
DISCTPLE-1: INTERACTIVE APPRENTICE SYSTEM IN WEAK THEORY FIELDS

YVES KODRATOFF
LRI, Inference et Apprentissage, Bit. 490, U.A. 410 du C.N.R.S. & University Paris-Sud, F - 91405 Orsay

OHEOROHE TCCUQ
Research Institute for Computers and Informatics, 71316, Bd. Miciurin 8-10, Sector 1, Bucharest, Romania

ABSTRACT rj A WEAK THEORY DOMAIN

The paper presents an interactive approach to learning apprentice sys­
tems for weak theory domains. The approach consists of a combination
of teaming by analogy and learning by generalizing instances. One
main point of this approach is that it uses the explanations drawn from
an example, both to reduce the version space of me rules to be learned,
and to generate new examples, analogous to the given one. Another im­
portant point is that it demonstrates not only that over-generalization is
harmless but also useful and necessary, when interacting with a user. It
allows to use the theory of the domain, though incomplete as it is, in
order to extract the missing knowledge by asking "clever" questions to
its user. This paper presents a first prototypical version of DISCIPLE
and its use to the design of technologies for the manufacturing of
loudspeakers.

I INTRODUCTION

If Expert Systems have proven useful in many domains, their appli­
cations are limited by their inability to acquire and to update their
knowledge. This problem is largely recognized as the knowledge ac­
quisition bottleneck of Expert Systems (Feigenbaum 1977), (Mitchell &
Al. 1985), (Kodratoff 1986), etc... Recent Machine Learning achieve­
ments ((Mitchell, Carbonell & Michalski 1985) offer new solutions to
the knowledge acquisition problem and open a new area in the evolution
of Expert Systems, that is, Expert Systems able of automatic knowledge
acquisition and learning, such as Learning Apprentice Systems (LAS).
A LAS is an interactive knowledge-based consultant that directly assimi­
lates new knowledge by observing, analyzing and questioning about the
problem solving steps contributed by their users through their normal
use of the system. The user gives to the system a problem to solve and
the expert sub-system starts solving this problem by showing the user all
the problem solving steps. The user may agree or reject them. Therefore,
in its Expert System mode, a LAS may encounter two situations.
Either the current problem-solving step (which we shall further call

partial solution) is accepted by the user. Then, the current state of the
knowledge base is judged as satisfactory, and no learning will take
place.

Or it is unable to propose any partial solution (or the solution it pro­
poses is rejected by the user). Then, the user is compelled to give his
own solution.
Once this solution is given, a learning process will take place. The LAS
will try to learn a general rule so that, when faced with problems similar
to the current one (which it has been unable to solve), it will become
able to propose a solution simitar to the solution given by the user to
the current problem. We are developing a LAS, called DISCIPLE, spe­
cialized for weak theory domains. In this paper we describe the learn-
ing mechanisms of DISCIPLE. To this purpose we use examples from
Technology Design. The next section is a brief description of this
domain. The following sections present the learning problem and the
learning method of DISCIPLE

We have chosen, as a first domain to test our approach to interactive
LASs, the domain of designing technologies for the manufacturing of
loudspeakers. Before presenting in more details this domain we stress
two of its important features. Firstly, the domain is usually too complex
for an autonomous system. Secondly, small improvements in technology
have important outcomes since a technology is usually used for a large
number of products. Therefore the best solution is searched. A conse­
quence of these features is that such a domain is most appropriately han­
dled with an interactive system as the expert (consultant) sub-system of
a LAS, where the user and the system cooperate in finding the best solu­
tion to the current problem.
Technology Design might well be viewed as successive decompositions
of complex operations into simpler ones, and successive specializations
of these simpler operations by choosing tools, materials or verifiers,
which are in turn successively specialized. To design a technology,
DISCIPLE needs some knowledge about the components of the
loudspeakers, about the technological solutions for the manufacturing of
loudspeakers, about the tools and the materials one can use to manufac­
ture loudspeakers. All this knowledge constitutes the domain theory.
This domain theory is inherently incomplete since we can not suppose
that DISCIPLE knows all the objects of the domain, all the properties of
a given object, all the actions that can be performed for manufacturing
loudspeakers, all the properties of the known actions (preconditions,
effects), all the ways of decomposing or specializing a given action,
etc...

III THE LEARNING PROBLEM

In the domain we have chosen, DISCIPLE acts as an aid to a tech­
nology designer. The problem to be solved is that of planning the
manufacturing of a certain loudspeaker. The solution to this problem is a
plan of actions for manufacturing the loudspeaker.
The problem-solving paradigm is problem-reduction. That is, DISCIPLE
will successively decompose an action into simpler actions or specialize
an action to a better defined one. In this way, DISCIPLE will build a
problem-solving tree. This process continues untill the leaves of this
tree are elementary actions. They represent the solution to the original
problem (the top of the problem-solving tree).
Let us suppose that, during planning the manufacturing of a loudspeak­
er, DISCIPLE encounters the following problem

ATTACH sectors ON chassis-membrane-assembly
for which it is unable to propose a satisfactory solution. Let us further
suppose that the user indicated the following solution to DISCIPLE:

APPLY mowicoll ON sectors,
PRESS sectors ON chassis-membrane-assembly

Note that APPLY and PRESS may be actions previously unkown to the
system and, in such a case, it knows nothing about them except that they
are means of ATTACHing.
Now DISCIPLE knows a solution of the current problem

Kodratoff and Tecuci 271

ATTACH sectors ON chassis-membrane-assembly
APPLY mowicoll ON sectors,

PRESS sectors ON chassis-membrane-assembly.

This solution will further be seen as an example of a general rule to be
learned.

In this paper (and in the present version of DISCIPLE) we use the fol­
lowing generalization method. We suppose that the above example
represents with fidelity the structure of the general rule to be learned. In
this case, learning a general rule reduces to learn the concepts (instan­
tiated in the example by 'sectors', 'chassis-membrane-assembly' and
'mowicoll) for which the ATTACH action can be safely decomposed
into a sequence of APPLY and PRESS actions.
Therefore, the rule DISCIPLE will try to learn has the following form:

IF x. y, and z satisfy <constraints>
THEN ATTACH x ON y \- APPLY z ON x, PRESS x ON y

The learning problem addressed by DISCIPLE is therefore : Given an
example rule, generalize it and find its domain of application.

IV THE LEARNING METHOD

of Explanation-

Figure 1. The learning method in DISCIPLE
The learning starts by interpreting a user's solution as an instance of a
more general rule to be learned.
Firstly, in its Explanation-Based mode, DISCIPLE looks for plausible

explanations of the validity of the user's solution. It is essential to the
success of DISCIPLE that there should be a possible explanation in
terms of the relations between the objects referred at in the example.
One must nevertheless be well aware that, working in a weak theory
domain, those explanations may sometimes be irrelevant (as opposed to
the ones provided in well-formalized domain), and have to be validated
by the user.
Secondly, DISCIPLE enters its Analogy-Based mode. The analogy

relies on the concept of similarity of the explanations : two rules are
analogous when they are supported by similar explanations, and two
explanations are similar when they both are instances of the same
(over)-generalized explanation. In its Analogy-Based mode, the work of
DISCIPLE is two-fold. On the one hand it attempts to build such an
over-generalization from the examples it has got. On the other hand, it
consults its knowledge base in order to generate new instances of the
current over-generalization. We shall use the following approximation :
the explanation of the user's example will be said to be a sufficient con­
dition to the rule application, and the over-generalization will be said to
be a necessary condition to the rule application. In that way, they can
be compared to the S-set and G-set of Mitchell's Version Space
(Mitchell 1978).

Thirdly, DISCIPLE uses Similarity-Based Generalization from exam­
ples. Analogy does not garantee the validity of the generated condi­
tions, which must once more be validated by the user. The generated
examples rejected by the user will be treated as negative examples, and
the accepted ones as positive examples. In the same way as other gen­
eralization algorithms (see, for instance (Michalski 1983, Kodratoff &
Al. 1984)), positive examples will be used to generalize the set of
sufficient conditions (otherwise stated : to increase the S-set). Negative
ones will be used to particularize the necessary conditions. This part of
DISCIPLE has not yet be fully worked out, it will not be further
described here.
Finally, if it happens that the S-set and the G-set become identical, a

necessary and sufficient condition has been reached , and an exact rule
has been learned. This is seldom the case, especially in fields with a
weak theory. In general, we shall keep the necessary and the sufficient
conditions separately. We then say that we have obtained a SYM­
BOLIC UNCERTAIN CONDITION for the application of the rule.

V EXPLANATION-BASED MODE

The system will try to explain why the solution indicated by the user
is a good one. Since DISCIPLE does not have a complete domain
theory, it is unable to find alone such a "complete" explanation. Recall,
for instance, that APPLY may be an action previously unknown to the
system. It does not mean that DISCIPLE is waiting for an explanation
from the user, but simply that it will try to find an explanation with the
user's help. More precisly, it will try to propose several partial explana­
tions, asking the user to validate them.
The heuristic used by DISCIPLE is that the explanation has to be
expressible in terms of the relations between the objects from the rule
instance ('sectors', 'chassis-membrane-assembly', 'mowicoll'). While,
in general, there exist many relations between two objects, it is expected
that, in the world of an Expert System, only the relations relevant to the
domain of expertise are present.
Therefore, DISCIPLE will look in its knowledge base for the links con-
necting 'sectors', 'chassis-membrane-assembly' and 'mowicoll'. They
are illustrated in the following netoork:

Figure 2. An incomplete knowledge base
Some of these links may be relevant for the rule to be learned when
they are plausible pieces of explanation. Since DISCIPLE does not have
the necessary knowledge to make the difference between the relevant
and the irrelevant links, it will have to rely on the user, by asking ques­
tions which are issued from a straithforward analysis of these links:
DISCIPLE will initiate the following dialogue (where the user's
answers are put between *).

Is it relevant for the solution that:
mowicoll GLUES sectors ? * yes *
mowicoll GLUES chassis-membrane-assembly ? * yes *
sectors PART-OF loudspeaker ? * no*
chassis-membrane-assembly PART-OF loudspeaker ? * no *
Making use of this new knowledge, DISCIPLE will find an "explana­
tion" represented by the following network.

272 KNOWLEDGE ACQUISITION

VI ANALOGY-BASED MODE

Two situations are said to be analogous when a mapping can be done
between the causal networks of these two situations (Wiaston 1980,
Kedar-Cabelli 1985). The above network will be seen as a causal net­
work of the decomposition in example rule. A heuristic used by DISCI­
PLE to find similar explanations is: two explanations are similar when
the edges of their networks are indexed by the same values.
For instance, the following network is similar with the above one,

DISCIPLE uses the similarity between networks, and proposes instan­
tiated rules to its user. These rules are obtained by replacing the expla­
nation pattern of the example rule by similar ones.
For instance, DISCIPLE will propose the following new rule.

ATTACH centering-device ON chassis-assembly
h APPLY neoprene ON centering-device,

PRESS centering-device ON chassis-assembly
Since the analogy is never proven to be valid, the user will have to vali­
date it One can estimate the similarity between two networks, or con­
cepts, by computing their "best generalization" (Kodratoff & Tecuci
1986b). The less general is their generalization, the best their similarity.
In DISCIPLE, we slightly modified the approach referred at in
(Kodratoff & Tecuci 1986b). Instead of starting a costly generalization
algorithm of the AGAPE kind (Kodratoff & AI. 1984), DISCIPLE rather
over-generalizes the explanation it disposes of, and states that any two
instances of this over-generalization are similar. In DISCIPLE'S present
implementation state, this over-generalization is very elementary : turn
constants into variables by giving the same variable name to all the
occurences of a same constant. It is part of our planned improvements
to DISCIPLE to refine this definition. We are quite aware that such a
generalization may not be a necessary condition. This is part of the
approximations of the present system to accept this lack of precision.
It follows that the over-generalization of the above networks is

which will also be used as a necessary condition for the application of
the rule.
Any example DISCIPLE will generate in the Analogy-Based mode will
have an explanation which is an instance of the over-generalized
expression.
At this point the learned rule has the following form

which is an intermediary form of the rule during its learning. One
remarks that the necessary condition can always be deduced from the
sufficient one.
In the Analogy-Based mode, DISCIPLE will generate instances of the
intermediate rule, such that these instance will satisfy the necessary con­
dition (and that will not satisfy the sufficient condition).

VII DISCUSSION AND CONCLUSIONS

In the previous sections we have presented in some detail the learn-
ing mechanisms of DISCIPLE. It shares, of course, many features with
LEAP (Mitchell & Al. 1985), both relying on the same design princi­
ples: the interactive nature of problem solving, the association of each
example to a single problem solving step, the partition of control and
basic domain knowledge. On the other hand there are also important
differences between LEAP and DISCIPLE. LEAP utilizes explanation-
based generalization. Therefore, it produces justifiable generalization
from a single example, it allows rejecting incorrect training examples, it
relies on a strong domain theory (VLSI design). DISCIPLE utilizes a
combination of Explanation-Based learning, learning by analogy, and
Similarity-Based learning. It relies on an incomplete and/or weak
domain theory, it relies on user to reject incorrect training instances, it
produces justifiable generalizations from examples. DISCIPLE learns
not only generalizations but also particularizations of concepts (DeJong
& Mooney 1986). Also, it uses the same interface paradigm for both
problem-solving and learning (it proposes solutions and the user accepts
or rejects them).
There are several weaknesses of DISCIPLE, that are currently under
improvement. The method of finding an explanation is not powertull
enough. Other sources of knowledge are needed, as well as metarules
for finding far-off explanations. The explanation-based method does not
use goal regression. The use of theorems in the Analogy-Based mode is
quite limited. From the practical point of view, DISCIPLE shows one
more very important weakness. Its analogy mechanism works through
our over-generalization process, which actually reduces to turning con­
stants into variables. It follows that DIISCIPLE is of interest if, and
mainly only if, the given rules are such that the same constants show in
their conditions and in their actions.
DISCIPLE-1 has been implemented in LELISP (Chailloux 1985) and we
are running it on VAX-750, and MACINTOSH computers. Implementa­
tions on SUN and Explorer stations are under way.

REFERENCES

1 Chailloux J., "LE-LISP de 11NRIA, Le Manuel de reference",
I.N.R.I.A., Rocquencourt, France, 1985.
2 DeJong G., Mooney R., "Explanation-Based Learning: An Alternative
View", Machine Uarning 1:2 (1986) 145-176.
3 Feigenbaum E., "The Art of Artificial Intelligence" In Proc. UCAI-77,
MIT, Cambridge, Massachusetts, 1977, pp. 1015-1029.
4 Kedar-Cabelli S. "Purpose-Directed Analogy", Research Report ML-
TR-1, Rutgers University. 1985.
5 Kodratoff Y., Ganascia J.G., Clavieras B., Bollinger T., Tecuci G.,
"Careful Generalization for Concept Learning" In Proc. ECAI-84, Pisa
1984, pp. 483-492. Also In Advances in Artificial Intelligence T. O'Shea
editor, pp. 229-238, North-Holland Amsterdam 1985.
6 Kodratoff Y., "Learning Expert Knowledge and Theorem Proving" In
Proc. GWAI-86, Springer-Verlag 1986, pp. 164-179.
7 Kodratoff Y., Tecuci G, "DISCIPLE: An Interactive Approach to
Learning Apprentice Systems", LRI Research Report 293, Orsay, France,
Aug. 1986.
8 Kodratoff Y., Tecuci G., "Conceptual Distance-Based Learning", LRI
Research Report 299, Orsay, France, Sept. 1986.
9 Michalski R., "A Theory and a Methodology of Inductive Learning"
Artificial Intelligence 20 (1983) 111-161.
10 Mitchell T.M., Carbonell J.G., Michalski R.S. (eds). Machine Learn-
ing: A Guide to Current Research, Kluwer Academic Publishers, 1985.
11 Mitchell T.M., "Version Spaces: An Approach to Concept Learn-
ing", PhD thesis. Department of Electrical Engineering, Stanford Univer­
sity, 1978.
12 Mitchell T., Mahadevan S.. Steinberg L., "LEAP: a Learning
Apprentice System for VLSI Design" In Proc. UCAI-85, Los Angeles
1985, pp. 573-580.
13 Winston P. "Learning and Reasoning by Analogy", Com. ACM 23
(1980)689-703.

Kodratoff and Tecuci 273

