A LOGIC PROGRAM SCHEMA AND ITS APPLICATIONS

Takashi

Yokomori

International Institute for Advanced Study of
Social Information Science, Fujitsu Limited
140 Miyamoto, Numazu, Shizuoka 410-03 JAPAN

ABSTRACT

In this paper we consider a .specific type of
logic programs called recursive-schema programs and
show that the class of recursive-schema programs
has sufficient expressive capability, which
provides an alternative simple proof for the result-
by Tarnlund concerning the computational power of
Horn clause programs. Further, it is shown that
any Turing computable logic program can be
expressed as a conjunctive formula of three
recursive-schema programs. Some application issues
are also discussed in the contexts of program
transformation and synthesis.

1. INTRODUCTION

In reference to recent attempts concerning
what is called the fifth generation computer
project, the research area of logic programming
languages has lately been attracting considerable
attention. Since a logic programming language
Prolog was .initiated by the work of
Co |l meraure(Colmeraure 1970) and Kowalski(Kowalski
1974.), intensive work on Prolog has been done this
decade because of its great feasibility as an Al
language. Among others, there are a few papers
devoting to the theoretical issues on logic
programming languages. Tt was shown by Tarnlund
(Tarnlund 1977) that any Turing computable function
is computable in binary Horn clauses, which ensures
the sufficient computational power of Horn logic
programs.

This paper concerns a subclass of Horn logic
programs. First we introduce a certain type of a
logic program called "recursive-schema", and then
define a class of "recursive-schema programs" in a
recursive manner. A recursive-schema program has
very simple structure and property common to many
conventional logic programs, and it is explained by
the following example.

Suppose one wish to define the concept
"ancestor", then he may express it as a binary
predicate as follows

ancestor(X,Y) holds true if and only if
X is a parent of Y, or there exists Z such that
X is a parent of Z and ancestor(Z,Y) holds true
In a conventional logic formula this s
represented, using a "parent" predicate, like
ancestor(X,Y) <- parent(X,Y)
ancestor(X,Y) <- parent(X,Z), ancestor(Z,Y).

On the other hand, one may also express the concept
in a different fashion, that is,
ancestor(X,Y) <- transitive-closure(parent, (X,Y))
where
transitive-closure(P,(X,Y)) <- P(X)Y)
transitive-closurc(P,(X,Y)) <- P(X,Z),
transitive-closure(P,(Z,Y)).

The introduction of a recursive-schema program is
motivated by the latter viewpoint of formulating a
concept.

In the next section we introduce a fixed logic
program called "recursive-schema" which is a simple
generalization of "transitive-closure" mentioned
above, and define a class of recursive-schema
programs. It is shown that the class of
recursive-schema programs has sufficient expressive
power in that any recursively enumerable language
can be computed by a recursivn-schema program.
This result gives an alternative simple proof for
the Tarnlund's result previously mentioned.
Preceding concluding remarks in Section 4, in
reference to program transformation and synthesis,
some application issues are discussed in Section 3.

2. A CLASS OF LOGIC PROGRAMS RECURSIVE SCHEMAS

It is generally understood that Prolog, a
logic programming language, is one of nonprocedural
programming languages. Nonprocedural programming
has many desirable features, because it can
suppress unnecessary details of low-level constructs
the procedures bears, and it enables one to write
programs in more concise manner (Leavenworth 1975).
The simpler a program is, the easier it is under-
stood, debugged, and modified.

Now, let a predicate "recursive-schema" be
defined as follows:

{1} recursive-schemna{4,B,F,G,X) <~ A&(X)
{2) recursive-schema(A,B,F,G,X) <-
recurslve-schema(A,B,F,G,F(X)),B{G({X))
where A,B are predicate names; X=(X1,...,Xn), X5
term{1<ign), F = (f4,u,f), 0 = (g.apgy) are
tuples of mappings f,,g. from the set of termo to
the unlon of the sciﬁ EtLad the logical constants
{true, false], and F(X} =

(£3(X)50ne,
G(X) = (gq(X)yuee gy (XD

(00,

Since we are concerned with logic programs, it

should be noted that the second clause (2) is

logically equivalent to

(2') recursive-schema(A,B,F,G,X) <-
B(G(X)),recursive-schema(A,B,F,G,F(X)).

724 T. Yokomori

Hence, In either case we simply refer to it as
"recursive-schema".

A class of logic programs denoted by REC is
defined in a recursive fashion as follows: (Th what
follows we identify a predicate with its program
implied. Further, a predicate is sometimes identi-
fied with its predicate name.)

(i) a finite number of predicates called primi-
tivelincluding true,false,unif) are in REC,
(ii)if p is in REC, then not(p) is in REC,
(iii)if p4,...,pn are in REC and
P1.-.-,Pn, then p is in REC,

(iv)if Pipo are predicate (names) in REC and p <-
recursive-schema (P4,F,G,X), then p is in REC
(v) nothing else is in REC.

A logic program in REC is termed "recursive-schema

program".

[Notes]

(1) A predicate unif(X.Y) is the unification
predicate. Predicates "true", "false" are logical
costants holding true and false, respectively.

(2) not(p) is the logical negation of p.

(3) The class REC is the smallest class of Horn
logic programs constructed from primitive
predicates by rules (ii)- (v).

p <

Property
Let a predicate "or" be defined by the follow-
ing two clausen:
or{P,Q) - P
ar{P,Q) <- Q.
One ecan trensform it into s recursive-schema
progrem as follows ¢
or{P,Q)<{~recursive-schema(calll,callz,F,id,(F,Q})
where call1{{P,Q})) <- P, eall2((P,Q)) <~ &,
F={f,f3), £} =1, = true, id({P,Q))=(P,Q).
Thus, or{P,é) is in REC, provided Lhat P and Q are
in REC. This implies that a program which is
defined by a finite set of rceursive-schema prog-
rams i also B recyrsive~-cchema program.

Now, we =hall show that the elass of recursive-
schema programs has sufficient expressive capabili-
ty, which gives an alternative simple preof for the
result that any Turlng computable function can be
computed in Horn logiec programs.(Tarnlund 1977)

It is well known thet for s given language L
over some Tinite alphabet T, there cxists s Turing
machine accepting L if end only if L is & recur-
aively enumerable langusge. Let L be a recursive-
ly enumerable language over T. We show Lhat there
exists a logie prograg P(X) in REC such that for =
glven x=ay---a, in T, x 1s in L Jf and only if
P(x) succeeds, where P{x) denctes P{[a1,".,am]L
We assume the reader to be familiar with the rudi-
ments in the fermel languugo theoryle.g.,52lomaa
1973, Herrison 1978).

Lesma 1.

A recursively enumerable language L can be
represented by L = f(L1r\L2}, where L1, L2 are
context-free languages, I is a mapping such that
for each symbol a, f{a} is a symbol or empty.

{See, e.g.,larrison 1978}

Lemma 2.

Let p be a logic program defined by a set of
clausee [p{a), pl{¥} <- p(xq),u., plX) «<- p(Im)},
where =, 1,11,",Xm are n-tuples of terms for some
n > 1. Then, p is 1n REC.

Proof,

Let p;{X) <- recursive-achema(unif1,true, Fi,
id, X), where unif1(X) <- unif(X,a) and Fi(X)=X,,
for i=1,..,n. Obviously, p(X) can be represented
by (py(X)yeemypy (X)), O

Theorea.

For a given recursively enumerable language L
over T, there exists a recursive~schema propram
P(Y) such that P(x) succeeds if and only if x is In
L.

Proof.

By Lemmai,there axist context-free grammars
Gy,G; and T such that L = f{L{G1)r\L(Gj)), where
LEGj) denctes the language generated by Gjy and f
is o mapping frem T to T, We may assume that
Gy - (v, Ty Py, 8;) is In Greibach's mormal
form, fi.c., each rule in P, 1is either

A —>gB- By (A in TLAR, in Vi1{j<m), or

A—>a (& Ln T, A‘in V),

where V:nonterminal alphabet, T'iterminal

alphabeat.

Construct a logic program cfp-i as follows :
efg-i(X} <~ grammar-i(X,[5])
grammar-i{[1,[])}

for a2l A —> aB,- -+ B_ in P.,
grammar~i([a|i],[ﬁ|?]) <=
grammar~i(X,[H1,...,B
and forall A —=>a in Pys
grammar-i{{a|X1,[A}Y]} <- grammar-i{X,Y)

Further, definc a predicate homomorphism by :
homomorphism(f1,[]}
for all x in T' wsuch that f{x) Is non-emply,
homomorphism{{{x)|X],[x]¥1) <~ homomorphism{X,Y

and for all x in T' such that f{x) is empty,
homowmorphizm(X,[x|¥]) << homomorphlsm{X,Y).

It is easlly seen that

{i} x 18 in L(GiJ if and only if cfg-i{x} succeeds,
(31) f{y) = x"if and ony if homomorphism(x,y)
succeeds, (In the definition of grammar-i above,
the Znd argument is used to simulate the left-most
derivation for the input ln the ist argument, and
when the two become emwpty at the same moment, the
predicate succeeds and the input is accepted.)

Finally, let a program P(X) be defined as
follows :

P(X) <- howmomorphism(X,¥}), efg-1(Y), efg-2(1),
Assume that P{x) succeeds, then there exists y such
Lthat homomorphism{x,y}, efg-1(y) and cfg-2(y)
succeed. Hence, we have f(y)=x, y is in L{G;) and
L(G,}, that is, x is in f(L(G1)r\L(Gz)) = L.
Conversely, it is almost obvious that x is in L
implies P(x) succeeds. By ihe definition of REC and
Lemma 2, we have that P{X) is in REC. O3

iYl}

m

3. FROGRAM TRANSFORMATION AND SYNTHESIS

Oe can argue the issues on recursive-schema
programs from the view points of program transfor-
mation and synthesis. As we have already seen, the
class of recursive-schema programs REC has
sufficient expressive capability, and any program
in REC can be constructed from a small set of

primitive predicates by using some rules.

It would be useful to point out the following
facts :

(1) any program in REC can be transformed into
several assertions and one fixed program, and

(2) starting with the fixed program and translating
those assertions, one can synthesize a program
in REC.

This is illustrated by Figure 1.

When we compare the two databases, it is
easily seen that DR2 consisting of one fixed rule (
recursive-schema program) and assertions of facts
is much simpler and more effective than DB1 in the
following sense. That is, each program in DB2 is
demand-driven, so that it is not until when called
that it is embodied. Hence, DB2 can save much

Space.
O
(Fy) roversat] 1,0])
reverue{ I F| T, 73 crnveran(Y,T) e ppena (T, [X],7}
“'MJ Fuctaorialin,s(0))
factorlul{a{X),Y)v—Factorinl (X, 2, tigaslait), 2, 1)
tranaformation ﬂ tranalation
{interpretatian)
B 2 1 [Pe) tecursive-gchepaid, i, 80X <- AfX}
rocurdive-schenn (A4, F,G, %] <=
racuraive_schena(d B F G PO RGN

[Fy) factiraverae, 4, JLF LG

(Fp) fact{fuctorial,[a; B F .G,k 1)

Flgure 1

Another aspect of transformation concernjng
receursive-schema programs in brought wheon we pay
our ationlion to the commem or similar structure of
data domains of programs.

Congider Lhe program "plus® defined in terms of

recursive-schema programs :
pluz(X,Y,2) <
recursive-schemaf{unif true, i1, id, (X,Y,7))
where unif1{X,¥,2} <~ unif{X,0},unif{¥,?)
K1 = {fq,f,,f4), £ UX,Y,7)) - prelX),
r 1,2 2,) D e,
id: identity, pre: ‘predicessor opurator.
This representation is qulte similar to the one for
"append" :
append (X,Y,7) <-
recursive—schema{unif?, true,F2,id, (X,Y,2))
where unif2(X,¥,2} <- unif{X,[]},unif(Y,7}
F2={r],r,1}), f‘{{(x,Y,Z)) = edr{X},
£H(X,¥,2)F =7Y, r4((X,¥,2)) = adr(2).

Let a wapping T be defined as follows :

T(edr) - pre, Tl{ecar) = sue, T{[]) = O,

T{X} = XX: variable}, suc: successor operator.
Then, we have T(F2) = F1 and T{unif?) = unifi.

Thus, a program "plus" can be obtained from
"append" by one-to-one mapping T. This means that
any program in REC whose domain is the set of
natural numbers can be obtained by using only the
transfer mapping T and a few primitives in the
"List world". In general, the same thing goes to
the recursive-schema programs whose domain world
has a one-to-one mapping to the List world.

T. Yokomori 725

4 CONCLUDNG REVIARKS

By introducing a specific logic program called
"recursive-schema", we have defined the class of
"recursive-schema programs" in a recursive fashion.
A recursive-schema program was proposed to capture
the common and simple structural property of logic
programs, and it has been shown that the class of
recursive-schema programs has sufficient computa-
tional power to compute any recursively enumerable
language. It should be noted that from the way of
constructing the class of recursive-schema programs
and the result on computational power just mention-
ed above, one can conclude that any Turing comput-
able logic program can be obtained from a small set
of primitive predicates and the "recursive-schema"
by applying a few rules.

Further, we have discussed some applica-
tion issues of recursive-schema programs from
rather new view-points of program transformation
and synthesis. It was demonstrated that a program
transformation in terms of "recursive-schema" can
provide a spacially efficient method for database
design, while a program systhesis in our sense can
be useful for generating new predicates.

The proposed methods in this paper can be
easily implemented in Prolog and incorporated in
the phase of database design.

ACKNONEDGEVENTS

The author would like to express his gratitude
to Dr. Toslo Kitagawa, the president of IIAS-S1S,
Fujitsu Ltd., for warm encouragement and useful
suggestion he has been giving through his work.

Also many thanks to Hajime Sawamura for very
constructive comment.

REFERENCES

[1]Burstall,R.M. and Darlington, "A Transformation
System for Developing Recursive Programs”, J. of
AOM 24:1(1977) 44-67.

[2]Colmeraurer,A., "Les systemes-Q ou un formalisme
pour analyser et synthetiser des phrases sur
ordinatour, Internal publication no.43, Depart-
ment d'Informatique, Universite de Montreal,
Canada, September, 1970.

[3]Harrison,M.A., Introduction to Formal Language
Theory, Addison-wesley, 1978.

[4] Kowalski,R., "Predicate logic as a programming
language," in Proc. IFIF-74, 1974, 569-574-
[5lLeavenworth,B.M.,"NonproceduralProgramming",in
Lecture Note in Computer Science 23, Springer,

1975,362-385.

[6]Salomaa,A., Formal Languages, Academic Press,
1973.

[7]Sato,T. and Tamaki,H.,"Transformational logic
program synthesis", in Proc. of Interna. Conf.
on Fifth Generation Computer Systems '84,Tokyo,
November, 1984, 195-201.

[8]Tarnlund,S.A.,"Horn clausecomputability", BLT
17:2 (1977) 215-226.

[9]Yokomori,T., "Using higher-order inference for
knowledge generation", in Proc. of Information
System Symposium, at IIAS-SIS, Fujitsu Ltd.,
November, 1984, 6-13.

