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Abstract: 
In this paper we analyse how noise can affect Knowledge 
Acquisition from a Machine Learning perspective. We present some 
methods to detect and treat noise that goes beyond modulating 
numerical coefficients and show that noise cannot be viewed as a 
single entity. There are several different types of noise and noise is 
not only wrong information. 

I. INTRODUCTION 

Formalizing the knowledge needed to solve a real 
world problem is far from being a trivial task. As noted 
in (Clancey, 1986) (Mc Dermott, 1986), Knowledge 
Acquisition (KA) is not the process of transfering a 
mental model that lies somewhere within the brain of a 
human expert, but the familiar scientific and 
engineering problem of formalizing a domain for the 
first time. 

The classical methods to achieve this result is based 
on the domain expert's ability to explain his (or her) 
behavior: 
- a knowledge engineer interview the expert and 
attempts to formalize his knowledge 
- the expert himself is trained to construct a computable 
model that is extentionally equivalent to his own model 

This is usually a cumbersome process because human 
experts are trained to solve a task and not to explain 
how they obtained the solution. Furthermore, the final 
model frequently contain bugs and is only 
representative of that specific expert (two different 
experts almost never agree on what should go in the 
knowledge base). This causes several problems in 
particular those connected with the system's 
maintenance. 

An alternative to the traditionnal methods is to use 
Machine Learning (ML) tools. From a set of examples 
of expertise, the learning system automatically 
constructs the rules. Several experiments have shown 
that very good results can be obtained this way (see for 
instance (Michalski & Chilauski, 1980) (Quintan, 
1986)). These techniques partially solve the problem of 
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getting the expert to formalize his rules. However, the 
expert still plays a critical role since he must provide 
the vocabulary needed to describe the events (the 

language of description), the domain specific 
properties (valid axioms and constraints, default and 
common sense knowledge and so on), and that he 
must validate (or even provide) the set of training 
examples. 

In a real application, the data given to the system by the 
expert (whether it is obtained manually or 
automatically) contains noise (wrong information, lack 
of information, unreliable information). We view noise 
as a critical problem that must be solved to build an 
accurate Knowledge Base. 

The traditional approach to handling noise consist in 
attaching numerical coefficients such as certainty 
factors (Buchanan & Shortlife 84) to the rules. 
However, we feel that this approach does not solve all 
the problems relating to noise and that it generates 
some new ones (for example, it is difficult for a human 
expert to relate to a large set of such rules and to 
generate or validate these). 

In this paper, we examin different types of noise, which 
affect KA at different steps and which yield different 
procedures of detection and treatment.. Some methods 
developed here are common to both traditional and 
automatic KA techniques (for example cross-
examination of expertise) but we actually studied how 
noise affects KA from a ML perspective. The ML tools 
that are used for this research are the decision-tree 
maker NEDDIE (Corlett, 1983) and the generalizer 
MAGGY (Manago, 1986). These are respectively 
descendants of the algorithms ID3 (Quinlan, 1983) and 
AGAPE (Kodratoff & Ganascia, 1986). 

The material presented in this paper is based on a 
research project which aims at automatically building a 
Knowledge Base to diagnose tomato plant diseases 
and to compare the result with an existing Knowledge 
Base that contains over 350 rules (this work started in 
October 1985 and is done in collaboration with the 
British Research Laboratory of the General Electric 
Company, the French company Cognitech and the 
French "Institut National de Recherche en Agronomie"). 
The example base contains observed examples and 
expert generated examples. 
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We are currently studying another large scale 
application, air traffic control, and the preliminary 
results brought a few contributions to this paper. A case 
library is currently being built (work started in October 
1986) in collaboration with the "Centre d'Etudes de la 
Navigation A6rienne": by looking at a radar picture, the 
human expert describes what he sees and explains his 
behavior. Some of the material presented here was 
and is still being tested on a smaller application in law. 
The examples come from the outcome of 57 cases in a 
court of law, that describe the legal actions and the 
duties of the mayor of a city (work started in fall 1986). 

II. GETTING THE INITIAL KNOWLEDGE 

Knowledge located at different levels must be obtained 
from the human experts (Alexander et al, 1986). In this 
paper, we have divided the KA process into the 
following three steps: 

1) Expert Interaction + Literature on the domain 
2) Concept formation from examples (learning full 
descriptions of the high/intermediary level concepts) 
3) Rule learning (learning diagnostic rules and meta­
knowledge) 

The last two use the ML tools.The reasons for going 
through the second stage will be explained in section 
II.A.2. Most of the methods that we will describe for 
detecting and treating noise rely heavily on the ability 
to go back and forth between the first and second 
components. 

Note that we call concept a function f that partition the 
space of instances into the instances that verify the 
function (the set of instances whose image is TRUE) 
and those that do not. A low level concept is the basic 
building block (for instance the symptoms), a high level 
concept is what we are trying to learn (for example the 
diseases) and an intermediary level concept is 
something in between that is "interesting" (for example, 
the diseases caused by a fungus). It is important to 
emphasize that there is an intentional component in a 
concept (its purpose). 

We will not describe in details the second step (see 
(Kodratoff & al, 1986) (Manago & Kodratoff, 1987)). The 
basic idea is to grow a decision tree with NEDDIE and 
to generalize the clusters with MAGGY to obtain full 
descriptions of the concepts. The resulting system is 
then model-driven which makes it more robust with 
respect to noise (Fu, 1985). 

II.A. INTERACTION WITH THE EXPERTS 

II.A.1. Getting the Initial Vocabulary 

There is no universal method to obtain the initial 
vocabulary. The descriptors can be collected bv 
searching the literature, by interviewing an expert 
(Regoczei & Plantinga, 1986) and so on. In our 
application (plant pathology) we started with an 

existing expert system which was built by an expert and 
we asked another expert to filter off the irrelevant 
(noisy) descriptors. A descriptor like BIRD-EYE-SPOT 
was converted into "two round spots, the darkest one 
in the center of the other. 

Cross-examination between several sources of 
knowledge for fighting noise will come up several times 
in this paper. This is similar to a technique used in 
picture analysis (computer vision, signal processing) to 
filter noisy pixels. Two pictures are taken and AND-ed 
together to remove false pixels or OR-ed together to fill 
missing pixels. We take a "picture" of the domain with 
an expert and compare it with "pictures" taken by other 
experts and/or by the persons who will use the expert 
system. 

The choice of descriptors depends on the underlying 
logic used by the system. To represent the examples 
and the rules we use a unit-based first order logic 
language (Nilsson 1984, Chapter 9.1). First order logic 
enables using low-level concepts such as RED and 
FRUIT. Intermediate concepts such as FRUIT(x) & 
RED(x) will not be represented as RED-FRUIT(x) 
unless it is "interesting" (symbolizing switchover points 
(Fu & Buchanan, 1985) or intermediary subgoals 
(Kodratoff et al, 1986)). As noted in (Clancey, 1983) 
"intermediate knowledge provides better explanations 
capabilities for the system and thereby increase the 
understandability for the user. Nevertheless, we 
emphasize the use of low-level concepts to enable 
communication and cross-examination between 
different experts. It also removes some of the initial bias 
introduced by the expert who provided the language of 
description (Utgoff, 1986). 

The choice of what is a constant and what is a 
predicate is usually independant of the application. 
When there is only one person named MARY in the 
universe, MARY can be a constant. If there are several 
persons. The choice of the low-level concepts (or 
primitives) varies from one application to the other even 
in the same domain. For example, in the world of 
blocks, if the application is to move blocks around as in 
SHRDLU (Winograd, 1972), CUBE is a valid primitive. 
On the other hand, if in the system is to perform 
analysis of visual scenes in that same world of blocks 
the concept of CUBE will be described in term of 
concave/convex interior/boundary lines (Waltz , 1975) 
etc... Identifying low-level concepts can be fairly difficult 
(in our ai-traffic control application the expert has a 
hard time describing the knowledge contained in the 
radar picture even in natural language). 

The initial choice of primitives to represent knowledge 
is necessarily ad hoc (Schank & Carbonell, 1979). 
Thus the choice of descriptors is never considered as 
final and is modified depending on the results. We are 
very sensitive to the importance of a good set of 
descriptors and its relation to noisy data. A good choice 
of descriptors enables all things to be said cleanly 
(Hayes, 1984) and lot of problems connected to noise 
can be solved by improving the language of 
description. In these cases, using numeric uncertainty 

Manago and Kodratoff 349 



is not appropriate. 

I I .A.2. O b j e c t - L e v e l K n o w l e d g e 

During stept we also obtain some domain specific 
knowledge (a model). This is: 

- generic objects (all fruits have a color, a size, a texture 
etc...) 
- default properties (leaves are normally green) 
- relations between objects that always hold (a leaf is 
part of the plant, yellow is a light color) 
- axioms (if there are a lot of spots on a leaf, then the 
size of the spots must be small) 

There are various ways to represent background 
knowledge. We have chosen to encode it using a 
frame-based language. For example, the frame-unit 
LEAVES has a slot COLOR filled with ($DEFAULT 
(GREEN)). This property may be inherited by a specific 
instance of that frame (or an ISA descendant) when 
information is missing (noise). Slot fillers may be 
simple attributes or procedural calls (deamons). For 
example, the COLOR slot of the TOMATO-FRUIT frame-
unit is filled with an $IF-NEEDED deamon: 
-If the fruit is young, the procedure returns green 
• if it is mature it returns red. 
We have implemented all axioms as deamons to 
deduce missing low-level concepts (noise). Axioms 
could also be implemented as constraints (if the color 
of the fruit is not red, then the fruit is not mature) to 
detect wrong information (noise) when a constraint is 
violated. We have not yet implemented this in the 
system. 

Then we must obtain the training example base. This is 
achieved by filling up questionnaires. The information 
contained in these can then be generalized to produce 
characteristic descriptions (full descriptions) of the 
concepts. 

I I .A.3. U s i n g c h a r a c t e r i s t i c d e s c r i p t i o n s 

In terms of Version Space (Mitchell, 1985), a 
consultation rule is a generalization in the G set: or set 
of most general consistent generalizations. A lul l 
description is a generalization in the S set or the set of 
most specific generalizations that cover all the positive 
examples. In perfect domains, the positive examples 
exactly represent the sufficient conditions for belonging 
to a concept and the negative examples the necessary 
conditions. Thus, the G and S sets meet when all 
examples are processed. As noted in (Wittgenstein, 
1953) (Fu & Buchanan, 1985), this almost never occur 
with natural concepts. As a consequence, there is a 
"gap" , the Version Space is not empty. We view the 
lack of training examples as a very important kind of 
noise in ML 

High-level concepts are not merely descriptions of the 
information provided by the training examples but they 
also have a predictive power for classifying unseen 
events. When the unseen event is less general than the 
complete description (for instance, the event "yellow 

spot on leaves" is less general than "symptom on 
leaves") then using full descriptions or consultation 
rules will yield the same results. When the unseen 
event is in the Version Space (i.e. more general than 
the full descriptions and less general than the 
consultation rules) then by using full descriptions the 
system will not be able to classify it , but if it uses 
consultation rules it will. This is not a positive feature 
since we do not have any information on what the class 
of that event might be. There can even be conflicting 
consultation rules that all claim the event. 

A solution is to use full descriptions (or use consultation 
rules and check if the answer matches a full 
description) and to learn incrementally when an event 
is not recognized (as done in the Version Space 
method). The expert is asked afterward for the class of 
the event and the system updates its set of full 
descriptions in order to recognize similar events in the 
future. Note that on the long run the result will not be as 
good as the ones obtained by processing the example 
base in one shot and will depend on the order in which 
the events are presented. 

Another problem for ML tools with generalizing 
consultation rules and/or cross-examination of such 
rules, is that they implicitly contain strategies in the form 
of intermediary subgoals. Consider the following 
example where the system recognizes vehicles such 
as CARS, MOTORCYCLES and BICYCLES. 

Expert 1 Experl 2 

Fig. 1: Two decision trees to classify vehicles 

Two experts build the decision tress of fig. 1 or give the 
equivalent production rules representation (Corlet, 
1983) (Quinlqn, 1986). The two experts have different 
strategies. One prefer to first find if the vehicle belongs 
to the class "vehicle with an engine" and the other to 
the class "vehicle with two wheels". There are various 
reasons why their strategy may differ (for instance one 
of them could live in Pekin where there are a lot more 
bicycles than cars). Both sets of rules are correct and 
usable by an expert system but from a learning point of 
view, there are no relevant similarities among these. 

The problem with consultation rules, is that they contain 
a single explanation (chain of reasoning) of why an 
element belongs to a certain class. Since there can be 
several other valid explanations, two experts may come 
up with different ones. If the system is to learn from 
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rules given by different experts, each one must provide 
full descriptions of the concept. Intermediate 
knowledge and strategies are then represented 
explicitely. 

For instance, a full description of the concept car, is "a 
colored vehicle with four wheels, which weights 
between 1000 lbs and 4000 lbs, which has a 
windshield, an engine, a rear view mirror, a hood and 
soon 

Full description contain all the information that is 
common to the positive examples (or to the clusters of 
positive examlples) but they are generalized 
descriptions. The system does not need to memorize 
all the examples encountered as it is the case in the 
exemplar theory (Smith & Medin, 1981). 

From the set of full descriptions, it is possible to 
dynamically grow alternative decision trees when a 
user is not able to answer a question (noise). For 
example, what if the user does not know whether or not 
there was an engine in the first decision tree? The 
system could then grow the second tree an find another 
path leading to the solution. 

The usual way of dealing with the problems mentioned 
above is to attach certainty factors to each 
characteristics. For example, we would have rules 
such as DOOR IMPLY CAR (OF .76), TRUCK (CF 4) 
and so on. However this is not always the optimal 
solution considering that: 
- We have to find methods to combine these rules. This 
is not easy when the independance assumption does 
not hold (when low level concepts can be related). For 
example, if the rule DOOR-HANDLE IMPLY CAR (CF 
.76), TRUCK (CF .4) is fired after the previous one, it 
sould not modify the state of the consultation. 
- When an unseen event is located in the Version 
Space, the result of the consulation is as meaningless 
as if the system would have used flat consultation rules. 
However, since there is some uncertainty associated 
with the conclusion, the problem is hidden. 
- When the statistical information brought by the 
example base is irrelevant (as it is the case when we 
ask for experts full descriptions) the CF cannot be 
properly computed. Even with a true case library, the 
statistical data can vary over time or changed when 
moved in a different environment. 

We now study how noise affects the training examples 
and the full descriptions of the concepts. 

I I I . N O I S E I N A R U L E B A S E 

Noise is present in a knowledge base when it does not 
truly reflect the environment we want to learn from.We 
define noise as being: 

- Erroneous information 
- Missing information and bad language of description 
- Unreliable data 

There are different sources of noise, different effects of 
noise and different kinds of noise. Hence, it is rather 
difficult to speak about noise as a single entity. Note 
that we are not concerned with noise in the expert's 
strategies (expert wondering off on the wrong track) 
since we are interested in full descriptions. 

There are two separated issues which are: 
- forming concepts (learning full descriptions) when the 
training data contains noise 
- generating high-level concepts that are robust with 
respect to noise. 

III.A. Unre l i ab le i n f o r m a t i o n 

In III.A., we assume in that the examples are correct 
and that the noise does not originate from the language 
of description. Unreliable data is noise that naturally 
originates from the low-level concepts themselves. We 
have identified several kinds: 

1.a) Concept Is hard to see. 
For instance, a discriminating feature of "Colletotrichum 
coccodes" is the presence of tiny black marks on the 
roots, less than one millimiter in size which are hard to 
see and often missed during consultation. 

1.b) Concept polymorphy (symbolic noise) 
This happen when two low-level concepts have a non-
empty intersection and may be confused. For example, 
when does dark grey stops being grey to become 
black? 

1c) Concept requires a high skill of expertise 
to be Identified 

While an expert is not likely to confuse a brown spot 
with a rotting tissue, an unskilled user is. Note that 
experts usually know when to carefully look for noisy 
concepts of type 1.a or 1.b and that noise in these 
categories often falls into category 1 .c. 

We can detect noisy concepts of the type 1 .a, 1 .b by 
cross-examination of information given by several 
experts. When experts disagree on the value to give to 
a specific descriptor, then the associated concept is 
probably unreliable. Likewise, if the experts and the 
users disagree, then the concepts probably require skill 
to be identified. This is why we ask both experts and 
users to fill up the questionnaires and we compare the 
results. In the questionnaires, experts are also asked to 
evaluate how noisy the low level concept are (very 
reliable, reliable, not reliable). 

1.d) Concept is costly to Identify 
When a concept is costly, we cannot rely on the fact 
that the information will be given. For example, if some 
information on the state of the roots is requested, then 
the plant must be killed to get the information. Cost 
could also be associated time elapsed to obtain the 
information (in air-traffic control, the expert system must 
take decision before the planes crash into each others) 
and so on. The cost of performing a test is given by the 
expert in the questionnaires. 
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1.e) Uncertainty in the measure of an attribute 
When testing numerical parameters, the measuring 
instrument might not be 100 % accurate. The system 
should not rely on the outcome of a test like "ls A<B" 
when A is in the neighborood of B (Zucker. 1978V 
Clearly, when A gets close to B, we do not want to rely 
heavily on the outcome of the test. A solution is to 

. replace the test "A<B" by the two tests "A<B-A" and 
"A>B+A" where A is given by the expert and ignore the 
outcome of the test when A is within A of B. 

The fundamental idea to treat unreliable data is to 
delay testing the concept. As a consequence, the noisy 
tests are performed lower down in the decision tree 
(and their influence is limited) or not performed at all 
when there are other alternative tests. Another way to 
treat this noise is to favor clusters where unreliable 
information is generalised. Thus, if in my clusters I have 
brown spots and brown necrosis (polymorphic low-
level concepts), the characteristic description of the 
cluster will be brown symptom and it will not be noisy 
anymore. The result is that the final rules will be more 
robust in presence of unreliable information. 

It is often the case that noisy descriptors are important 
descriptors that allow discriminating between two 
similar high level concepts (polymorphy of high-level 
concepts). Nevertheless it happens thats sometimes 
the experts wants to show off and use concepts that are 
very difficult to identify to reach a conclusion while 
another one would have been simpler and equally 
good. Note that a common practice when using rules 
with numeric uncertainty is to lower the certainty factor 
of rules that contain unreliable premises and the expert 
does not trust the answer to the questions. Again, this 
hides the problem as opposed to solving it in a "clean" 
manner. 

V) Randomness of natural phenomena 

As surprising as it may sound, we do not consider this 
as being an important type of noise. Indeed, when 
learning from examples we assume that the real live 
case will occur in the training set and do not have to 
worry about this type of noise. 

III.B. Wrong information 
Wrong information is human introduced mistakes. We 
assume that it is not due to unreliable information. This 
can be: 

2.a) Giving the wrong value to a descriptor 
For example, the expert might be distracted when he 
write the description of an example 

2.b) Describing a class and at t r ibut ing the 
description to another 
This can occur for the same reasons as 2.a. However, 
the effect for the learning system will be much worse. 

2.c) Giving too many descriptors 
This can haDDen when our evpert uses bv mistake a 

plant which has several diseases as a reference for a 
specific disease. It can also happen when the plant 
presents natural imperfection with are not due to the 
disease and which are incorrectly identified as a 
symptom of the disease. Finally, it also happens 
because people mention concepts that are irrelevant 
for psychological reasons (Pazzani, 1986). 

This can introduce inconsistencies in the knowledge 
base in which case we can easily detect it and request 
that the expert solve the problem. Otherwise, errors in 
the positive examples will cause over-generalizations 
(Fu, 1985). 

A method to handle false positive and negative 
examples is to allow some uncertainty in the clusters 
or the rules. This numeric method has been succesfully 
used in RL (Fu, 1985) or by performing tree-pruning 
(Quinlan, 1986). In the last one, the error in 
classification introduced by tree pruning is lower than 
the error of trees that find total classifications. 

2.d) Noise in the background knowledge 
We are currently totally empty handed to detect or treat 
this type of noise. This might be detectable by 
analysing bad consultations (assuming we have a way 
of detecting bad consultations, which we do not). 

III.C. Incomplete information 
This can be: 

3a) Forgetting an example 
By asking examples to several experts, this problem 
will be reduced since it is unlikely that all the experts 
forget the same example. However, as we have seen in 
section II.B the system checks that the conclusion he 
obtain match a full description of a concept and learns 
incrementally if it does not. 

3.b) Forgetting a relevant descriptor 
This can happen because of lack of attention, the 
concept is naturally noisy (see IV.A.) or is a default 
value (this is solved by inheriting properties in our 
frames). It also happens that sometime people simply 
do not to mention relevant features for no apparent 
reasons (Pazzani, 1986). 
By using questionnaires, we push the experts to give 
all the information. 

3c) Giving a value for a descriptor which is too 
general 

This can be treated in a similar manner as when the 
expert forgets the descriptor 

3d) High level concept is "fuzzy" 
This can be caused by the fact that the outcome of a 
test which is needed in order to discriminate between 
some diseases is unknown (lack of information, high 
cost associated with a test as in 1 .d). 

For example, finding which virus causes a disease 
requires some lab tests. The results of these lab tests 
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will never be known by the person who uses the 
system. Hence, as far as the system is concerned, it will 
never be able to discriminate between different viral 
diseases. Our solution to the problem consists in 
collapsing the classes into a single one(VIRUS). 

3.e) Missing background knowledge 
This can be detected and treated when the experts 
review the characteristic descriptions that have been 
automatically generated. When they disagree with the 
generalization, they must explain why and usually this 
generates new axioms on the domain. 

3.f) Missing descriptors in the vocabulary 
Consider the following example: 

E1 : [x: <ISA PLANT> <AGE MATURE>] & [spotsl: <ISA 
SPOT> <NUMBER SEVERAL> <COLOR WHITE> 
<FORM CONCAVE>] & [fruitl <ISA FRUIT>] & [facel: 
<PART-OF fruit1> <IS EXPOSED-TO-SUN>] => 
SUNBURN 

E 2 : [x: <ISA PLANT> <AGE MATURE>] & [spotsl: <ISA 
SPOT> <NUMBER SEVERAL> <COLOR YELLOW> 
<FORM CONCAVE>] & [fruitl <ISA FRUIT>] & [facel: 
<PART-OF fruit1> <IS EXPOSED-TO-SUN>] => 
SUNBURN 

By climbing the generalization frame, one could 
conclude that a caracteristic description of SUNBURN 
is: there are light colored spots on the face of the fruit 
exposed to the sun. 

CE : [x: <ISA PLANT> <AGE MATURE>] & [spotsl: 
<ISA SPOT> <NUMBER SEVERAL> <COLOR GREY-
BEIGE> <EVOLUTE-INTO spots2> <FORM 
CONCAVE>] & [spots2: <ISA SPOTS> <COLOR 
BROWN>] & [fruitl <ISA FRUIT>] & [facel: <PART-OF 
fruitl> <IS EXPOSED-TO-SUN>] & [leavesl: <ISA 
LEAVES>] & [symptoml: <ISA SYMPTOM>] => 
NARCOSIS-OF-FRUIT-EXTREMITY 

Since grey-beige is also a light color, the negative 
example is covered. Let us assume that the origin of 
the problem is the generalization of the color attribute. 
One can solve this problem by introducing an 
intermediary level node G0001 in the frame such that 
WHITE and YELLOW are sons of G0001, G0001 is a 
son of LIGHT-COLOR and GREY-BEIGE is not a son of 
G0001. The generalization then becomes 
COLOR(G0001 ,spots1) which rejects the negative 
example. This is similar to RL symbolization of 
taxonomy points (Fu & Buchanan, 1985) and shift of 
bias (Utgoff, 1986). 

This might not be the optimal solution (try to find a 
meaning for G0001). The correct solution (obtained 
through interraction with the experts) is that WHITE and 
YELLOW belong to another frame which had been 
overlooked, the TRANSLUCENT frame. WHITE and 
YELLOW are not only colors but they also color loss 
(when exposed too long to the sun, the colors fade 

away and become translucent). While in some case 
one can clearly see that the white or yellow is a color 
and not a color loss (this means that the proceeding 
solution does not hold), in some other cases it is more 
difficult (in other word, we cannot introduce two new 
colors such as TRANSLUCENT-WHITE and 
TRANSLUCENT-YELLOW).Of course, multiple links of 
this sort generate problems for inheriting properties. 

In the present case (the SUNBURN disease), the fact 
there are no symptoms on leaves is also relevant while 
the fact that the color does not evolve into brown is 
not. The correct generalization will then be : there are 
translucent spots on the part of the fruits exposed to the 
sun and no symptoms on the leaves. 

IV. C O N C L U S I O N 

When learning from noisy data, it is often though that 
nothing but numerical coefficients can take into account 
this uncertainty. We do not claim that one should never 
use statistical information, but that: 

1) The symbolic approach to ML (for example the 
version space approach) may be usefull in noisy 
situation when noise comes from a lack of training 
examples 
2) Cross-examination of expertise and comparison of 
users'descriptions with experts'description can filter 
noise. 
3) finding good intermediary knowledge and 
knowledge representation, using domain specific 
knowledge, collecting examples by means of 
questionnaires can solve some types of noise 
4) delaying unreliable tests as much as possible in a 
decision tree when building a decision tree can 
generate robust rules. 
5) Each time noise is not of numeric nature, as 
presented in this paper, the introduction of coefficients 
may lead to some results but that these will not have 
any significance. 
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