
progressively deeper models of expertise, and sketches some 
domain-specific guidelines for constructing intelligent safety 
systems. We draw upon examples from the domains of nuclear 
reactor management, chemical plant control, and management 
of computer installation operations. 
1. Introduction 
Several authors have noted the distinction between 'deep' and 
'shallow' models of expertise in expert systems (e.g., Hart 
1982, Chandrasekaran 1982, Fink 1985). By shallow models 
we usually mean that conclusions are drawn directly from 
observed facts that characterize a situation. An advantage of 
shallow models is that they directly encode the heuristics that 
experts use in performing their reasoning tasks, and are thus 
relatively easy to build. In addition, shallow models tend to be 
relatively efficient because they select rather than construct 
their solutions. One disadvantage of shallow models, however, 
is that explicitly stating all the preconditions under which a 
solution should be selected is an error prone process. Another 
weakness of shallow models is that they are inflexible, unable 
to deal with circumstances even slightly different from those 
explicitly anticipated (de Kleer & Brown 1984). In addition, 
shallow models may be difficult to maintain, since what is 
conceptually a single piece of knowledge may be 
unsystematically distributed across several objects in a 
knowledge base. Finally, explanations generated from shallow 
models tend to be limited to traces of the chains of inference 
that lead to conclusions. 

In contrast, deep models of expertise correspond more closely 
to the notion of reasoning from first principles. They tend to be 
more robust than shallow models, handling problems not 
explicitly anticipated and exhibiting higher performance at the 
periphery of their knowledge. In addition, it can be easier to 
verify the completeness of deep models. For example, in 
device-centered models of physical systems (e.g., de Kleer & 
Brown 1984, Davis 1984) each physical device maps directly 
into a structured object in the representation. Deep models of 
expertise are also more useful for generating explanations in 
that reasoning steps which are usually implicit in shallow 
models can be elucidated. Deep reasoning is, however, bound 
to be slower and more complex than shallow reasoning in that 
a more sophisticated controistructure is required (Koton 1985). 

Abstractly characterizing deep and shallow models contrast 
their relative merits in a general way provides little direction for 
knowledge engineering, in particular, the field lacks a definition 
of exactly what makes a model 'deep' and lacks guidelines 
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regarding the appropriate depth of models for a given 
application. We believe that such guidelines should be 
developed by abstracting from a large set of examples. In 
particular, we advocate the approach ot (I) adopting an Informal 
definition of 'knowledge depth', (II) isolating high-level 
reasoning tasks (e.g., diagnosis, simulation) for analysis, and 
(III) for each such reasoning task, contrasting the merits of 
models inspired by various domains which vary in their relative 
depth. 

In this paper we sketch such an analysis for a reasoning task 
called provide a safety function' (which is defined in section 3) 
in order to achieve two objectives: (I) To illustrate a domain-
independent mode of analysis for examining progressively 
deeper models, and (ii) To make the analysis available to those 
interested in building systems which provide safety functions. 
The paper is organized as follows. Section 2 provides a simple 
operational definition of 'depth' that is used in the ensuing 
analysis. In section 3 we define the reasoning task 'provide a 
safety function' and identify two subtasks which present 
opportunities for varying depth of reasoning, which are 
analyzed in sections 4 and 5. Our conclusions are presented in 
section 6. 
2. An operational definition of knowledge depth 
We need a simple relation that will distinguish the depth of 
models of expertise for a given reasoning task. Our focus is on 
the explicit representation of knowledge in models of expertise, 
although other notions of depth which highlight, for example, 
multiple perspectives on a domain (e.g., Davis 1984) or notions 
of causality (e.g., Rieger 1977) are also potentially valuable for 
this purpose. The following is intended only as an informal, 
operational definition of the deeper-than relation which leaves 
terms such as 'knowledge' and 'model' to intuition. 

Definition: Consider two models of expertise M and M'. 
We will say that M' is deeper-than M if there exists some 
implicit knowledge in M which is explicitly represented or 
computed in M\ 

The deeper-than relation is defined over an infinite space of 
models of expertise for a given reasoning task. In cases where 
a reasoning task is decomposed into isolated subtasks which 
present opportunities for varying depth, the relation is applied 
to subtasks rather than to the composite task. For example, 
consider a task t which may be naturally decomposed 'Into 
subtasks t1 and t2. We address the relative depth of models for 
these subtasks rather than for t, for if we build a model X and a 
deeper model X' for t1, and build a model Y and a deeper 
model Y' for t2, then the composite models for t consistina of 
{X,Y'} and {X',Y} are not strictly ordered by deeper-than. This 
occurs in intelligent safety systems as described in the next 
section. 
3. Intelligent safety systems and knowledge depth 
There has recently been great interest in intelligent systems 
that represent and reason about physical devices (Bobrow 
1985). One line of research concerns the development of 
facilities which provide advice or take direct action in response 
to system disturbances (e.g., Underwood 1982, Nelson 1982, 
Ennis 1986). Of these, we focus on systems which provide 
safety functions in physical systems. Providing a safety function 
involves executing plans which circumvent potential crises in 
physical system environments. 
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In nuclear power operations, this encompasses executing 'a 
group of actions that prevent melting of the reactor core or 
minimize radiation releases to the public' (Corcoran 1981). 
While the term 'safety function' originated in the context of 
nuclear facility management, we can Identify applications of the 
same idea in other domains, including preventing a chemical 
reactor in a process plant from catching fire, and preventing the 
depletion of operating system queue space in a large computer 
installation. Providing safety functions in such process 
environments may be considered an expert-level task, and we 
will refer to systems which employ models of expertise for 
providing safety functions as intelligent safety systems (ISS). 

Generally speaking, an ISS receives a description of the state 
of the system being controlled (the target system) as input and 
provides a plan of action for circumventing a crisis as output, 
Te work of an ISS may be naturally decomposed as follows: 
()) monitor target system state variables to detect potential 
crisis conditions and to ascertain the status of plant 
components, (ii) determine (possibly several) alternative plans 
for preventing a crisis (plan determination), (iii) evaluate these 
alternatives to select the best one (plan evaluation), and (iv) 
execute or display the chosen plan. 

Our first task in examining the relative merits of models which 
vary in depth for a given reasoning task is to identify 
opportunities for varying depth (in the sense of section 2) that 

Provide some potential advantages (in the sense of section 1). 
or ISS's, monitoring and execution are relatively 

straightforward operations, but plan determination and plan 
evaluation may be accomplished in a number of ways that vary 
in their relative depth of reasoning. The next step in the 
analysts involves defining and evaluating progressively deeper 
models for performing each of these subtasks. 
4. Reasoning depth In plan determination 
We examine four progressively deeper models that may be 
employed to determine plans to prevent a crisis: invoking hard-
coded plans, determining plans based on hard-coded paths of 
components, generating plans based on system structure, and 
generating plans based on system structure and component 
Behavior. 
4.1. Invoking hard-coded plans 
The shallowest model of expertise we consider involves hard-
coding plans for preventing a potential crisis under various 
conditions. This model is conveniently implemented in 
formalisms that encode situation-action pairs such as 
production rules. As an example, consider JESQ (Klein 1985), 
one of several rule-based systems that comprise YES/MVS 
(Ennis 1986), an expert system for managing large computer 
installations. JESQ's task is to maintain a Comfortable' level of 
unused space on an operating system queue, i.e., to provide 
the safety function 'prevent queue space depletion'. The 
antecedents of JESQ s rules describe the states under which 
the hard-coded plans in their consequents should be 
performed. For example, the rule in Figure 1 encodes the plan 
to enable a printer to print large jobs so that queue space may 
be freed. In effect it enables a path of data flow from the queue 
to the printer. 

These plans, which specify the movement of data from the 
queue to other components (e.g., tape drives, printers), are 
based on the structure of the underlying computer system 
being modelled, but this structure is only implicitly represented 
in JESQ. As such, JESQ suffers from some of the 
disadvantages of shallow models. For example, the 
configuration of the computer system may be changed, 
requiring modifications to this and other rules, but there is no 

systematic way of identifying such modifications. In addition, 
JESQ's rules may omit reference to conditions in the computer 
system which do not usually occur, but which occasionally 
render encoded plans unsuccessful. Another limitation of the 
system is that explanations can offer little more than a 
presentation of the conditions under which plans are 
applicable. Finally, JESQ can handle only precisely those state 
conditions that have been anticipated. 

According to our definition, a deeper model would explicitly 
represent the potential paths of data flow, although deeper 
does not necessarily imply better. For example, if configuration 
changes are unlikely or if the encoded preconditions are 
appropriate most of the time and are of manageable volume, 
the benefits of a deeper model of plan determination expertise 
might not justify the cost of its construction or the overhead of 
its execution. 
4.2. Determining plans from hard-coded paths 
The next model to be considered involves explicitly 
representing sets of components which may be employed to 
provide a safety function. This approach is taken in REACTOR 
(Nelson 1982), which provides safety functions in a nuclear 
reactor facility. 

Potential paths of components that can be used to cool the 
reactor core are encoded in a response tree as shown in Figure 
2. Each path in the tree contains an instance of each of the 
functional components required to provide the safety function 
(e.g. water source, heat sink). Part of REACTOR'S mission is to 
select, in real time, a path composed of components that are 
correctly operating. 

Figure 2: Response tree (Nelson 1982) 

The primary advantage of this approach Is its robustness. Not 
all potential combinations of component failures need be 
explicitly anticipated, since these are coordinated by the 
response tree structure and associated logic. Another 
advantage is that a change to the configuration is more easily 
mapped into the representation, since paths of components are 
explicitly represented. Still implicit however, is the 
configuration description from which response trees are 
constructed. Since the response tree is hard-coded, only those 
potential paths of components explicitly identified in advance 
are candidates for selection, and configuration changes require 
that the resulting new paths be identified by a knowledge 
engineer. A still deeper model would reason directly from a 
schematic to generate the potential paths. However, for 
applications in which the number of potential paths is 
manageable and the structure of the target system Is relatively 
stable, we might not be inclined to consider a deeper model. 
4.3. Generating plans from system structure 
The next model that we consider involves explicitly 
representing the configuration of the target system and using 
this description to generate plans for circumventing a potential 
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crisis. As an example, we again refer to JESQ's domain 
(section 4.1) as cast in the structural representation of Figure 3. 
Using this model, plan determination adopts the form of 
searching a graph in which nodes represent components and 
edges represent their interconnections. The search always 
begins at node QUEUE and terminates at node USER, and 
each such path through the graph represents a candidate path 
through which datasets may flow in order to clear the QUEUE. 

Figure 3: Structural model of computer installation 

This representation has the advantage that a change in the 
configuration may be directly mapped into a change in the 
representation, and the knowledge about computing plans for 
moving datasets (searching the graph) remains unchanged. It 
is also more portable than the other representations, requiring 
only a configuration description for any particular installation. 
This model is deeper than the rules of section 4.1 which only 
implicitly represent the queue-clearing paths. This model is also 
deeper than the response trees of section 4.2 because we 
have hard-coded the mechanism by which paths are generated 
rather than the paths themselves. 

The queue space domain permits the convenience of uniformly 
treating each represented device in the system, because each 
device is capable of accepting and storing data. In domains 
that encompass devices whicn do not exhibit this behavioral 
homogeneity, however, we would require a still deeper model 
in order to generate plans. Specifically, we would need to 
explicitly reason about the behavior of components, since not 
all components would play the same functional role in providing 
a safety function. A similar point is made by Ginsberg (1984) 
regarding diagnostic systems. 
4.4. Generating plans from system structure and 

behavior 
The deepest model of plan determination we consider is based 
on an explicit representation of target system structure and 
component behavior. This approach is taken in several 
systems that perform other reasoning tasks such as simulation 
(de Kleer & Brown 1984), troubleshooting (Davis 1984), and 
verification (Barrow 1984). 

As an example of reasoning from structure and behavior to 
provide a safety function, consider the following hypothetical 
ISS. Using a spatial representation as in Figure 4 
(Stephanopoulous 1984) and descriptions of component 
behaviors, the ISS generates alternative plans for keeping the 
reactor (RXR1) from catching fire when components fail. For 
example, if the valve (V3) that regulates the coolant flowing to 
the reactor jacket becomes stuck closed, the ISS searches for 

a compensating action to lower the temperature of the reactor. 
The search proceeds both forward and backward from the 
reactor to yield the following alternative plans: close V4. close 
V5, request A to stop feed stream, request A to lower feed 
stream temperature, request cool temperature material from 
the heating system, ana request the heating system to stop. 
For example, the ISS identifies the action close V4' as follows. 
The feedstream input to RXR1 must be such that the 
temperature of RXR1 is normal. Since V3 is stuck closed, the 
ISS must reduce either the temperature or the flow rate of the 
feedstream. Searching backward from RXR1, the ISS 
examines the behavioral model of valve V4, noting that in state 
CLOSED the flow rate from the valve is zero. The ISS searches 
a list of potential actions to find that action 'close valve' causes 
V4 to enter state CLOSED. Thus, the plan 'close V4' is a 
candidate for execution to be assessed by the plan evaluation 
process. 

Figure 4: Chemical reactor subsystem (Stephanopoulos 84) 

These components (heat exchangers, reactor, valves) are not 
behaviorally homogeneous, so reasoning about how to 
maintain a safe temperature in the reactor must encompass 
consideration of the individual behaviors of the components 
that impact it, as well as their position in the system structure. 
This model is deeper than the solely structural model of 4.3 in 
that the behavior of components is explicitly represented and 
reasoned about. 
5. Varying depth of reasoning in plan evaluation 
Given a set of alternative plans for providing a given safety 
function in a particular situation, plan evaluation involves 
selecting the 'best' one. We discuss three significant levels of 
depth for evaluating alternative plans: hard-coded evaluation 
(explicit priorities), evaluation using utility theory and hard-
coded decision attributes (computation of priorities), and 
evaluation using utility theory and decision attributes which are 
themselves computed from a structural and behavioral model 
of the target system (computation of priorities and of underlying 
attributes). 
5.1. Evaluations encoded as priorities 
The shallowest representation of plan evaluation that we 
consider is the hard-coded numeric priority. This is a 
commonly employed approach; For example, a priority is 
associated with each rule in JESQ and with each path in the 
response tree in REACTOR to provide for choosing the best 
when more than one are applicable. 

In rule-based systems like JESQ, priorities specify relative 
preferences to conflict resolution. The antecedent of a rule 
determines the eligibility of the plan in its consequent and the 
rule's associated priority indicates its desirability relative to 
other plans. Note that all objectives underlying the desirability 
of a plan (e.g., minimizing cost, maximizing convenience, 
maximizing the satisfaction of system users, maximizing speed) 
are implicitly represented in the priority, and this gives rise to 
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several difficulties. 

First, as the rule base grows it becomes difficult to predict the 
consequences of adding new rules to the knowledge base. In 
effect, the knowledge engineer must understand tne basis for 
the priorities of all existing rules in order to assign a new priority 
to a new rule. Second, the meaning of a priority is completely 
opaque, so there exists no basis for justifying a priority in an 
explanation. Finally, a system that uses this shallow model of 
choice will lack robustness. Because great importance is 
placed on a single heuristically justified symbol, the result of 
changing the priority of a single rule can significantly alter the 
overall behavior of an ISS. 

This model of plan evaluation suffices when the number of 
plans is small and the relative desirability of each plan is 
obvious. For applications not sharing these characteristics, 
deeper models which explicitly represent the factors underlying 
priority selection may be useful for automatically justifying a 
choice among competing plans in an explanation and for 
facilitating the incremental modification of the knowledge base. 
5.2. Utility theory with encoded objective values 
The next model to be examined involves explicitly representing 
the attributes and objectives underlying priority selection in the 
framework of utility theory. Multiattribute utility theory (Keeney 
& Raiffa 1976. Hansen 1983) is of particular interest in the 
domains of intelligent safety systems, where multiple, often 
mutually competitive objectives drive choices between 
competing plans. Under this approach, we regard each plan's 
charactenstics with respect to each of the objectives which 
underlie plan evaluation as arguments to a utility function which 
computes the priority for each plan. The utility function itself 
abstractly captures tne relationships between objectives which 
underlie the choice of plan, and can be thought of as encoding 
the plant's operational policy. 

Employing an explicit model of choice based on utility theory 
has several advantages over implicit models such as hard-
coded priorities. First, since the underlying objectives of plan 
evaluation are explicitly represented, a basis is provided for 
generating explanations regarding choices among competing 
plans. In addition, adding plans to the knowledge base is 
simplified in that the knowledge engineer need only score a 
new plan with respect to the defined objectives. Wnere such 
scores are reasonably easy to formulate, this second level of 
depth suffices for plan evaluation. However, in applications 
where scores for objectives encompass consideration of the 
behaviors of large sets of components, formulating scores may 
be difficult, encouraging a greater level of depth. Specifically, 
we may wish to reason about (or compute) the scores for 
objectives rather than assign them. In applications which 
employ a model of plan determination which actually generates 
plans (e.g.. those of sections 4.3 and 4.4), a deeper model of 
plan evaluation will be required, for there will be no way to 
assign scores in advance to plans which are constructed during 
problem solving. 
5.3. Utility theory with computed objective values 
The deepest model of plan evaluation that we consider for 
ISS's involves computing the scores for underlying objectives 
that are input to the utility function. This may be accomplished 
by formulating another set of (hard-coded) data from which 
objective values may be computed for each plan. In 
applications which employ a model of plan determination which 
actually generates plans, we would use the same 
representation of the target system to support both plan 
determination and evaluation. For example, consider 
augmenting the spatial description of the computer system of 
Figure 3 with component descriptions (e.g.. processing time per 
line of data) pertaining to the objectives mentioned in section 
5.1 (e.g., maximize user satisfaction). A plan (path of devices) 
can be evaluated with respect to turnaround time (one aspect 
of user satisfaction) by summing the processing times of the 
processors that lie along the generated path. Other objectives 
(e.g., speed of action, work for the operator) would be similarly 
computed. 

This model of evaluation is deeper than that of 5.2 because 
rather than encoding the values for objectives, we encode 
functions for computing them. One advantage of this method is 
that we need only supply local device-dependent data for each 
represented device in order to compute the desirability of 
actions, rather than making subjective judgements about the 
desirability of predefined paths. 
6. Summery and conclusions 
We have characterized the depth of models of expertise in 
terms of the knowledge they explicitly represent and reason 
about. For the reasoning task 'provide a safety function', we 
identified two subtasks which provide opportunities for building 
progressively deeper models of knowledge, described some 
particular models for performing each subtask, and reviewed 
their relative merits for some particular domains. 

If knowledge engineering is to become more of a discipline 
than an art. we will need to develop some guidelines which 
more precisely characterize 'depth of knowledge' and its 
implications for intelligent system construction, performance, 
and maintenance. Ultimately, the guidelines would provide a 
basis for selecting among models of varying depth based on 
general domain characteristics. We believe that such 
guidelines should be developed by circumscribing isolated 
reasoning tasks and analyzing the relative merits of models of 
varying depth inspired 6y various domains, and we have 
sketched one such analysis in this paper. Future work will 
involve employing alternative definitions of depth in the analysis 
and analyzing other reasoning tasks to provide the data upon 
which the mentioned guidelines may be based. 
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