
Ver i f i ca t ion-Based Learn ing:
A Genera l i sa t ion St ra tegy for

I n f e r r i n g P rob lem-Reduc t i on Me thods

Sridhar Mahadevan*

Computer Science Depar tment
Rutgers Univers i ty

New Brunswick , NJ 08903

A b s t r a c t

A ma jo r imped iment to the development of h igh-performance
knowledge-based systems arises f rom the p roh ib i t i ve ef for t i n ­
volved in equipping these systems w i t h a suff ic ient set of
problem-solv ing methods. Thus , one impo r t an t research prob lem
in Machine Learn ing has been the study of techniques for infer­
r ing problem-solv ing methods f r om examples. A l t hough a number
of techniques for learning prob lem-so lv ing methods have been
described in the l i te ra ture, a l l of them assume a state-space
model of problem-solv ing. In th is paper we describe a new tech­
nique for learning prob lem-reduct ion methods, Ver i f icat ion-Based
Learn ing (V B L) , which extends the earl ier techniques to the
prob lem-reduct ion fo rmu la t i on o f prob lem-so lv ing. We i l lus t ra te
the V B L technique w i t h examples d rawn f r om c i rcu i t design and
symbol ic in tegra t ion .

I I n t r o d u c t i o n

A . M o t i v a t i o n

Knowledge-based systems require a large number of
domain-specific problem-solv ing methods for achieving h igh levels
o f performance. The V E X E D knowledge-based system for c i rcu i t
design | l | , and the PECOS system for knowledge-based au tomat ic
p rog ramming |2] are a few examples of systems tha t need a large
set of domain-specif ic prob lem-so lv ing methods. B u i l d i n g
knowledge-based problem-solvers has thus been a labor ious
process, because of the ef for t needed in equ ipp ing these systems
w i t h a suff ic ient set of prob lem-so lv ing methods.

Ear l ier researchers in the f ie ld of Mach ine Learn ing have ad­
dressed the knowledge acquis i t ion issue by developing a number
of techniques for learning prob lem-so lv ing methods f r o m examples;
however, a l l these techniques assume a state-space p rob lem-so lv ing
model . For example, in the p lan general isat ion component o f
S T R I P S [3|, a p lann ing me thod is v iewed as a m a p p i n g , f r om an
i n i t i a l state descr ipt ion i n t o a t e rm ina l s ta te descr ip t ion; new
methods are constructed as macros of p r i m i t i v e p lann ing methods.
W o r k on learning control knowledge for selecting preferred
methods, specif ical ly (4, 6] , has also adopted a state-space mode l :
the knowledge specifying when a method should be appl ied is
determined by comput ing the weakest precondition of a sequence,
conta in ing t ha t par t icu lar m e t h o d , wh ich maps some i n i t i a l state
i n t o a specific goal state (such as a solved p rob lem, or a won
state) .

In order to cope w i t h the comp lex i t y o f cer ta in

design planning domain-. knowledge' i>a - p ,f^< <'lwr^ MI SUch
domains, have frequently adopted a problem reduction approach to
solving problems Thus we need to develop techniques for learn­
ing problem-solving methods which are appropriate to the
problem-reduction formulation of problem-solving The primary
contribution of this paper is to present a new technique for infer­
ring general problem-reduction methods from training examples of
decompositions of specific problems. This technique, Verification-
Based Learning(VBL), can be viewed as an extension of earlier
techniques, particularly that of |3, 6), to the problem-reduction
formulation of problem-solving.

This research arose in the context of developing LEAP, a
Learning Apprentice system for circuit design |7] By a Learning
Apprentice system, we mean one that is meant to act as an
interactive problem-solving aid, and is specifically designed to
augment its knowledge base by monitoring and analyzing the
problem-solving activity of its users.** In those situations, where
it is unable to provide advice, or when its advice is rejected by
the user, LEAP will augment its knowledge of circuit design, by
analyzing and generalizing the solution provided by the user to
form a new problem-reduction method. At present we have im­
plemented a prototype version of the LEAP system. The ex­
ample of a problem-reduction method in circuit design that we
describe later in this paper is one of several instances of circuit
decompositions we have used to test this prototype version.

B . The Prob lem-Reduc t ion Fo rmu la t i on o f
Prob lem-Solv ing

We now give a more precise description of the model of
problem-solving that we use in this paper. The problem-reduction
formulation of problem-solving has been well-studied |8, 9] . *** In
this formulation, states describe problem instances, the initial
state is the description of the problem being solved, the final
state is a solution to the original problem, and a problem-
reduction method, which is a mapping between states, is one that
decomposes a given problem into a number of simpler sub-
problems, such that the solution to the original problem it ob­
tained by tome eompotition of the solutions to each of the
subproblems.

For the purposes of this paper, we define problem-reduction
methods to be the following mapping,

•This material is bawd on work supported by the Defease Advanced
Research Projects Agency under Research Contract N0O014-S1.K-0394. The
views and conclusions contained in tab document are those of the author
and should not be interpreted as necessarily representing the official policies,
either expressed or implied, of the Defease Advanced Research Projects
Agency or the U.S. Government.

•Thus, gaining expertise by "looking over their shoulders"

***The distinction between state space methods and problem-reduction
methods is alternatively described in (6] as tbat between production-type
methods and reduction-type metbods.

S. Mahadevan 617

where P is the specification of a problem (in some language),
wh ich is decomposed by the method M in to a set of subproblems
P 1 . . . , P N . The combinator C describes how the solut ions to each
of the subproblems P i are to be combined to y ie ld the solut ion to
the or ig ina l prob lem. We now i l lustrate the abstract not ion of a
problem-reduct ion method, w i t h the fo l lowing example chosen
f rom the doma in of symbolic in tegrat ion.

I n t e g r a l - o f - a - S u m M e t h o d :

The above method decomposes the problem of in tegrat ing a sum
of t w o funct ions in to a set of subproblems, tha t of in tegrat ing
each of the summands. Using the terminology introduced earlier,

the problem P is the integral the two sub-

problems P1 and P2 are respectively,

and the combinator C is addi t ion.

C . U s i n g V e r i f i c a t i o n a s a bas is f o r G e n e r a l i s a t i o n

We now introduce the idea of using verification as a basis for
the general izat ion of problem-reduction methods f rom instances.
We represent an instance of the appl icat ion of a prob lem-
reduct ion method as an ordered pair of states < x , y > ; x represents
an instance of the class of problems to which the method can be
app l ied , and y represents the composit ion of some set of sub-
problems whose solut ion implies the solut ion to the or ig ina l
p rob lem x Given such an instance of an unknown p rob lem-
reduct ion method as a pair of states < x , y > , the general isation
prob lem tha t we address in this paper consists in determin ing th is
general method f rom the instance. As a f i rst step towards the
general izat ion, the program verifies that the solut ion to the com­
posi t ion of the subproblems, y, implies the solut ion to the
or ig ina l problem x. The second (and f inal) step involves the
centra l idea under ly ing the V B L technique, the unknown method
can be determined by generalizing the problem-states x and y,
retaining only those features of these problem-states that were im­
portant for the purpose of verification.

The idea of using ver i f icat ion as a basis for a learning tech­
n ique, is related to s imi lar schemes used in other analytical learn­
ing techniques, specifically Goal-Directed Learning |4],
Explanation-Based Learning [10] and Constraint-Based
Generalization (5). A l l these learning techniques are s imi lar in
t ha t they f i rst generate an explanat ion or proof (here, a
ver i f i ca t ion) of why the given t ra in ing instance (here, instances
represent appl icat ions of problem-reduct ion methods) satisfies a
par t i cu la r goal (here, the goal is showing tha t the decomposit ion
of the problem instance was a correct one), and then they
generalise the instance (here, forming a new problem-reduct ion
method) using the constructed explanat ion or proof to constrain
the general izat ion.

D . O u t l i n e o f t h e p a p e r

• In section 2, we state the generalisation problem for
in fer r ing problem-reduct ion methods f rom examples.

• Sections 3 and 4 conta in two detailed examples of the
app l ica t ion of V B L to the task of inferr ing problem-
reduct ion methods in c i rcui t design and symbol ic i n ­
tegra t ion .

• F ina l l y , in section 5, we summarise by v iewing V B L
f r om a number of di f ferent perspectives, ou t l in ing some
of i ts l im i ta t ions and describing some work in progress
on them.

I I The General isat ion Problem for In fe r r ing
Prob lem-Reduct ion Methods

A . Sta tement o f the Prob lem

Before proceeding to give domain-specific examples of VBL, as
we wil l be doing in sections S and 4, it is important that we
state the generalisation problem that this paper addresses, in
domain-independent terms. Figure II-1 provides such a statement.

B. Discussion

The domain theory required by VBL, in order to construct a
proof or verification of the assertion in figure I I -1 , is a set of
transformations; each transformation can be viewed as a primitive
problem-reduction method, and new problem-reduction methods
can be viewed as being obtained by composing these primitive
methods together in a specific manner. Forming a new problem-
solving method by composing together a sequence of primitive
methods is a general strategy, which has been used as the basis
for many earlier techniques [3, 111. In the next section, we wil l
provide an example from circuit design, which illustrates how we
use this approach to infer new problem-reduction methods.

F i g u r e I I - 1 : The (ieneral izai ion Problem for Inferr ing
Problem-Reduct ion Methods

• Given -

o A language of instances of problems.

o A language of generalizations of problems. Each
generalization in this language describes some
class of problem instances.

o A single posit ive instance of a prob lem-reduct ion,
which is composed of the fo l lowing pair.

1. Specif ication of a problem P in the instance
language.

2. Specif ication of a set of subproblems P. in

the instance language and a combinator C.

o Some domain theory, in the fo rm of a set of
transformations, which can be used to ver i fy
assertions of the form -- the solut ion to the com­
posit ion of the set of subproblems P. implies the
solut ion to the problem P. More fo rma l l y , such
assertions can be stated as

• D e t e r m i n e -

o Descr ipt ion of a problem-reduct ion method in the
general isat ion language tha t is consistent w i t h the
observed instance; th is is computed by generalis­
ing the specifications P and P., using the
ver i f icat ion of the above assertion to constrain
the general isat ion.

618 S. Mahadevan

I I I L e a r n i n g P r o b l e m - R e d u c t i o n M e t h o d s f o r C i r c u i t
D e s i g n

In th is section we describe an appl icat ion of V B L to the task
of acquir ing problem-reduct ion methods for c i rcu i t design. We
begin by fo rmu la t i ng c i rcu i t design as a prob lem-reduct ion
process. We then focus on a par t icu lar prob lem-reduct ion me thod
for designing a smal l class of c i rcui t specif ications, f i rs t descr ibing
the method itself, and subsequently, in a number of detai led
steps, showing how it may be acquired f rom a single t r a i n i n g i n ­
stance.

A . C i r c u i t D e s i g n a s P r o b l e m R e d u c t i o n

In order to view c i rcu i t design as a problem-reduct ion process,
we need to specify the various; components tha t const i tute the
problem-reduct ion model . The language of instances of problems
corresponds to the functional specif ications of c i rcu i ts ; these define
the mapp ing between the i npu t and o u t p u t signals of a c i rcu i t ,
(for example, the ou tpu t of an adder equals the turn of i ts
inputs.) T h e i n i t i a l state is the func t iona l specif icat ion of a cir­
cu i t to be designed, the f ina l state is an imp lementa t ion of the
c i rcu i t specif ication in terms of a set of p r i m i t i v e components,
and a problem-reduct ion method is one t h a t decomposes a given
c i rcu i t specif ication P i n to specifications P i of a number of in ter­
connected ttmpicr c i rcui ts (submodules) The language of
generalisations of problems enhances the expressive capabi l i t ies of
the instance language, by inc lud ing the ab i l i t y to specify arbitrary
boolean funct ions as par t of func t iona l specif ications * * * * We thus
view the problem of learning prob lem-reduct ion methods in c i rcu i t
design, as an instance of the more general prob lem of in fe r r ing
problem-reduct ion methods f r om examples.

B . A n D l u s t r a t i o n o f P r o b l e m - R e d u c t i o n i n C i r c u i t

Design
For the sake of concreteness in the discussion of the V B L

technique, we need to consider a s imple example of a p rob lem-
reduct ion method in c i rcu i t design, and phrase the remainder of
the discussion in terms of th is example. We f i rst describe the
method itself, and then prov ide an example of i ts use.

F igure I I I - l provides a s imple example of a prob lem-reduct ion
method tha t suggests one plausible way of imp lement ing a con­
junction of any two boolean expressions The le f t -hand side
(LHS) of the prob lem-reduct ion method describes the class of
specif ications to which i t can be appl ied. T h e r igh t -hand side
(RHS) of the method suggests bo th a decomposi t ion of the
specif icat ion in the L H S i n t o specif ications for a set of sub-
modules, and also a way of in terconnect ing t hem.

A t ra in ing example t h a t represents an instance of the above
method is given in f igure I I I - 2 . In th is example the c i rcu i t being
designed is a product-of-sums c i rcu i t whose specif icat ion P is as
given in the f igure. T h e context here is t h a t of a Learn ing A p ­
prentice system, wh ich being ignorant of the above general
method for imp lement ing a con junct ion of t w o boolean expres­
sions, may suggest using an A N D gate and t w o OR gates as one
way of imp lement ing the c i rcu i t specif icat ion P. The user steps in
at th is po in t , and disregarding the system's suggestion, provides
his preferred way of imp lement ing the speci f icat ion P, wh ich is to
use a set of N O R gates interconnected as shown in f igure I I I - 2 .

" " F o r reasons of clarity in tb t ensuing discussion of the l e a r n i n g
method, we adopt a simplified representation of functional specifications of
circuits. Specifically, this representation omits any reference to attributes of
signals such as timing' and sncoding. [7] provides further details of this
representation.

The Learning Apprentice views the user-supplied example as
representing an instance of the application of an unknown
problem-reduction method, and sets itself the task of inferring the
general method. The general problem-reduction method that is
inferred from the training instance in figure III-2, is the one we
described earlier, in figure I I I -1 . In the next few paragraphs, we
provide a detailed description of the use of VBL in determining
this general method.

C. Step 1: F o r m i n g the Composed Specif icat ion

The first step in the process of inferring a general problem-
reduction method from a training example is verifying the correct­
ness of the decomposition for the given example. In circuit design,
this corresponds to ensuring that the function computed by the
decomposed circuit meets the original circuit specification. Before
attempting to construct a proof of correctness, we must have
some way of determining the function computed by the decom­
posed circuit. It is to this matter that we turn to next, in our
discussion of VBL.

*<bool-fn1> abort represents An arbitrary boolean function.

S. Mahadevan 619

circuits function from its structure This composed specification,
can be computed by a simple substitution process, and is deter­
mined by the relationships between signals at various points in
the circuit. For example, we can obtain a relationship between
the output signal and the inputs of the product-of-sums circuit in
figure II1-2, by substituting for X and Y in the specification P3,
their relationships to the input signals described in P1 and P2

Carrying this out, we obtain the following composed specification
for the product-of-sums circuit

Several remarks may now be made, in connection with our
definition of a composed specification, which are of importance to
the generalization process that follows.

• In general, the composed specification will be a
reexpresscd version of the original specification. This is
due to constraints on the possible structures that
primitive circuits (problems) can take. For example, in
VLSI design, since circuits naturally invert their in­
puts, specifications in terms of AND and OR boolean
functions must often be reexpressed in order to obtain
implementations using combinations of NAND and
NOR gates. Thus, since we must show that the com-
posed specification implies the original specification,
this motivates the need for a verification of the cor­
rectness of a decomposition.

• The form of the composed specification depends on the
structure of the decomposed circuit (problem). We will
make use of this property, when generalizing each of
the submodule (subproblem) specifications.

D. Step 2: The Process of Ver i f icat ion

Having obtained the composed specification of a decomposed
circuit (problem), the next step in the VBL technique is to con­
struct a proof of the correctness of the decomposition. That is,
we need to verify the truth of the following assertion, which we
repeat from figure I I -1 , and which states that the composed
specification must imply the original specification.

For the product-of-sums circuit example, by substituting its com­
posed and original specifications in the above expression, we ob­
tain the following assertion, whose verification is the topic of this
section.

If we are only concerned about verifying arbitrary assertions of
the above form, it is clear that there exists considerable latitude
in the choice of an appropriate scheme for verification. Many
such schemes have been developed by researchers interested in
circuit verification [12]. However, since we view verification as
only a means to our end of wanting to infer problem-reduction
methods, any scheme we choose must meet the following ad­
ditional requirement - it should be possible to use the proof con-

We now describe a verification scheme satisfying the above re-
quirement We construct the proof as a sequence of
transformations, which will yield the original specification when
applied to the composed specification Each such transformation,
which can be viewed as a primitive problem-reduction method, is
specified by its precondition - the class of specifications to which
it can be applied - and its postcondition, which describes the
result of applying the transformation. Constructing a verification
as a sequence of such transformations satisfies the above require-
ment, since it enables us to determine from the sequence a
generalisation of the circuit specifications P and Pi, using
constraint propagation. Two examples of transformations that we
will use in the current example are given below.

Using the scheme mentioned above, we now provide, for the
product-of-sums circuit example, a verification of the correctness
of the user-suggested decomposition in figure III-2.

In summary, we have now cast the problem of verification as one
of a search for a sequence of transformations, which will produce
the original specification when applied to the composed specifica­
t ion.****

By composing the specifications of each of the submodules
constituting a given circuit, in a way that depends on the inter-

620 S. Mahadevan

E. Step 3: Determin ing the Generalized Composed
Specif ication

In order to infer a new problem-redurt ion method from the
given training example, we need to compute both its precondition
(the IF part), and its postcondition (the THEN part). If we
regard the original and composed specifications as instances of the
precondition and postcondition of the new method, then clearly,
the next step consists in generalising these specifications; further­
more, as we mentioned earlier, we would like to constrain the
generalisation using the proof of the correctness of the decomposi­
tion.

In this section we describe how, given the verification proof as
a sequence of transformations, the composed specification may be
generalised using a restricted version of a well-known technique,
constraint backpropagatton(CBP). CBP is a technique for deter­
mining the domain of a sequence of operators that produces some
constrained range of states |6|. In our case, transformations can
be viewed as operators, but we have no constraint on the range
except that it match any arbitrary functional specification, which
we denote by (since we are learning arbitrary
problem-reduction methods, and not sequences that lead to
"solved" states, as in (4j.) The domain of the sequence, in our
case, is a generalised composed specification that wil l produce,
upon application of the sequence, a corresponding generalised
original specification.

The problem with using weakest precondition techniques to
compute the domain of a sequence is that, in many cases, dis­
junctive expressions are produced. In particular, disjuncts arise
whenever sequences contain operators that were applied to only a
part of the expression representing the problem state. For ex­
ample, in the verification sequence above, the first application of
the Remove-Double-Negation transformation was to a subexpres­
sion matching its precondition. Disjunctive expressions cause two
kinds of problems. First, since the number of disjuncts can grow
exponentially in the length of the sequence, storing all of them is
a non-trivial issue. Second, even if all the disjuncts could be
stored, it is quite likely that some of the disjuncts represent in­
it ial situations in which the sequence is an inefficient one to use.
(For example, we have observed this problem crop up when using
goal regression to compute the weakest precondition of a plan;
some of the disjuncts represent initial states in which the plan is
a very inefficient one to apply.)

We illustrate below a simple solution to this problem that
uses information regarding how transformations were applied (in
particular, their bindings), from the verification of the training in­
stance, to prune out some disjuncts during the CBP process. (For
example, the expression (NOT (NOT (NOT (NOT <bool-fn>))))
is a valid domain description of a sequence of two Remove-
Double-Negations, which is not generated in the CBP computa­
tion below.)

Compu t ing the generalized Composed Specification

To begin with, the expression <bool-fnl> above is produced
by intersecting the range of the first Remove-Double-Negation
transformation (any boolean function) with the range of the en­
tire sequence (<any-func-spec>). Installing this expression as the
second argument to the AND expression (the original
specification), as we have done above, reflects the context in
which this transformation was used in the forward direction
(during verification). In the first step above, we backpropagate
<bool-fnl> over this transformation, keeping the expression sur­
rounding it unchanged. Similar remarks hold for the occurrence
of <bool-fn2> above, and for the backpropagation over the
second transformation. Finally, backpropagating over De-
Morgan's does not present a similar problem, since its range in­
tersects onto the expression back propagated over the first two
transformations.***** The generalised composed specification it-
self is of little use to us; what we really need are generalisations
of the specifications of the submodules (in general, subproblems)
that constitute the product-of-sums circuit in figure III-2. These
generalised specifications are shown below.**

Generalised specifications of the submodules in f igure
I I I - 2

Comparing the generalised submodule specifications in figure III-1
with the submodule specifications given in figure III-2, we see
that the important feature of the two submodule specifications P1

and P2 (the two input NOR gates in figure II1-2), which enabled
the verification to carry through, is that they both be the
negation of some boolean function.

F. Step 4: Determin ing the (Generalized Or ig inal
Specification

In this section, we describe methods for generalizing the
original specification, given that the generalized composed
specification has already been computed. One simple method in­
volves storing the variable bindings generated while computing
the generalised composed specification (for example, the subexpres­
sion (OR lnput3 Input4) was replaced by <bool-fnl>), and apply­
ing these substitutions to the original specification. Another
method, which illustrates better that the composed and original
specifications form the domain and range of a sequence of trans­
formations, involves, as we show below, reapplying the transfor­
mation sequence to the generalised composed specification.

***** Although Implementing this procedure has been an easy task, at­
tempts at formalising it have not yet been successful.

**Figuring out the generalisation of each submodule specification from the
generalised composed specification is straightforward, provided some book-
keeping was done while forming the composed specification in the first
place.

S. Mahadevan 621

Compar ing the generalised original specification - the last expres­
sion in the above sequence - w i th the or iginal specif ication P in
f igure II1-2, we see that a generalization of the or ig ina l specifica­
t ion has been achieved from a conjunct ion of dis junct ions to a
conjunction of any boolean functions.

G . S t e p 5 : F o r m i n g t h e N e w P r o b l e m - R e d u c t i o n M e t h o d

We showed above how the or ig inal specification P and the
submodule specification P. could be generalized The f ina l step is
to fo rm a new problem-reduction method that is based on these
generalised specifications. It is clear tha t the generalized or ig ina l
specif ication w i l l form the precondit ion, or LHS, of the new
problem-reduct ion method. Also, the postcondi t ion, or RHS, of
the new method can be formed f rom the generalized submodule
specifications and the combinator C. For our present example, the
new problem-reduction method that is inferred (f rom the t ra in ing
instance in f igure I I I -2) is the one given in f igure I I I - 1 .

I V L e a r n i n g P r o b l e m - R e d u c t i o n M e t h o d s f o r S y m b o l i c
I n t e g r a t i o n

In this section we w i l l briefly i l lustrate how the same V B L
technique can be used to learn problem-reduct ion methods in
symbolic integrat ion. This w i l l provide some jus t i f i ca t ion for our
c la im that V B L is general technique, and can be appl ied to more
than one domain. Fur ther details of the steps sketched below are
described in [1S|.

A . S y m b o l i c I n t e g r a t i o n a s P r o b l e m - R e d u c t i o n

We begin by viewing the process of in tegrat ion in terms of
problem-reduct ion. To this end, note tha t the language of i n ­
stances of problems in symbolic in tegrat ion is the language of i n ­
tegrals of mathemat ical functions. The language of generalizations
of problems includes the abi l i ty to specify arbitrary funct ions as
par t of integrals. Problem-reduct ion methods here are the stan­
dard rules of integrat ion * * * We may thus view the problem of
learning integrat ion methods f rom examples, as an instance of the
more general problem of inferr ing problem-reduct ion methods f rom
examples.

B . A n I l l u s t r a t i o n o f P r o b l e m - R e d u c t i o n i n S y m b o l i c

I n t e g r a t i o n

Consider the fo l lowing example of a problem in Symbol ic I n ­
tegra t ion, and a way of decomposing the prob lem.

***Such as the one we described in sect ion l.B.

The or ig ina l problem P has been decomposed above i n to t w o sub-

problems, P1, wh ich is and p2 , which is

The combinator C above is addi t ion The general isat ion prob lem

here lies in determin ing a general method, by general ising the

specifications P and P., which could produce the above decom­

posi t ion. In the next few paragraphs, we summarise the main

steps involved in inferr ing the general me thod ,

f rom the above

t ra in ing instance.

C . S t e p s 1 & 2 : F o r m i n g t h e C o m p o s e d S p e c i f i c a t i o n a n d
V e r i f i c a t i o n

Here, unl ike the circuits domain , we do not need to construct
the composed specif icat ion, since the combina to r (add i t ion)
specifies tha t exp l ic i t ly . We can proceed direct ly to the ver i f ica­
t ion step.

We now describe what ver i f icat ion means in symbol ic in tegra­
t i on . We can make use of the fo l lowing result , wh ich asserts
tha t i f the derivat ives of two integrat ion problems are shown to
be equal, then the solut ions to the two problems are ident ica l .
(The reasoning is tha t i f the der ivat ives of two funct ions are
equal, then they differ at most by a constant. T w o solut ions to
an indef in i te in tegrat ion problem which differ by a constant are
both instances of a more general fami ly of solut ions, F (x) + a
constant.) We may thus take as the problem of ver i f icat ion in
symbolic in tegra t ion , the task of showing tha t the derivative of
the composed specif ication is equal to the derivative of the
or ig ina l specif icat ion. Given the above result , this w i l l imp ly the
equivalence of the or ig ina l specif ication and the composed
specif ication. As earlier, we can proceed to veri fy instances of
problem-reduct ions using a sequence of t ransformat ions, except in
th is case t ransformat ions correspond to rules of differentiation. An
example of such a t ransformat ion , which wou ld be useful in
ver i fy ing the above problem-reduct ion instance, is given below.

D e r i v a t i v e - o f - a - S u m

P r e c o n d i t i o n : P o s t c o n d i t i o n :

D . S t e p S : D e t e r m i n i n g t h e G e n e r a l C o m p o s e d
S p e c i f i c a t i o n

Given a ver i f icat ion of a problem-reduct ion in symbol ic i n ­
tegrat ion as a sequence of t ransformat ions of the k ind shown
above, we can use a procedure completely analogous to the one

described earlier in section 3 5 to determine the generalized com-
posed specif ication As earlier, we have to restrict the C B P proce­
dure in order to avoid generating disjuncis sing this procedure,
we w i l l obta in the fo l lowing generalized composed specif icat ion,

Compar ing this w i t h the composed

specif icat ion we see the general izat ion tha t
has been achieved.

£ . S t e p 4 : D e t e r m i n i n g t h e G e n e r a l i s e d O r i g i n a l
S p e c i f i c a t i o n

Hav ing obta ined the generalized composed speci f icat ion, the
generalised or ig ina l specif ication can be determined, once again, in
ei ther of the t w o ways described in section 3.6. T h a t is, we may
use the b indings obta ined dur ing the C B P compu ta t i on of the
generalised composed specif icat ion, or reapply the sequence of
t ransformat ions used in the ver i f icat ion to the generalised com­
posed speci f icat ion. Using ei ther of these t w o ways, we w i l l ob­
ta i n the fo l low ing generalised or ig ina l speci f icat ion,

622 S. Mahadevan

F. Step 5: F o r m i n g the new In teg ra t i on method

Finally, given the generalised composed and generalised
original specification as above, we can form the new integration
method by defining the latter to be its precondition and the
former to be its postcondition. This is shown below.****

New M e t h o d :

V Conclusions

A . D i f fe rent Perspectives for v iewing V B L

We begin summarizing the VBL technique by viewing it from
a number of different perspectives.

VBL as learning problem-solving methods: VBL can be
described as a general technique for learning problem-solving
methods. As it is an analytical generalization technique, one of
its nice features is that it produces justifiable generalizations |4|,
as opposed to empirical generalization techniques, such as
described in [14], which rely primarily on detecting syntactic
similarities among training instances.

VBL at forming macros: Another way of thinking about what
VBL does is by viewing each problem-reduction method as being
constructed as a macro of the sequence of transformations used in
the verification. In this sense VBL seems similar to earlier work
on plan generalization systems like STRIPS [3], but operating in
the problem-reduction space, as opposed to the state-space. On
the other hand, it is important to note that any proof technique
for generating verifications can be used (provided, of course, that
it meets the requirement that we imposed in section 3.4), and
using a sequence of transformations is just one such scheme.

VBL at learning plant Circuit design may be viewed as a
planning problem. From this perspective each submodule becomes
a planning method, and a circuit becomes a network of such
methods. Given a particular plan used in a specific situation, one
can generalize it by generalizing the class of situations in which
exactly the same plan could be applied, which is what MAC-
ROPS did |3|. |7] shows how this may be done for circuit design.
This highlights an interesting new feature of VBL, which is the
ability to generalize plans by generalizing the individual methods
in the plan. For example, in section 3, the specification of the
NOR gate was generalized to a negation of any boolean function,
which really represents a class of possible submodules (for eg., a
NAND gate). Thus, we can describe VBL as a technique for
generalizing plans by generalizing the subgoals achieved by the in­
dividual methods constituting a given plan.

B. L im i t a t i ons of the technique

We must now make clear some important requirements that
need to be fulfilled in order to apply VBL to some given domain.
We summarize below some of these requirements. [7] describes, in
more detail, problems that are anticipated in using this and other
related techniques in real-world situations.

Underlying Domain Theory : T h e success of the V B L tech­
nique rests on i ts capab i l i t y to construct a proof of the correct­
ness of a decomposi t ion, wh ich impl ies the existence of a strong
under ly ing theory of the doma in (such as Circuit Analysis).
Most of the theory tha t is needed, for example, the transfor­
mat ions and the ab i l i t y to propagate constra ints , we assume are
par t of a know ledge-based system on top of wh ich the Learn ing
Apprent ice w i l l be designed. W h i l e th is is t rue for the specific
Learn ing Apprent ice system L E A P , there are domains, such as
Well-Log Interpretation, where the lack of a strong under ly ing

domain model prevents the successful app l ica t ion of pure ana ly t i ­
cal general isat ion methods [15]. Th i s in t u rn mot ivates the need
for an empirical component in the overa l l learning system.

Adequacy of the Verification Technique: One i m p o r t a n t ques­
t i on , which d i rect ly affects the usefulness of V B L , is - how hard
is i t to ver i fy a rb i t ra ry problem decomposit ions? I t m igh t be t ha t
a very large number of t rans format ions are needed to cover a
wide range of problems. One related issue, wh ich we have not
discussed in th is paper, is the existence of multiple ways of
generating verification proofs For example, an a l ternat ive scheme
for ver i fy ing the product-of -sum c i rcu i t example is t ha t of truth
trees [16], wh ich has certa in desirable propert ies (such as
guaranteed t e rm ina t i on) , mak ing the issue of cont ro l an easy one;
however, these propert ies hold only for the restr icted class of
combinational c i rcu i ts . More general ly, we believe tha t construct­
ing ver i f icat ion proofs as a sequence of t ransformat ions is a weak
bu t general way of approaching the ver i f i ca t ion prob lem. By ex­
p lo i t i ng the propert ies of the par t i cu la r doma in (such as the func­
t i ona l specif ications of the product-of -sums c i rcu i t being boolean
expressions), we may be able to come up w i t h more power fu l
(and more restr icted) schemes for ve r i f i ca t ion .

C . F n t n r e R e s e a r c h T o p i c s

We now describe some avenues for fu r ther research tha t we
are cur rent ly exp lor ing .

Extending Weakest Precondition Techniques: One of the
problems tha t we described earl ier had to do w i t h the appearance
of d is junct ive expressions dur ing the C B P compu ta t i on Some of
the dis juncts, we said, correspond to i n i t i a l s i tuat ions in wh ich i t
is correct, bu t not efficient, to use the sequence. It seems tha t we
need more power fu l ana ly t ica l tools in order to learn the class of
s i tuat ions in wh ich it is eff icient to use a macro (as opposed to
when it can be used). W o r k is in progress on f o r m u l a t i n g th is
problem w i t h i n the f ramework of Goal-Directed Learning |4), by
p rov id ing the system w i t h an expl ici t de f in i t ion of the "class of
states in wh ich i t is eff icient to apply a mac ro " , and hav ing th is
aid the general izat ion process.

Extending the notion of Verification: A l t hough we have for­
mula ted the problem of ver i f i ca t ion as one of f i nd ing a sequence
of t ransformat ions, i t is i m p o r t a n t to note tha t the concept of
ver i f icat ion is more general, and , in the extreme, i t could be
viewed as a restr icted f o rm of theorem-proving, (the assertion be­
ing proved is the invar iance proper ty of problem-reduct ion
methods.) Also, the connect ion between work on prov ing c i rcui ts
correct, and tha t of general iz ing prob lem-reduct ion methods seems
an interest ing one to pursue. In par t i cu la r , we need to state more
precisely the add i t i ona l requi rement t h a t we imposed on proof
techniques for ver i f icat ion - t h a t they focus on those features tha t
were i m p o r t a n t in order for the proof to wo rk .

****Note that this is exactly the Integral-of-a-sum method that we Il­
lustrated in section I.B.

S. Mahadevan 623

V I A c k n o w l e d g m e n t s

1 thank the fol lowing people for their cont r ibut ions to the
fo rm and content of this paper T o m Mi t che l l , for many ideas
and for greatly improv ing the presentation of the paper. Saul
Amare l and Natesa Sridharan, for their careful reading of a dra f t .
Lou Steinberg and other members of the Rutgers A I / V L S I
project, for many useful discussions. Smadar Kedar -Cabel l i ,
Prasad Tadepa l l i and Rich Keller, for many interest ing discussions
on analy t ica l learning techniques.

References

1 M i t che l l , T, Steinberg, L and Shulman, J "A Knowledge-
Based Approach to Design" In IEEE Principles of
Knowledge-Based Systems Denver. December, 1984.

[2] Barstow, D "An Experiment in Knowledge-Based
Au tomat i c Programmin g." Artificial Intelligence 12.2
(1979) 73-119

[3) Fikes, R., Har t , P and Nilsson, N "Learning and Execut­
ing Generalized Robot Plans." Artifical Intelligence. 3
(1972) 251-288.

|4| M i t che l l , T. "Learning and Problem-Solving " In IJCAI-83.
August , 1983, 1139-1151

|5| M i n t o n , S "Constraint-Based Generalization " In AAAl-84.
Aus t in , Texas, August, 1984, 251-254

|6] Utgof f , P. and Mi tche l l , T. "Acquis i t ion of Appropr ia te
Bias for Induct ive Concept Learning." In AAA1-82. August ,
1982, 414-417.

|7] M i t che l l , T . , Mahadevan, S. and Steinberg, L., " L E A P - A
Learning Apprentice for VLS I Design" , to appear in
IJCA1-85

8] Amare l , S., " A n Approach to Heuristic Problem-Solv ing
and Theorem-Prov ing in the Proposit ional Calculus." In
Systems and Computer Science. Un iv . of To ron to Press,
1967, .

9] Ni lsson, N. Problem-Solving Methods in Artificial Intel­
ligence. M c G r a w - H i l l , 1971.

10] deJong, G. " A u t o m a t i c Schema Acquisi t ion in a Na tu ra l
Language Env i ronment . " In AAAI-82. P i t tsburgh, 1982,
410-413.

11] Silver, B. "Learn ing Equat ion Solving Methods f rom
E x a m p l e s " In IJCA1-88 August, 1983, 429-431.

12] Bar row, H. "P rov ing the Correctness of D ig i ta l Hardware
Designs." In AAAI-88. Washington D C , 1983, 17-21.

13] Mahadevan, S. "Ver i f icat ion-Based Learning: A Generaliza­
t ion Strategy for In ferr ing Problem-Reduct ion Methods . " ,
Technical report LCSR-TR-66 , Rutgers Univ , 1985.

14] Porter , B. and Kib ler , D. "Learning Operator
Transformat ions. " In AAAl-84. Aus t in , Texas, August ,
1984, 278-282.

15] Smi th , R G , W ins ton , H.A., Mi tche l l , T M. , and
Buchanan, B.C. , "Representat ion, Use and Generat ion of
Expl ic i t Just i f icat ions for Knowledge Base Ref inement" ,
submi t ted to IJCA185

16] Jefferey, R. . Formal Logic: Its Scope and Limits.
M c G r a w - H i l l , 1967.

