Verification-Based

Learning:

A Generalisation Strategy for

Inferring Problem-Reduction

Sridhar

Computer Science Department
Rutgers University

New Brunswick,

Abstract

A major impediment to the development of high-performance
knowledge-based systems arises from the prohibitive effort in-
volved in equipping these systems with a sufficient set of
problem-solving methods. Thus, one important research problem
in Machine Learning has been the study of techniques for infer-
ring problem-solving methods from examples. Although a number
of techniques for learning problem-solving methods have been
described in the literature, all of them assume a state-space
model of problem-solving. In this paper we describe a new tech-
nique for learning problem-reduction methods, Verification-Based
Learning (VBL), which extends the earlier techniques to the
problem-reduction formulation of problem-solving. We illustrate
the VBL technique with examples drawn from circuit design and
symbolic integration.

I Introduction
A. Motivation

Knowledge-based systems require a large number of
domain-specific problem-solving methods for achieving high Ilevels
of performance. The VEXED knowledge-based system for circuit
design |I|, and the PECOS system for knowledge-based automatic
programming |2] are a few examples of systems that need a large
set of domain-specific problem-solving methods. Building
knowledge-based problem-solvers has thus been a laborious
process, because of the effort needed in equipping these systems
with a sufficient set of problem-solving methods.

Earlier researchers in the field of Machine Learning have ad-
dressed the knowledge acquisition issue by developing a number
of techniques for learning problem-solving methods from examples;
however, all these techniques assume a state-space problem-solving
model. For example, in the plan generalisation component of
STRIPS [3|, a planning method is viewed as a mapping, from an
initial state description into a terminal state description; new
methods are constructed as macros of primitive planning methods.
Work on learning control knowledge for selecting preferred
methods, specifically (4, 6], has also adopted a state-space model:
the knowledge specifying when a method should be applied is
determined by computing the weakest precondition of a sequence,
containing that particular method, which maps some initial state
into a specific goal state (such as a solved problem, or a won
state).
certain

In order to cope with the complexity of

*This material is bawd on work supported by the Defease Advanced
Research Projects Agency under Research Contract N0O014-S1.K-0394. The
views and conclusions contained in tab document are those of the author
and should not be interpreted as necessarily representing the official policies,
either expressed or implied, of the Defease Advanced Research Projects
Agency or the U.S. Government.

Methods
Mahadevan*
NJ 08903
design planning domain-. knowledge' Pa - p A< <Iwr* MI SUch

domains, have frequently adopted a problem reduction approach to
solving problems Thus we need to develop techniques for learn-
ing problem-solving methods which are appropriate to the
problem-reduction formulation of problem-solving The primary
contribution of this paper is to present a new technique for infer-
ring general problem-reduction methods from training examples of
decompositions of specific problems. This technique, Verification-
Based Learning(VBL), can be viewed as an extension of earlier
techniques, particularly that of |3, 6), to the problem-reduction
formulation of problem-solving.

This research arose in the context of developing LEAP, a
Learning Apprentice system for circuit design |7] By a Learning
Apprentice system, we mean one that is meant to act as an
interactive problem-solving aid, and is specifically designed to
augment its knowledge base by monitoring and analyzing the
problem-solving activity of its users.** In those situations, where
it is unable to provide advice, or when its advice is rejected by
the user, LEAP will augment its knowledge of circuit design, by
analyzing and generalizing the solution provided by the user to
form a new problem-reduction method. At present we have im-
plemented a prototype version of the LEAP system. The ex-
ample of a problem-reduction method in circuit design that we
describe later in this paper is one of several instances of circuit
decompositions we have used to test this prototype version.

B. The Problem-Reduction Formulation of
Problem-Solving

We now give a more precise description of the model of
problem-solving that we use in this paper. The problem-reduction
formulation of problem-solving has been well-studied |8, 9].*** In
this formulation, states describe problem instances, the initial
state is the description of the problem being solved, the final
state is a solution to the original problem, and a problem-
reduction method, which is a mapping between states, is one that
decomposes a given problem into a number of simpler sub-
problems, such that the solution to the original problem it ob-
tained by tome eompotition of the solutions to each of the
subproblems.

For the purposes of this paper, we define problem-reduction
methods to be the following mapping,

P M— C{P,P,..P\}

*Thus, gaining expertise by "looking over their shoulders"

***The distinction between state space methods and problem-reduction
methods is alternatively described in (6] as tbat between production-type
methods and reduction-type metbods.

where P is the specification of a problem (in some language),
which is decomposed by the method M into a set of subproblems
Pi...,Pn. The combinator C describes how the solutions to each
of the subproblems P; are to be combined to yield the solution to
the original problem. We now illustrate the abstract notion of a
problem-reduction method, with the following example chosen

from the domain of symbolic integration.

Integral-of-a-Sum Method

Jin(a) + fyle)dz — M~ [1 (2)dx + [£(z)dz

The above method decomposes the problem of integrating a sum
of two functions into a set of subproblems, that of integrating
each of the summands. Using the terminology introduced earlier,

the problem P is the integral f“’ﬂ::r]-# f.{z)}dz, the two sub-
problems P; and P, are [f,(z)dz and] f{2}dz respectively,
and the combinator C is addition.

C. Using Verification as a basis for Generalisation

We now introduce the idea of using verification as a basis for
the generalization of problem-reduction methods from instances.
We represent an instance of the application of a problem-
reduction method as an ordered pair of states <x,y>; x represents
an instance of the class of problems to which the method can be
applied, and vy represents the composition of some set of sub-
problems whose solution implies the solution to the original
problem x Given such an instance of an wunknown problem-
reduction method as a pair of states <x,y>, the generalisation
problem that we address in this paper consists in determining this
general method from the instance. As a first step towards the
generalization, the program verifies that the solution to the com-
position of the subproblems, 'y, implies the solution to the
original problem x. The second (and final) step involves the
central idea underlying the VBL technique, the unknown method
can be determined by generalizing the problem-states x and vy,
retaining only those features of these problem-states that were im-
portant for the purpose of verification.

The idea of using verification as a basis for a learning tech-
nique, is related to similar schemes used in other analytical learn-
specifically Goal-Directed Learning |4],
Explanation-Based Learning [10] and Constraint-Based
Generalization (5). All these learning techniques are similar in
that they first generate an explanation or proof (here, a
verification) of why the given training instance (here, instances
represent applications of problem-reduction methods) satisfies a
particular goal (here, the goal is showing that the decomposition
of the problem instance was a correct one), and then they
generalise the instance (here, forming a new problem-reduction
method) using the constructed explanation or proof to constrain

ing techniques,

the generalization.

D. Outline of the paper

* In section 2, we state the generalisation problem for
inferring problem-reduction methods from examples.

+ Sections 3 and 4 contain two detailed examples of the
application of VBL to the task of inferring problem-
reduction methods in circuit design and symbolic in-

tegration.

Finally, in section 5, we summarise by viewing VBL
from a number of different perspectives, outlining some
of its limitations and describing some work in progress

on them.

S. Mahadevan 617

i The Generalisation Problem for Inferring
Problem-Reduction Methods

A. Statement of the Problem

Before proceeding to give domain-specific examples of VBL, as
we will be doing in sections S and 4, it is important that we
state the generalisation problem that this paper addresses, in
domain-independent terms. Figure |I-1 provides such a statement.

The (ieneralizaiion Problem for Inferring
Problem-Reduction Methods

Figure 11-1:

- Given -

o A language of instances of problems.

o A language of generalizations of problems. Each
generalization in this language describes some
class of problem instances.

o A single positive instance of a problem-reduction,
which is composed of the following pair.

1. Specification of a problem P in the instance
language.

2. Specification of a set of subproblems P. in

the instance language and a combinator C.

o Some domain theory, in the form of a set of
transformations, which can be used to verify
assertions of the form -- the solution to the com-
position of the set of subproblems P. implies the
solution to the problem P. More formally, such
assertions can be stated as

C{P,Py,.. Py} => P

« Determine -

o Description of a problem-reduction method in the
generalisation language that is consistent with the
observed instance; this is computed by generalis-
ing the specifications P and P., using the
verification of the above assertion to constrain
the generalisation.

B. Discussion

The domain theory required by VBL, in order to construct a
proof or verification of the assertion in figure II-1, is a set of
transformations; each transformation can be viewed as a primitive
problem-reduction method, and new problem-reduction methods
can be viewed as being obtained by composing these primitive
methods together in a specific manner. Forming a new problem-
solving method by composing together a sequence of primitive
methods is a general strategy, which has been used as the basis
for many earlier techniques [3, 111. In the next section, we will
provide an example from circuit design, which illustrates how we
use this approach to infer new problem-reduction methods.

618 S. Mahadevan

Il Learning Problem-Reduction Methods for Circuit
Design

In this section we describe an application of VBL to the task
of acquiring problem-reduction methods for circuit design. We
begin by formulating circuit design as a problem-reduction
process. We then focus on a particular problem-reduction method
for designing a small class of circuit specifications, first describing
the method itself, and subsequently, in a number of detailed
steps, showing how it may be acquired from a single training in-
stance.

A. Circuit Design as Problem Reduction

In order to view circuit design as a problem-reduction process,
we need to specify the various; components that constitute the
problem-reduction model. The language of instances of problems
corresponds to the functional specifications of circuits; these define
the mapping between the input and output signals of a circuit,
(for example, the output of an adder equals the tun of its
inputs.) The initial state is the functional specification of a cir-
cuit to be designed, the final state is an implementation of the
circuit specification in terms of a set of primitive components,
and a problem-reduction method is one that decomposes a given
circuit specification P into specifications P; of a number of inter-
connected ttmpicr ~ circuits (submodules) The language of
generalisations of problems enhances the expressive capabilities of
the instance language, by including the ability to specify arbitrary
boolean functions as part of functional specifications **** We thus
view the problem of learning problem-reduction methods in circuit
design, as an instance of the more general problem of inferring
problem-reduction methods from examples.

B. An Dlustration of Problem-Reduction in Circuit
Design

For the sake of concreteness in the discussion of the VBL
technique, we need to consider a simple example of a problem-
reduction method in circuit design, and phrase the remainder of
the discussion in terms of this example. We first describe the
method itself, and then provide an example of its use.

Figure Ill-1 provides a simple example of a problem-reduction
method that suggests one plausible way of implementing a con-
junction of any two boolean expressions The left-hand side
(LHS) of the problem-reduction method describes the class of
specifications to which it can be applied. The right-hand side
(RHS) of the method suggests both a decomposition of the
specification in the LHS into specifications for a set of sub-
modules, and also a way of interconnecting them.

A training example that represents an instance of the above
method is given in figure IlI-2. In this example the circuit being
designed is a product-of-sums circuit whose specification P is as
given in the figure. The context here is that of a Learning Ap-
prentice system, which being ignorant of the above general
method for implementing a conjunction of two boolean expres-
sions, may suggest using an AND gate and two OR gates as one
way of implementing the circuit specification P. The user steps in
at this point, and disregarding the system's suggestion, provides
his preferred way of implementing the specification P, which is to
use a set of NOR gates interconnected as shown in figure Il1-2.

""For reasons of clarity in tbt ensuing discussion of the learning
method, we adopt a simplified representation of functional specifications of
circuits. Specifically, this representation omits any reference to attributes of
signals such as timing' and sncoding. [7] provides further details of this
representation.

The Learning Apprentice views the user-supplied example as
representing an instance of the application of an unknown
problem-reduction method, and sets itself the task of inferring the
general method. The general problem-reduction method that is
inferred from the training instance in figure 111-2, is the one we
described earlier, in figure Il1-1. In the next few paragraphs, we
provide a detailed description of the use of VBL in determining
this general method.

Pigure II1I-1: A Problem-Reduction Method for Crreun
Deagn
LHS: IF the functional specification o be implemented
is®*

(BQUALS ﬂ)u? {AND <bool-fnd> <bool-fni>))

RES: THEN one possible implementation is

Spec: P2
(iwni v Nl ——

with specifications of the three submodules ms follows:

P, (EQUALS X (NOT <baol-fn2>) }
P,: [EQUALS Y (NOT <bool-fnl>))
P,: (EQUALS <out> (NOT (OR X Y)))

Figure HMI-2: A Training Instance of the Problem-Reduction

Method in figure IIJ-1

Functiona] specification to be Implemented P:

(BRUALE Qutput (AND (OR Input, Inputy)
(DR Input.a Iaputy)))

User's Solation: Product-of-Bums circuit

where

P,: (EQUALS X [NOT (OR Imput, Input,)))
P,: (EQUALS Y {NOT (OR Input, Input,}})
P,: (EQUALS Qutput (NOT (OR X Y}) }

C. Step 1: Forming the Composed Specification

The first step in the process of inferring a general problem-
reduction method from a training example is verifying the correct-
ness of the decomposition for the given example. In circuit design,
this corresponds to ensuring that the function computed by the
decomposed circuit meets the original circuit specification. Before
attempting to construct a proof of correctness, we must have
some way of determining the function computed by the decom-
posed circuit. It is to this matter that we turn to next, in our
discussion of VBL.

*<bool-fn1> abort represents An arbitrary boolean function.

By composing the specifications of each of the submodules
constituting a given circuit, in a way that depends on the inter-
RULEAER] of the cubmiibes wo san b o e tlioaes ol the
circuits function from its structure This composed specification,
can be computed by a simple substitution process, and is deter-
mined by the relationships between signals at various points in
the circuit. For example, we can obtain a relationship between
the output signal and the inputs of the product-of-sums circuit in
figure 111-2, by substituting for X and Y in the specification Pj,
their relationships to the input signals described in Py and P;
Carrying this out, we obtain the following composed specification
for the product-of-sums circuit

Dutput = (NOT (DR (NOT (OR Input, Inputgz))
¢{NOT (DR In;m{‘.3 Input‘)))))

Several remarks may now be made, in connection with our
definition of a composed specification, which are of importance to
the generalization process that follows.

* In general, the composed specification will be a
reexpresscd version of the original specification. This is
due to constraints on the possible structures that
primitive circuits (problems) can take. For example, in
VLSI design, since circuits naturally invert their in-
puts, specifications in terms of AND and OR boolean
functions must often be reexpressed in order to obtain
implementations using combinations of NAND and
NOR gates. Thus, since we must show that the com-
posed specification implies the original specification,
this motivates the need for a verification of the cor-
rectness of a decomposition.

The form of the composed specification depends on the
structure of the decomposed circuit (problem). We will
make use of this property, when generalizing each of
the submodule (subproblem) specifications.

D. Step 2: The Process of Verification

Having obtained the composed specification of a decomposed
circuit (problem), the next step in the VBL technique is to con-
struct a proof of the correctness of the decomposition. That is,
we need to verify the truth of the following assertion, which we
repeat from figure 11-1, and which states that the composed
specification must imply the original specification.

C{P Py Py} => P

For the product-of-sums circuit example, by substituting its com-
posed and original specifications in the above expression, we ob-
tain the following assertion, whose verification is the topic of this
section.

(NOT (DR (NOT (OR Input, Inputy))
{NOT (OR Inputyg Input ‘) ¥

(AND (OR Input, Inputgy)
(0R Inputy Input,))

If we are only concemed about verifying arbitrary assertions of
the above form, it is clear that there exists considerable latitude
in the choice of an appropriate scheme for verification. Many
such schemes have been developed by researchers interested in
circuit verification [12]. However, since we view verification as
only a means to our end of wanting to infer problem-reduction
methods, any scheme we choose must meet the following ad-
ditional requirement - it should be possible to use the proof con-

S. Mahadevan 619

atructed by fhe everificaiecn cebhemie o 0 ws on these fratares of
the apecifirationn thot were needed for the proof (o carry
through ***

We now describe a verification scheme satisfying the above re-
quirement We construct the proof as a sequence of
transformations, which will yield the original specification when
applied to the composed specification Each such transformation,
which can be viewed as a primitive problem-reduction method, is
specified by its precondition - the class of specifications to which
it can be applied - and its postcondition, which describes the
result of applying the transformation. Constructing a verification
as a sequence of such transformations satisfies the above require-
ment, since it enables us to determine from the sequence a
generalisation of the circuit specifications P and P;, using
constraint propagation. Two examples of transformations that we
will use in the current example are given below.

De-Morgan’s Law:
Precondition:

(NOT (OR <bool-fnl> <bool-fn3>))

Posteondition:
(AND (NOT <boel-fmnl1))
{NOT <bool-£fn2>))

Remove-Double-Negation:
Precondition:

(NOT (NOT <bool-fn>))

Posteondition:
<bool-fn)>

Using the scheme mentioned above, we now provide, for the
product-of-sums circuit example, a verification of the correctness
of the user-suggested decomposition in figure I11-2.

Verification as a ence of Transformations

{NOT {OR (NOT (OR Ioput; Inputg))
(NOT (OR Inputy Inputy))))
| De-Morgan

(AND (NOT (NOT (OR Input; Isputg)))
(NDT (NOT (OR Inputy Input))))

1 Remove-Double-Negation
(AND (OR Inputl Input.a)
(NOT (NOT (OR Input' Input‘))) }
! Remove-Double-Negation

(AND (OR Imput; Inputy)
(DR Input.’ Input.‘))

In summary, we have now cast the problem of verification as one
of a search for a sequence of transformations, which will produce
the original specification when applied to the composed specifica-
tion. ****

v30 Thuth iabies W A mimpls example of & schems that conid br weed o
vorify tha above weesrtion, but which dosw mot mest the above requirsiment.

*550Alhough 0o Mention of it wil be made in thia paper, wa ar asum-
Inlhttlhunnlmhmmﬂdbyumwmlm.
uch a0 muens-onds analysis.

620 S. Mahadevan

E. Step 3: Determining the Generalized Composed
Specification

In order to infer a new problem-redurtion method from the
given training example, we need to compute both its precondition
(the IF part), and its postcondition (the THEN part). If we
regard the original and composed specifications as instances of the
precondition and postcondition of the new method, then clearly,
the next step consists in generalising these specifications; further-
more, as we mentioned earlier, we would like to constrain the
generalisation using the proof of the correctness of the decomposi-
tion.

In this section we describe how, given the verification proof as
a sequence of transformations, the composed specification may be
generalised using a restricted version of a well-known technique,
constraint backpropagatton(CBP). CBP is a technique for deter-
mining the domain of a sequence of operators that produces some
constrained range of states |6]. In our case, transformations can
be viewed as operators, but we have no constraint on the range
except that it match any arbitrary functional specification, which
we denote by <sny-fanc-spec>. (since we are learning arbitrary
problem-reduction methods, and not sequences that lead to
"solved" states, as in (4j.) The domain of the sequence, in our
case, is a generalised composed specification that will produce,
upon application of the sequence, a corresponding generalised
original specification.

The problem with using weakest precondition techniques to
compute the domain of a sequence is that, in many cases, dis-
junctive expressions are produced. In particular, disjuncts arise
whenever sequences contain operators that were applied to only a
part of the expression representing the problem state. For ex-
ample, in the verification sequence above, the first application of
the Remove-Double-Negation transformation was to a subexpres-
sion matching its precondition. Disjunctive expressions cause two
kinds of problems. First, since the number of disjuncts can grow
exponentially in the length of the sequence, storing all of them is
a non-trivial issue. Second, even if all the disjuncts could be
stored, it is quite likely that some of the disjuncts represent in-
itial situations in which the sequence is an inefficient one to use.
(For example, we have observed this problem crop up when using
goal regression to compute the weakest precondition of a plan;
some of the disjuncts represent initial states in which the plan is
a very inefficient one to apply.)

We illustrate below a simple solution to this problem that
uses information regarding how transformations were applied (in
particular, their bindings), from the verification of the training in-
stance, to prune out some disjuncts during the CBP process. (For
example, the expression (NOT (NOT (NOT (NOT <bool-fn>))))
is a valid domain description of a sequence of two Remove-
Double-Negations, which is not generated in the CBP computa-
tion below.)

Computing the generalized Composed Specification

(AND (DR Inputl Input.,)
<boal-fnl>)
1 Remow-Douhle-Neg‘l

(AND <bool-fna>
(ROT (NOT <bool-fa1>)))

| Remove-Double-Neg*?

(AND (NOT (NOT <bool-fa33))
(NOT (NOT <bool-fm1>)))

1 Do-Mor;.n‘l

(NOT (OR (NOT <bool-fn2>)
(NOT <¢bool-fn1>}))

To begin with, the expression <bool-fnl> above is produced
by intersecting the range of the first Remove-Double-Negation
transformation (any boolean function) with the range of the en-
tire sequence (<any-func-spec>). Installing this expression as the
second argument to the AND expression (the original
specification), as we have done above, reflects the context in
which this transformation was used in the forward direction
(during verification). In the first step above, we backpropagate
<bool-fnl> over this transformation, keeping the expression sur-
rounding it unchanged. Similar remarks hold for the occurrence
of <bool-fn2> above, and for the backpropagation over the
second transformation. Finally, backpropagating over De-
Morgan's does not present a similar problem, since its range in-
tersects onto the expression back propagated over the first two
transformations.***** The generalised composed specification it-
self is of little use to us; what we really need are generalisations
of the specifications of the submodules (in general, subproblems)
that constitute the product-of-sums circuit in figure 1l1-2. These
generalised specifications are shown below.**

Generalised specifications of the submodules in figure
I11-2

P (EQUALS X (NDT <bool-fnd>))

1]
P,': (EQUALE Y (NOT <bool-fnl>))

P (EQUALS <out> (NOT (DR I Y)))

L]
a 3
Comparing the generalised submodule specifications in figure I11-1
with the submodule specifications given in figure 1l1-2, we see
that the important feature of the two submodule specifications P4
and P, (the two input NOR gates in figure 111-2), which enabled
the verification to carry through, is that they both be the
negation of some boolean function.

F. Step 4: Determining the (Generalized Original
Specification

In this section, we describe methods for generalizing the
original specification, given that the generalized composed
specification has already been computed. One simple method in-
volves storing the variable bindings generated while computing
the generalised composed specification (for example, the subexpres-
sion (OR Inputs Inputs) was replaced by <bool-fnl>), and apply-
ing these substitutions to the original specification. Another
method, which illustrates better that the composed and original
specifications form the domain and range of a sequence of trans-
formations, involves, as we show below, reapplying the transfor-
mation sequence to the generalised composed specification.

***** Although Implementing this procedure has been an easy task, at-
tempts at formalising it have not yet been successful.

**Figuring out the generalisation of each submodule specification from the
generalised composed specification is straightforward, provided some book-
keeping was done while forming the composed specification in the first
place.

Computing the Generslized Original Specification

(NOT (DR (NOT <bool-fna>)
(NOT <bool-f213>}))

| De-Morgan

(AND (NDT (NOT <hbool-fn3>))
(NOT (NOT cbool-fn15)})

J Remove-Donble-Negation

(AND <bool-#n3>
(NOT (NOT <bool-fnl>)) }

i Remove-Double-Negation
(AND <bool-fna> <bool-fnl))

Comparing the generalised original specification - the last expres-
sion in the above sequence - with the original specification P in
figure 111-2, we see that a generalization of the original specifica-
tion has been achieved from a conjunction of disjunctions to a
conjunction of any boolean functions.

G. Step 5: Forming the New Problem-Reduction Method

We showed above how the original specification P and the
submodule specification P. could be generalized The final step is
to form a new problem-reduction method that is based on these
generalised specifications. It is clear that the generalized original
specification will form the precondition, or LHS, of the new
problem-reduction method. Also, the postcondition, or RHS, of
the new method can be formed from the generalized submodule
specifications and the combinator C. For our present example, the
new problem-reduction method that is inferred (from the training
instance in figure 1l1-2) is the one given in figure IlI1-1.

IV Learning Problem-Reduction Methods for Symbolic
Integration

In this section we will briefly illustrate how the same VBL
technique can be used to learn problem-reduction methods in
symbolic integration. This will provide some justification for our
claim that VBL is general technique, and can be applied to more
than one domain. Further details of the steps sketched below are
described in [1S].

A. Symbolic Integration as Problem-Reduction

We begin by viewing the process of integration in terms of
problem-reduction. To this end, note that the language of in-
stances of problems in symbolic integration is the language of in-
tegrals of mathematical functions. The language of generalizations
of problems includes the ability to specify arbitrary functions as
part of integrals. Problem-reduction methods here are the stan-
dard rules of integration *** We may thus view the problem of
learning integration methods from examples, as an instance of the
more general problem of inferring problem-reduction methods from
examples.

B. An |lllustration of Problem-Reduction in Symbolic

Integration

Consider the following example of a problem in Symbolic In-
tegration, and a way of decomposing the problem.

Original Problem P: [{827 + siniz))ds

Decomposition: J 32%dz + [rin{z)ds

***Such as the one we described in section |.B.

S. Mahadevan 621

The original problem P has been decomposed above into two sub-
problems, P;, which is J82%dz, and p, . which is [sin{z}dz.
The combinator C above is addition The generalisation problem
here lies in determining a general method, by generalising the
specifications P and P., which could produce the above decom-
position. In the next few paragraphs, we summarise the main

steps involved in inferring the general method,

T{8,(z}+ fyl2)}dz — [1(2)dz + [f{2)ds, from the above

training instance.

C. Steps1&2: Forming the Composed Specification and
Verification

Here, unlike the circuits domain, we do not need to construct
the composed specification, since the combinator (addition)
specifies that explicitly. We can proceed directly to the verifica-

tion step.

We now describe what verification means in symbolic integra-
tion. We can make use of the following result, which asserts
that if the derivatives of two integration problems are shown to
be equal, then the solutions to the two problems are identical.
(The reasoning is that if the derivatives of two functions are
equal, then they differ at most by a constant. Two solutions to
an indefinite integration problem which differ by a constant are
both instances of a more general family of solutions, F(x) + a
constant.) We may thus take as the problem of verification in
symbolic integration, the task of showing that the derivative of
the composed specification is equal to the derivative of the
original specification. Given the above result, this will imply the
equivalence of the original specification and the composed
specification. As earlier, we can proceed to verify instances of
problem-reductions using a sequence of transformations, except in
this case transformations correspond to rules of differentiation. An
example of such a transformation, which would be wuseful in
verifying the above problem-reduction instance, is given below.

Derivative-of-a-Sum

Precondition: Postcondition:

dfdz{f1{2)+ f2(2)} dfdz{f1(2)} « d/dx{f2(2))

D. Step S: Determining the General Composed

Specification

Given a verification of a problem-reduction in symbolic in-
tegration as a sequence of transformations of the kind shown
above, we can use a procedure completely analogous to the one
described earlier in section 3 5 to determine the generalized com-
posed specification As earlier, we have to restrict the CBP proce-
dure in order to avoid generating disjuncis sing this procedure,
we will obtain the following generalized composed specification,

[10 Mz + [[{z)dz

specification [8zdx + [sin{x)dz, we see the generalization that
has been achieved.

Comparing this with the composed

£. Step 4: Determining the Generalised Original
Specification

Having obtained the generalized composed specification, the
generalised original specification can be determined, once again, in
either of the two ways described in section 3.6. That is, we may
use the bindings obtained during the CBP computation of the
generalised composed specification, or reapply the sequence of
transformations used in the verification to the generalised com-
Using either of these two ways, we will ob-
generalised original specification,

posed specification.
tain the following

J (8 + f(n)}es.

622 S. Mahadevan

F. Step 5: Forming the new Integration method

Finally, given the generalised composed and generalised
original specification as above, we can form the new integration
method by defining the latter to be its precondition and the
former to be its postcondition. This is shown below.****

New Method:
Precondition: [{£y(z) + 1)(z)}d=x

Postcondition: | Fyfz)dz 4 I 1,iz)dz

V Conclusions
A. Different Perspectives for viewing VBL

We begin summarizing the VBL technique by viewing it from
a number of different perspectives.

VBL as learning problem-solving methods: VBL can be
described as a general technique for learning problem-solving
methods. As it is an analytical generalization technique, one of
its nice features is that it produces justifiable generalizations |4],
as opposed to empirical generalization techniques, such as
described in [14], which rely primarily on detecting syntactic
similarities among training instances.

VBL at forming macros: Another way of thinking about what
VBL does is by viewing each problem-reduction method as being
constructed as a macro of the sequence of transformations used in
the verification. In this sense VBL seems similar to earlier work
on plan generalization systems like STRIPS [3], but operating in
the problem-reduction space, as opposed to the state-space. On
the other hand, it is important to note that any proof technique
for generating verifications can be used (provided, of course, that
it meets the requirement that we imposed in section 3.4), and
using a sequence of transformations is just one such scheme.

VBL at learning plant Circuit design may be viewed as a
planning problem. From this perspective each submodule becomes
a planning method, and a circuit becomes a network of such
methods. Given a particular plan used in a specific situation, one
can generalize it by generalizing the class of situations in which
exactly the same plan could be applied, which is what MAC-
ROPS did |3]. |7] shows how this may be done for circuit design.
This highlights an interesting new feature of VBL, which is the
ability to generalize plans by generalizing the individual methods
in the plan. For example, in section 3, the specification of the
NOR gate was generalized to a negation of any boolean function,
which really represents a class of possible submodules (for eg., a
NAND gate). Thus, we can describe VBL as a technique for
generalizing plans by generalizing the subgoals achieved by the in-
dividual methods constituting a given plan.

B. Limitations of the technique

We must now make clear some important requirements that
need to be fulfilled in order to apply VBL to some given domain.
We summarize below some of these requirements. [7] describes, in
more detail, problems that are anticipated in using this and other
related techniques in real-world situations.

****Note that this is exactly the Integral-of-a-sum method that we II-
lustrated in section I.B.

Underlying Domain Theory : The success of the VBL tech-
nique rests on its capability to construct a proof of the correct-
ness of a decomposition, which implies the existence of a strong
underlying theory of the domain (such as Circuit Analysis).
Most of the theory that is needed, for example, the transfor-
mations and the ability to propagate constraints, we assume are
part of a know ledge-based system on top of which the Learning
Apprentice will be designed. While this is true for the specific
Learning Apprentice system LEAP, there are domains, such as
Well-Log Interpretation, where the lack of a strong wunderlying
domain model prevents the successful application of pure analyti-
cal generalisation methods [15]. This in turn motivates the need
for an empirical component in the overall learning system.

Adequacy of the Verification ~ Technique: One important ques-
tion, which directly affects the usefulness of VBL, is - how hard
is it to verify arbitrary problem decompositions? It might be that
a very large number of transformations are needed to cover a
wide range of problems. One related issue, which we have not
discussed in this paper, is the existence of multiple ways of
generating verification proofs For example, an alternative scheme
for verifying the product-of-sum circuit example is that of truth
trees [16], which has properties (such as
guaranteed termination), making the issue of control an easy one;
however, these properties hold only for the restricted class of
combinational circuits. More generally, we believe that construct-
ing verification proofs as a sequence of transformations is a weak

certain desirable

but general way of approaching the verification problem. By ex-
ploiting the properties of the particular domain (such as the func-
tional specifications of the product-of-sums circuit being boolean
expressions), we may be able to come up with more powerful
(and more restricted) schemes for verification.

C. Fntnre Research Topics

We now describe some avenues for further research that we
are currently exploring.

Extending Weakest Precondition Techniques: One of the
problems that we described earlier had to do with the appearance
of disjunctive expressions during the CBP computation Some of
the disjuncts, we said, correspond to initial situations in which it
is correct, but not efficient, to use the sequence. It seems that we
need more powerful analytical tools in order to learn the class of
situations in which it is efficient to use a macro (as opposed to
when it can be used). Work is in progress on formulating this
problem within the framework of Goal-Directed Learning |4), by
providing the system with an explicit definition of the "class of
states in which it is efficient to apply a macro", and having this
aid the generalization process.

Extending the notion of Verification: Although we have for-
mulated the problem of verification as one of finding a sequence
of transformations, it is important to note that the concept of
verification is more general, and, in the extreme, it could be
viewed as a restricted form of theorem-proving, (the assertion be-
ing proved is the invariance property of problem-reduction
methods.) Also, the connection between work on proving circuits
correct, and that of generalizing problem-reduction methods seems
an interesting one to pursue. In particular, we need to state more
precisely the additional requirement that we imposed on proof
techniques for verification - that they focus on those features that
were important in order for the proof to work.

and

VI Acknowledgments

thank the following people for their contributions to the
form and content of this paper
for greatly improving the presentation of the paper. Saul

Tom Mitchell, for many ideas

Amarel and Natesa Sridharan, for their careful reading of a draft.

Lou
project, for many

Steinberg and other

members of the Rutgers AIl/VLSI

useful discussions. Smadar Kedar-Cabelli,

Prasad Tadepalli and Rich Keller, for many interesting discussions

on analytical learning techniques.

(2]

[3)

[4]

7]

References

Mitchell, T, Steinberg, L and Shulman, J "A Knowledge-
IEEE Principles of
Systems Denver. December, 1984.

Based Approach to Design" In

Knowledge-Based

Barstow, D "An
Automatic Programming."
(1979) 73-119

Knowledge-Based
Intelligence 12.2

Experiment in
Artificial

Fikes, R., Hart, P and Nilsson, N
ing Generalized Robot Plans."
(1972) 251-288.

"Learning and Execut-
Artifical Intelligence. 3

Mitchell, T. "Learning and Problem-Solving " In IJCAI-83.
August, 1983, 1139-1151

Minton, S "Constraint-Based Generalization " In AAAI-84.
Austin, Texas, August, 1984, 251-254

Utgoff, P. and Mitchell, T.
Bias for Inductive Concept Learning." In AAA7-82. August,
1982, 414-417.

"Acquisition of Appropriate

Mitchell, T., Mahadevan, S. and Steinberg, L., "LEAP - A
Learning Apprentice for VLS| Design", to appear in
IJCA1-85

8]

9]

10]

1]

12]

13]

14]

15]

16]

S. Mahadevan 623

Amarel, S., "An Approach to Heuristic Problem-Solving
and Theorem-Proving in the Propositional Calculus." In
Systems and Computer Science. Univ. of Toronto Press,

1967, .

Nilsson, N. Problem-Solving ~ Methods in Artificial Intel-

ligence. McGraw-Hill, 1971.

dedJong, G. "Automatic Schema Acquisition in a Natural
Language Environment." In AAAI-82. Pittsburgh, 1982,
410-413.

Silver, B. ‘"Learning Equation Solving Methods from

Examples" In [JCA1-88 August, 1983, 429-431.

Barrow, H. "Proving the Correctness of Digital Hardware
Designs." In AAAI-88. Washington D C, 1983, 17-21.

Mahadevan, S. "Verification-Based Learning: A Generaliza-
tion Strategy for Inferring Problem-Reduction Methods.",
Technical report LCSR-TR-66, Rutgers Univ, 1985.

Porter, B. and Kibler, D. "Learning Operator
Transformations." In AAAI-84. Austin, Texas, August,
1984, 278-282.

Smith, RG, Winston, H.A., Mitchell, M, and
Buchanan, B.C., "Representation, Use and Generation of
Explicit Justifications for Knowledge Base Refinement",

submitted to [JCA7185

Jefferey, R. Formal Logic: Its Scope and Limits.

McGraw-Hill, 1967.

