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ABSTRACT

An inductive inference problem of context-free
languages is investigated. There have been many
attempts to this problem, and most of them are based on
a problem setting in which a representation space for
hypotheses is a class of context-free grammars. An
inference algorithm given in this paper , on the
contrary, employs a kind of extensions of regular
expressions called context-free expressions as a
representation space for context-free languages. The
algorithm, based on the notion of an identification in the
limit, is significantly concise when compared with
existing algorithms.

1. Introduction

We consider the following model of inductive
inference problem: Given an object L of inference, an
inductive inference device (lID) tries to infer a
representation H for the object from examples. It is
assumed that IID has an enumeration mechanism by
which any possible hypothesis from the representation
space can be eventually enumerated at least once. Itis
also assumed that we can utilize an oracle for
presenting examples concerning the object. 1ID asks
the oracle for an example, and computes hypothesis and
outputs it, and again asks another example for the next
step, and this process is cycled. In a sequence of
hypotheses Hq, H,,... IID is said to identify L in the limit
if there exists a positive integer n such that H,
represents L and H, +i equals to H, foralli>0.

A simple algorithm for identification in the limit is
the one based on the notion of identification by
enumeration. Let H{, H2,... be an effective enumeration
of the possible hypotheses, and suppose a set of examples
eq,ey,...,e¢ are presented. Then, ED provides as its next
output the first hypothesis which is compatible with all
these examples. Under the assumption of a perfect
oracle, the sequence of hypotheses converges in the
limit.([Gold 1967])

In this paper, we deal with the inductive inference
problem for context-free languages, and employ a
representation space for hypotheses different from the
ones in the existing methods. This enables us to make
an elegant discussion on the problem and to obtain a
simple algorithm for solving the problem.

2. Context-free Expressions —— Extended
Regular Expressions

The reader iz assumed to be familiar with the
rudiments in the formal language theory. (See, e.g.,
[Salomaa 1973) for definitions not mentioned here.)

For a given finite alphabet I, the set of all strings
with finite length ( including zero) is denoted by Z*, (An
empty string is denoted by &.} A language L over £ is a
subset of £*. For an infinite alphabet I', L is a language
over I'if Lis a language over some finite subset T of T,

The following operation plays a crucial role in this
paper.

Definilion 2.1 ({Gruska 1971])
(i) Let o be a symbol and Lj, Lg be languages, Then, o-
substitution of Lg into Ly , denoted by Ly 1 oLy is defined
as follows:
Ly 1oLz ={x1¥1 ~* Xkyuxk+1lx1 a- xxaxy +1€L1, o does
notoccur in the word xy - x4+ and y;j éLz for 1zisk}
(ii) Let o be s symbol and L be a language. Then, o-
iteration of L, denoted by Lo, isdefined by

Lo={x|x ¢LUL 1 oLUL { oL 1 ¢Lij--, and x has no

occurrence of o},

Remarks.
{1If L.; does not contain o, then Ly oLl =1,
{2)Lel L be o language over T and suppose that T does not conlain o.
Then, L* = (Le{ehe and L+ = (LouL)e.

We introduce the notion of a context-free expression
which provides the representation space for context-free
languages.

Definition 2.2([Gruska 1971))

Let T be a (possibly infinite} alphabet, I" be the

boldface version of T, i.e,I" ={o| 0€T}.
(i) A context-free expressions over I’ are strings over
Ul u{d, +.(,)} defined as follows:
(1) ¢ is a context-free expression,
(2}ifaisinI' U{e}, then a is a context-free expression,
(3)if E;, E are context-free expressions and o ¢T', then
(E1+Eg9), E1E2, (E1)o are context-free expressions,
(4) nothing else is a context-free expression.
(ii) A mapping | | from context-free expressions to a class
of languages is defined by:
(1) |$|=®(empty set)
(2} lal ={a} forva €T U{e}}
(3) [E1+Eol=|E{|U[Eg], [E1Eg|=|E1||E2|, [Eo|=[Elo.
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(iii) A classof languages Qpis defined as follows:
(M ®,{} € A,
(2)if @ € T, then {a}¢ QF,
(3) if L3, La € Qprand o, then LjULg, LiLg, and
L19¢Qr.
Example 2.1
Let ab, 0 be in T, then E=(acb+sab)s is a context-
free expression. Further, [E|=|(acb +ab)o|={acb, ab}o
={aibiliz1}.0
Now, the next result plays an important role in this
paper.
Theorem 2.1 ({Gruska 1971})
Let L be a finite alphabet, and let L be a language over
Z. Then, L is a context-free language if and only if there
exists a finite alphabet T such that ECT and L € QT
Therefore, we have the following characterization of
context-free languages in terms of context-free
expressions,
Theorem 2.2
Let T be a finite alphabet, and let L be a language over
I. Then, L is a context-free language if and only if there
exiats a finite alphabet T and a conitexi-free expression E
over T such that ICT and [E|= L.
Proof. Obvious from Theorem 2.1 and definitions.0

Thus, context-free expressions provide a way of
representing context-free languages, and as is shown
later, an inductive inference algorithm for context-free
languages is obtained by naturally extending the one
for regular sets in terms of regular expreesions.

3. Inductive Inference of Context-free
Languages
3.1 Inductive Inference Algorithm

In this paper, we formalize the inductive inference
problem for context-free languages as follows:

<Inductive Inference Problem for Context-free
Languages>

(1) a semantic domain D is the class of context-free
languages,

(2) a target dy is a given context-free language,

(3) e representation space §} is the class of context-free
expressions,

(4) an oracle EX() gives a complete presentation of dy ,
that is, for every e ¢ Q such that |e]Cdg, EX() eventually
returns "+¢" at least once, and for every e ¢ Q such that
lelgdo, EX() eventually returns “ —e " at least once.

Now, let Z be a finite alphabet over which a target
context-free language is defined. We fix an infinite
alphabet T' over which context-free expressions are
defined, where ZcI.( It is assumed that auxiliary
symbols *+", "(", and )" are not containedinT.)

We define an operator 8 on {, the set of all context-
free expressionsover I', as follows:

284 KNOWLEDGE ACQUISITION

Suppose E, E1, Eg are context-free expressions over I'. As
a notation, by E1—E3 we denote Ez ¢ 8(E,):

(L) p—dd

(2) p—u (va e['{e})

(3)¢—(d) o (voel)

(1) p—(d+d)

{(5)ifE)—E, then E1 +Ec—E+Ez and

Ez+E;—E3s+E
(8)ifEy—E, then Ejo—Eo (Yo<I)
(7)if E;—E, then E;E2—EE3 and EgE}—EgE,

Lemma 3.1

The operator § defined above has the following
properties:
(i) 8 is complete for the most specific expression ¢ in the
sense that the set 5*(d) of all expressions obtainable from
b in a finite number of applications of 8 includes at least
one expression for every context-free language.
(ii) For arbitrary expressions Ei, Es in 0, whenever
E1¢8(Ey), |Ez [C|E}| holds.
Proof. We prove by induction on the way of constructing
expressions in Definition 2.2. (i} It suffices to show that
Qc8*(d) holds, First, by the rewriting rule (2) above, we
have thata ¢ 8(¢) for va ¢T'U{e}. Now, suppose that Eq
and Eg are in 5%(). (In what follows, by —* we denote a
finite number of applications of —. Then,

$—~¢+¢ ( by (4) ) —* Ei+¢ (by applying (5)
together with the induction hypothesis)—*E|+Eg (by
applying (5) together with the induction hypothesis),
thus, we have E;+Ez ¢ 5*($), Similarly,
d—¢d ( by (1)) —* E14 (by applying (7) together

with the induction hypothesis)—*E;E2 (by applying (7)
together with the induction hypothesis),
hence we have E1Ez ¢ §%(¢). Further, ¢—Pp o ( by (3) )
and since $—*E|, by applying (8) repeatedly, we have ¢
o —*E10, hence ¢—"Ejo0,i.e. Ejo ¢ §%(3).
(ii) Since, from the rules {1)-(4), 8($)={¢d, ¢, d+¢, 0,
$a({voel)}, wehave thatforeachE ¢ 8(), $=|¢p|c|E].

Now, let E’ be in 8(E). Then, there are only three
cases concerning E.(Note that if E is in I'U{c}, then no
rule in § is applicable to E.)
O E=E;+Eg Let E; ¢ 8%E;)}i=1,2). Then, by the
induction hypothesis, |Ei|c [E;’| holds. Hence, by (5) |E|
=|{E1 +E2|= |Ejju[E2lc |Ey|U[E2]={E| or [E|= [E)+Eg|=
|E1| u |Eg| ¢ |E1|u]|E2}=|E"| is obtained.
@ E =EEz2; By the same hypothesis,
[E|= [E1Ez|= [E1| {EzlC [B1) [E2i= [E] or [E|= |E1Ez|= [E)
|Eglc |Ey| |[E2|= [E'| is obtained.
®E=E o(voel’); Let E;' € 5*(E)). Then, by the induction
hypothesis, |E1jc |Ey’| holds. Hence by (6), [Ej= [Ejo|=
|E1leclEyle = [E is obtained. This completes the proof.;3

Now, using the operator & defined above, we obtain
an algorithm for the inductive inference problem of
context-free languages, which is quite simple and based
on the principle of “identification by enumeration”.



Definitlon 3.1 (admissible presentation {Laird 1986])

(i) Let dp be a context-free language of target. An oracle
EX is called complete and sufficient for dg if there exists
a signed subset K of Q satisfying the following:

(1) the set (Eef)| for all e in K, if e is positive, then
lejc|E|, else [elz[E]} is exactly the set {E¢Q| [E| = do},

(2) for every ¢ ¢ K such that je/cdp, EX() eventually
returns “+e” at least once, and for every e ¢ K such that
lelgdo, EX() eventually returns " —e” at least once.

(ii} A presentation of examples of dg is admissible if it

has an oracle EX which is complete and sufficient for dg.
Nota. There exists such a K for our case, that is, if we take K us the
set {E€0 | [E] in a singleton , mnd if it is in dg, then E han a sign +,
otherwise it has a sign — }, then K salisliea the conditions
mentioned above. tlence, we may assume the existence of the
admissible presentation of dy.

Before presenting an algorithm, we need some
preliminaries.

For a given target context-free language L, let
T={ay,...,an} be the alphabet over which L is defined.
Further, for each k&1, let 'y =TUALUAWU{d,+,(,}},
where Ag = {01, 03, ..., oy}, A’k ={o}, 02, ..., ok}.

For a given expression E and i20, kz1, let 8(E,i,k)
={E'|E—iE’ and E' is a ptring over T'y}. Then, §%E)=
UizoUg218(E,i k). We abbreviate 5(¢,i,k) as 8(i k). The
algorithm requires an enumeration procedure which,
starting with ¢, enumerates every expresgion in §*(E).

As a notation, we denote an element of 5(i,k) by
[E,(i,k)]. Note that for each ik, 5i,k) is finite. Further,
let 8(i+1,k)={EJE—E’ and E¢B(i k), E'¢T'4*}, that i, an
element of 8(i + 1,k) is obtained from an element of 8(i k)
by applying 8y once, where B is a restriction of § to Iy
Each 8(1,k) is obtained from ¢ by one application of §j.
[The outline of the algorithm]

Now, the algorithm works as follows: By applying 8y
to ¢, it enumerates a hypothesis (an expression) E and
stores into a queue Q in the form of [E,(i,k)]. then refines
(generalizes) each hypothesis by examples. The
enumeration is performed in the order ag in

8(1,1), 8(2,1}, 5(1,2), 8(3,1), 6(2,2), 6(1,3}, 5(4,1), -~
That is, the algorithm dovetails the enumeration of
8(i,1),8(i,2),6(i,8), - with that of 8(1k},8(2,k),8(3,k), .

For a hypothesis E, if it does not cover some positive
example(it is called "too specific”), then the algorithm
generalizes E in some way. Otherwise, if its language JE|
includes some negative example(it is called “too
general™), then the algorithm simply discardsit. Thisis
repeated until a correct hypothesis is found.

The algorithm is given as Algorithm A).

For the sake of helping one understand the process of
enumerating hypotheses in the algorithm, Figure 1
illugtrates how the contents of & queue Q changes during
the enumeration.(The contents of Q is represented as &
rectangle whose length may change as the time goes.
The shadow portion of Q denoting 8(1,k) is created only

i Algorithm A, (Inference Algorithm for Context-free Languages)
! Input: A recursively enumerable set of context-free
expreasiona {2
An enumeration operator &
: An admissible presentation of a targel language dg
: Output: A sequence of expressions E, Eg, ... such that Eq, is
: correct for the first nexamples.
: Procedure;
: Q+5(1,1);{elements of §(1,1) are stored in the queue Q}
EXAMPLES«® (empty set)
Xenext{Qi;{rext removes the top element of Q}
do (forever):
EXAMPLES+—EXAMPLESUEX( (get next example}
while (let X ={E;,(i,k)] be the j-th element of §(i, k] , then )
Je¢ EXAMPLES s.4. E; ie not correct for e
if Ejis "too specific”
than do
if ix2
then if k=landj=1
then append 5(1,)5(12),1,1) 1o the tail of Q.
Xenext(Q);
else append 5(E;,1,k) to the tail of @;
Xenext(Q)
eis# append 5(E;,1,k) to the tail of Q;
Xenexi(Q);
else (E; is “ioo general” )
discard Ej M
Xenext(Q);
! Qutput E; as the next hypothesis.
‘where  Eis"toospecific” 1=
: if 3+e€EXAMPLES a.t. ef |E|, then return true
else return false
E is "too general” ;=
if 3~ e€EXAMPLES a.t. e €|E|, then return irue
elsereturn false

when 8(k +1,1) is produced from 5(k,1), and it is placed
before 8(k +1,1)).
Theorem 3.1

For any given context-free language do, the algorithm
Ay identifiesdgin the limit.

Proof. We need to show the following two: First , the
algorithm Aj converges some hypothesis E, secondly,
the hypothesis E is correct for the target do.

From the completeness property of § {(i) of Lemma
3.1) and Theorem 2.2, there is a chain of generalization
steps from ¢ : p=Ep—~E)—--—EL=F and |E|=dg. Here
we assume that n is as small as possible for the given dy,
Property (ii) of Lemma 3.1 together with the minimality
of n ensures that for each i, |E; | c|Eyj. Then, there are
strings wij such that w; ¢ JE| and w; ¢[Ej|. Let Ey be in
8(n,k).

[Proof for correctness) Assume the  algorithm
converges to some expression E: that is, there exist ik
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Figure 1. Queue Transition

>0Oand E in 8(i,k) such that E is correct for not only
all examples in EXAMPLES but also every example
given in the future. (That is the definition of
"convergence".) Hence, E is correct for do.

[Proof for convergence] Suppose that the algorithm
diverges. Then, we show, by the induction onj , that
every hypothesis Ej (0=j=n)in the chain above appears
on the top of Q and is generalized. When j=0, it is
trivial. Suppose that Ej appears on the top of Q as a
hypothesis in  8{(i,p) and is generalized. Since
E; +1€8(E), Ei 4 1€¢8(i+ 1,q) for some q. The divergence of
the algorithm implies that the finite number of
expressions preceding Ej+i will all appear on the top
and be generalized or simply discarded. Hence, Ei+1
eventually appears on the top of Q and is generalized
duetowi+i. Thu En{(j=n}ntually appears on the
top. However, because of the assumption of the
divergence, E, is not correct for some w, which
contradicts the fact that [Eg|=dg. Hence, the algorithm
converges.

Thus, we conclude that the algorithm converges to a
correct expression.[J
3.2 Inferring Semilinear Languages

If we restrict our attention to a subclass of context-
free languages called semilinear languages([Gruska
1971]), then we can easily get an operator for
enumerating all expressions over T2, where T2
=Tu{oy,02}, and obtain more efficient and simpler
inference algorithm for the class. This is due to the fact
that Any semilinear language over T is contained in
nT, > that > for any semilinear language L over T there
exists a context-free expression E over T2 such thatL=\E\
holds.(Note that the rules (I)-(4) in 8 form a context-free
grammar, provided that T is finite.)

As a natural conclusion, we have:
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Theorem 3.2

There exists a simple algorithm  for inferring
semilinear languages in which the enumerator 8 is
achieved by a context-free grammar.
Proo/KSimilar to that of Theorem 3.1 and omitted.)D

4. Meta Inference

As we have mentioned, an expression enumerator 8
for semilinear case is realized as a context-free grammar,
which implies that an enumerator in the IID is
identified with a context-free expression. Therefore, one
can think of a meta inference problem in which for a
given target, the meta-IID infers a representation
(context-free expression, or enumerator) denoting the
target from examples of expressions, where the target is
a class of expressions (or, a class of semilinear languages
denoted by the expressions). Note that since the input of
meta-11D, which is an expression, can be regarded as a
string over some alphabet, the inference schema of the
meta-inference problem is structurally equivalent to
that ofthe inference problem in the usual sense, which is
illustrated by Figure 2 .

Eq
Ez \
C ™
Meta-liD
E, /
axamples hypotheses
{expressions) {(enumarators)

Figure 2. Meta Inductive Inference Schema
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