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ABSTRACT rj A WEAK THEORY DOMAIN 

The paper presents an interactive approach to learning apprentice sys­
tems for weak theory domains. The approach consists of a combination 
of teaming by analogy and learning by generalizing instances. One 
main point of this approach is that it uses the explanations drawn from 
an example, both to reduce the version space of me rules to be learned, 
and to generate new examples, analogous to the given one. Another im­
portant point is that it demonstrates not only that over-generalization is 
harmless but also useful and necessary, when interacting with a user. It 
allows to use the theory of the domain, though incomplete as it is, in 
order to extract the missing knowledge by asking "clever" questions to 
its user. This paper presents a first prototypical version of DISCIPLE 
and its use to the design of technologies for the manufacturing of 
loudspeakers. 

I INTRODUCTION 

If Expert Systems have proven useful in many domains, their appli­
cations are limited by their inability to acquire and to update their 
knowledge. This problem is largely recognized as the knowledge ac­
quisition bottleneck of Expert Systems (Feigenbaum 1977), (Mitchell & 
Al. 1985), (Kodratoff 1986), etc... Recent Machine Learning achieve­
ments ((Mitchell, Carbonell & Michalski 1985) offer new solutions to 
the knowledge acquisition problem and open a new area in the evolution 
of Expert Systems, that is, Expert Systems able of automatic knowledge 
acquisition and learning, such as Learning Apprentice Systems (LAS). 
A LAS is an interactive knowledge-based consultant that directly assimi­
lates new knowledge by observing, analyzing and questioning about the 
problem solving steps contributed by their users through their normal 
use of the system. The user gives to the system a problem to solve and 
the expert sub-system starts solving this problem by showing the user all 
the problem solving steps. The user may agree or reject them. Therefore, 
in its Expert System mode, a LAS may encounter two situations. 
Either the current problem-solving step (which we shall further call 

partial solution) is accepted by the user. Then, the current state of the 
knowledge base is judged as satisfactory, and no learning will take 
place. 

Or it is unable to propose any partial solution (or the solution it pro­
poses is rejected by the user). Then, the user is compelled to give his 
own solution. 
Once this solution is given, a learning process will take place. The LAS 
will try to learn a general rule so that, when faced with problems similar 
to the current one (which it has been unable to solve), it will become 
able to propose a solution simitar to the solution given by the user to 
the current problem. We are developing a LAS, called DISCIPLE, spe­
cialized for weak theory domains. In this paper we describe the learn-
ing mechanisms of DISCIPLE. To this purpose we use examples from 
Technology Design. The next section is a brief description of this 
domain. The following sections present the learning problem and the 
learning method of DISCIPLE 

We have chosen, as a first domain to test our approach to interactive 
LASs, the domain of designing technologies for the manufacturing of 
loudspeakers. Before presenting in more details this domain we stress 
two of its important features. Firstly, the domain is usually too complex 
for an autonomous system. Secondly, small improvements in technology 
have important outcomes since a technology is usually used for a large 
number of products. Therefore the best solution is searched. A conse­
quence of these features is that such a domain is most appropriately han­
dled with an interactive system as the expert (consultant) sub-system of 
a LAS, where the user and the system cooperate in finding the best solu­
tion to the current problem. 
Technology Design might well be viewed as successive decompositions 
of complex operations into simpler ones, and successive specializations 
of these simpler operations by choosing tools, materials or verifiers, 
which are in turn successively specialized. To design a technology, 
DISCIPLE needs some knowledge about the components of the 
loudspeakers, about the technological solutions for the manufacturing of 
loudspeakers, about the tools and the materials one can use to manufac­
ture loudspeakers. All this knowledge constitutes the domain theory. 
This domain theory is inherently incomplete since we can not suppose 
that DISCIPLE knows all the objects of the domain, all the properties of 
a given object, all the actions that can be performed for manufacturing 
loudspeakers, all the properties of the known actions (preconditions, 
effects), all the ways of decomposing or specializing a given action, 
etc... 

III THE LEARNING PROBLEM 

In the domain we have chosen, DISCIPLE acts as an aid to a tech­
nology designer. The problem to be solved is that of planning the 
manufacturing of a certain loudspeaker. The solution to this problem is a 
plan of actions for manufacturing the loudspeaker. 
The problem-solving paradigm is problem-reduction. That is, DISCIPLE 
will successively decompose an action into simpler actions or specialize 
an action to a better defined one. In this way, DISCIPLE will build a 
problem-solving tree. This process continues untill the leaves of this 
tree are elementary actions. They represent the solution to the original 
problem (the top of the problem-solving tree). 
Let us suppose that, during planning the manufacturing of a loudspeak­
er, DISCIPLE encounters the following problem 

ATTACH sectors ON chassis-membrane-assembly 
for which it is unable to propose a satisfactory solution. Let us further 
suppose that the user indicated the following solution to DISCIPLE: 

APPLY mowicoll ON sectors, 
PRESS sectors ON chassis-membrane-assembly 

Note that APPLY and PRESS may be actions previously unkown to the 
system and, in such a case, it knows nothing about them except that they 
are means of ATTACHing. 
Now DISCIPLE knows a solution of the current problem 
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ATTACH sectors ON chassis-membrane-assembly 
APPLY mowicoll ON sectors, 

PRESS sectors ON chassis-membrane-assembly. 

This solution will further be seen as an example of a general rule to be 
learned. 

In this paper (and in the present version of DISCIPLE) we use the fol­
lowing generalization method. We suppose that the above example 
represents with fidelity the structure of the general rule to be learned. In 
this case, learning a general rule reduces to learn the concepts ( instan­
tiated in the example by 'sectors', 'chassis-membrane-assembly' and 
'mowicoll ) for which the ATTACH action can be safely decomposed 
into a sequence of APPLY and PRESS actions. 
Therefore, the rule DISCIPLE will try to learn has the following form: 

IF x. y, and z satisfy <constraints> 
THEN ATTACH x ON y \- APPLY z ON x, PRESS x ON y 

The learning problem addressed by DISCIPLE is therefore : Given an 
example rule, generalize it and find its domain of application. 

IV THE LEARNING METHOD 

of Explanation-

Figure 1. The learning method in DISCIPLE 
The learning starts by interpreting a user's solution as an instance of a 
more general rule to be learned. 
Firstly, in its Explanation-Based mode, DISCIPLE looks for plausible 

explanations of the validity of the user's solution. It is essential to the 
success of DISCIPLE that there should be a possible explanation in 
terms of the relations between the objects referred at in the example. 
One must nevertheless be well aware that, working in a weak theory 
domain, those explanations may sometimes be irrelevant ( as opposed to 
the ones provided in well-formalized domain ), and have to be validated 
by the user. 
Secondly, DISCIPLE enters its Analogy-Based mode. The analogy 

relies on the concept of similarity of the explanations : two rules are 
analogous when they are supported by similar explanations, and two 
explanations are similar when they both are instances of the same 
(over)-generalized explanation. In its Analogy-Based mode, the work of 
DISCIPLE is two-fold. On the one hand it attempts to build such an 
over-generalization from the examples it has got. On the other hand, it 
consults its knowledge base in order to generate new instances of the 
current over-generalization. We shall use the following approximation : 
the explanation of the user's example will be said to be a sufficient con­
dition to the rule application, and the over-generalization will be said to 
be a necessary condition to the rule application. In that way, they can 
be compared to the S-set and G-set of Mitchell's Version Space 
(Mitchell 1978). 

Thirdly, DISCIPLE uses Similarity-Based Generalization from exam­
ples. Analogy does not garantee the validity of the generated condi­
tions, which must once more be validated by the user. The generated 
examples rejected by the user will be treated as negative examples, and 
the accepted ones as positive examples. In the same way as other gen­
eralization algorithms ( see, for instance (Michalski 1983, Kodratoff & 
Al. 1984) ), positive examples will be used to generalize the set of 
sufficient conditions ( otherwise stated : to increase the S-set). Negative 
ones will be used to particularize the necessary conditions. This part of 
DISCIPLE has not yet be fully worked out, it will not be further 
described here. 
Finally, if it happens that the S-set and the G-set become identical, a 

necessary and sufficient condition has been reached , and an exact rule 
has been learned. This is seldom the case, especially in fields with a 
weak theory. In general, we shall keep the necessary and the sufficient 
conditions separately. We then say that we have obtained a SYM­
BOLIC UNCERTAIN CONDITION for the application of the rule. 

V EXPLANATION-BASED MODE 

The system will try to explain why the solution indicated by the user 
is a good one. Since DISCIPLE does not have a complete domain 
theory, it is unable to find alone such a "complete" explanation. Recall, 
for instance, that APPLY may be an action previously unknown to the 
system. It does not mean that DISCIPLE is waiting for an explanation 
from the user, but simply that it will try to find an explanation with the 
user's help. More precisly, it will try to propose several partial explana­
tions, asking the user to validate them. 
The heuristic used by DISCIPLE is that the explanation has to be 
expressible in terms of the relations between the objects from the rule 
instance ('sectors', 'chassis-membrane-assembly', 'mowicoll'). While, 
in general, there exist many relations between two objects, it is expected 
that, in the world of an Expert System, only the relations relevant to the 
domain of expertise are present. 
Therefore, DISCIPLE will look in its knowledge base for the links con-
necting 'sectors', 'chassis-membrane-assembly' and 'mowicoll'. They 
are illustrated in the following netoork: 

Figure 2. An incomplete knowledge base 
Some of these links may be relevant for the rule to be learned when 
they are plausible pieces of explanation. Since DISCIPLE does not have 
the necessary knowledge to make the difference between the relevant 
and the irrelevant links, it will have to rely on the user, by asking ques­
tions which are issued from a straithforward analysis of these links: 
DISCIPLE will initiate the following dialogue ( where the user's 
answers are put between * ). 

Is it relevant for the solution that: 
mowicoll GLUES sectors ? * yes * 
mowicoll GLUES chassis-membrane-assembly ? * yes * 
sectors PART-OF loudspeaker ? * no* 
chassis-membrane-assembly PART-OF loudspeaker ? * no * 
Making use of this new knowledge, DISCIPLE will find an "explana­
tion" represented by the following network. 
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VI ANALOGY-BASED MODE 

Two situations are said to be analogous when a mapping can be done 
between the causal networks of these two situations (Wiaston 1980, 
Kedar-Cabelli 1985). The above network will be seen as a causal net­
work of the decomposition in example rule. A heuristic used by DISCI­
PLE to find similar explanations is: two explanations are similar when 
the edges of their networks are indexed by the same values. 
For instance, the following network is similar with the above one, 

DISCIPLE uses the similarity between networks, and proposes instan­
tiated rules to its user. These rules are obtained by replacing the expla­
nation pattern of the example rule by similar ones. 
For instance, DISCIPLE will propose the following new rule. 

ATTACH centering-device ON chassis-assembly 
h APPLY neoprene ON centering-device, 

PRESS centering-device ON chassis-assembly 
Since the analogy is never proven to be valid, the user will have to vali­
date it One can estimate the similarity between two networks, or con­
cepts, by computing their "best generalization" (Kodratoff & Tecuci 
1986b). The less general is their generalization, the best their similarity. 
In DISCIPLE, we slightly modified the approach referred at in 
(Kodratoff & Tecuci 1986b). Instead of starting a costly generalization 
algorithm of the AGAPE kind (Kodratoff & AI. 1984), DISCIPLE rather 
over-generalizes the explanation it disposes of, and states that any two 
instances of this over-generalization are similar. In DISCIPLE'S present 
implementation state, this over-generalization is very elementary : turn 
constants into variables by giving the same variable name to all the 
occurences of a same constant. It is part of our planned improvements 
to DISCIPLE to refine this definition. We are quite aware that such a 
generalization may not be a necessary condition. This is part of the 
approximations of the present system to accept this lack of precision. 
It follows that the over-generalization of the above networks is 

which will also be used as a necessary condition for the application of 
the rule. 
Any example DISCIPLE will generate in the Analogy-Based mode will 
have an explanation which is an instance of the over-generalized 
expression. 
At this point the learned rule has the following form 

which is an intermediary form of the rule during its learning. One 
remarks that the necessary condition can always be deduced from the 
sufficient one. 
In the Analogy-Based mode, DISCIPLE will generate instances of the 
intermediate rule, such that these instance will satisfy the necessary con­
dition ( and that will not satisfy the sufficient condition ). 

VII DISCUSSION AND CONCLUSIONS 

In the previous sections we have presented in some detail the learn-
ing mechanisms of DISCIPLE. It shares, of course, many features with 
LEAP (Mitchell & Al. 1985), both relying on the same design princi­
ples: the interactive nature of problem solving, the association of each 
example to a single problem solving step, the partition of control and 
basic domain knowledge. On the other hand there are also important 
differences between LEAP and DISCIPLE. LEAP utilizes explanation-
based generalization. Therefore, it produces justifiable generalization 
from a single example, it allows rejecting incorrect training examples, it 
relies on a strong domain theory (VLSI design). DISCIPLE utilizes a 
combination of Explanation-Based learning, learning by analogy, and 
Similarity-Based learning. It relies on an incomplete and/or weak 
domain theory, it relies on user to reject incorrect training instances, it 
produces justifiable generalizations from examples. DISCIPLE learns 
not only generalizations but also particularizations of concepts (DeJong 
& Mooney 1986). Also, it uses the same interface paradigm for both 
problem-solving and learning (it proposes solutions and the user accepts 
or rejects them). 
There are several weaknesses of DISCIPLE, that are currently under 
improvement. The method of finding an explanation is not powertull 
enough. Other sources of knowledge are needed, as well as metarules 
for finding far-off explanations. The explanation-based method does not 
use goal regression. The use of theorems in the Analogy-Based mode is 
quite limited. From the practical point of view, DISCIPLE shows one 
more very important weakness. Its analogy mechanism works through 
our over-generalization process, which actually reduces to turning con­
stants into variables. It follows that DIISCIPLE is of interest if, and 
mainly only if, the given rules are such that the same constants show in 
their conditions and in their actions. 
DISCIPLE-1 has been implemented in LELISP (Chailloux 1985) and we 
are running it on VAX-750, and MACINTOSH computers. Implementa­
tions on SUN and Explorer stations are under way. 
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