LEAP: A Learning Apprentice for VLSI
Design’

Tom M Mitchell
Sridhar Mahadevan
Louis | Steinberg

Al/VLSI Project
Computer Science Department
Rutgers University
New Brunswick, NJ 08903

ABSTRACT

It is by now well-recognised that a major impediment to
developing knowledge-based systems is the knowledge acquisition
bottleneck the task of building up a complete enough and correct
enough knowledge base to provide high-level performance. This
paper proposes a new class of knowledge-based systems designed
to address this knowledge-acquisition bottleneck by incorporating
a learning component to acquire new knowledge through
experience. In particular, we define Learning Apprentice Systems
as the class of interactive knowledge-based consultants that
directly assimilate new knowledge by observing and analyzing the
problem solving steps contributed by their users through their
normal use of the system. This paper describes a specific
Learning Apprentice System, called LEAP, which is presently
being developed in the domain of VLSI design We also discuss
design issues for Learning Apprentice Systems more generally, as
well as restrictions on the generality of our current approach

such Learning Apprentice Systems, focusing on the design of a
particular Learning Apprentice System (called LEAF*) for VLSI
circuit design.

One key aspect of Learning Apprentice Systems as we define
them is that they are designed to continually acquire new
knowledge without an explicit "training mode". For example, the
LEAP system provides advice on how to refine the design of a
VLS| circuit, while allowing the user to override this advice and
to manually refine the circuit when he so desires. In those cases
where the wuser manually refines the circuit, LEAP records this
problem solving step as a training example of some rule that it
should have had. LEAP then generalizes from this example to
form a new rule summarising this refinement tactic.

In task domains for which Learning Apprentice Systems are
I Learning Apprentice Systems feasible, we expect that they will offer strong advantages over
present architectures for knowledge-based systems. Many copies
of n Learning Apprentice System distributed to a broad
community of users could acquire a base of problem-solving
experience very large compared to the experience from which a
human expert learns For example, by distributing copies of
LEAP to a thousand circuit designers, the system (collection)
would quickly be exposed to a larger number of example circuit
designs than a human designer could hope to see during a
lifetime. Such a large experience base would offer the potential
for acquiring a very strong knowledge base, provided effective
learning methods can be developed.

It is by now well-recognised that a major impediment to
developing knowledge-based systems is the knowledge acquisition
bottleneck: the task of building up a complete enough and correct
enough knowledge base to provide high-level performance. In an
effort to reduce the cost and increase the level of performance of
current know ledge-based systems, a number of researchers have
developed semi-automated tools for aiding in the knowledge
acquisition process. These tools include interactive aids to help
pinpoint and correct weaknesses in existing sets of rules
(e.g., |1, 2]), as well as aids for the acquisition of new rules
(e.g., |S]). Others have studied the automated learning of rules
from databases of stored cases, but with few exceptions
(e.g., |4, 5]), work on machine learning has not yet led to useful
knowledge acquisition tools.

The following section describes the design of the LEAP
Learning Apprentice system for VLS| design, focusing on its
mechanism for capturing training examples, and on its methods
for generalizing from these examples to form new rules. The
final section discusses some of the major choices made in the
initial design of LEAP, limitations on the applicability of our
initial approach, and several basic issues that we see as central to
developing Learning Apprentice Systems in a variety of task
domains.

This paper proposes a new class of knowledge-based consultant
systems designed to  overcome the knowledge acquisition
bottleneck, by incorporating recently developed machine learning
methods to automate the acquisition of new rules. In particular,
we define Learning Apprentice Systems as the class of interactive
knowledge-based consultants that directly assimilate new
knowledge by observing and analyzing the problem solving steps Il LEAP: A Learning Apprentice for VLS| Design
contributed by their users through their normal use of the

system. This paper discusses issues related to the development of LEAP is currently being constructed as an augmentation to a

knowledge-based VLSI design assistant called VEXED |6].
VEXED provides interactive aid to the user in implementing a
circuit given its functional specifications, by suggesting and

*This material is bated on work supported by the Defense Advanced carrying out possible refinements to the design. A large part of

Research Projects Agency under Research Contract N0O014-81-K-0394, and its knowledge about circuit design is composed of a set of
by the National Science Foundation under grant DCS83-51523. The views implementation rules, each of which suggests some legal method
and conclusions contained in this document are those of the authors and for refining a given function. For example, one implementation
should not be interpreted as necessarily representing the official policies, rule states that IF the required function is to convert a parallel

either expressed or implied, of the Defense Advanced Research Projects

Agency, the National Science Foundation, or the U.S. Government. signal fo a seral signal, THEN one possible implementation it to



574 T. Mitchell et al.

e whafl regeeten 7] Ihe w4 umee B VAL e oo b
lemrn This sectpon deserhin the VENED svvtem the tape of
traning examples (hat it can eapture from i~ users and two
generalization methods thai allew LEAP (o form general rules
from these examples

A. The VEXED Design Consultant

VEXED is a prototype knowledge-based design consultant that
provides a convenient editor and user interface which helps the
user design digital circuits beginning with their functional
specifications and leading to their implementation. VEXED
maintains an agenda of design subtasks (e.g., "implement the
module that must multiply two numbers") which initially
contains the top-level task of implementing the entire circuit.
VEXED repeatedly selects a subtask from the agenda, examines
its implementation rules to determine whether it can suggest
possible implementations for the corresponding circuit module,
then presents any such suggestions to the user. The user may
select one of the suggested implementation rules, in which case
that rule is executed to refine the module Alternatively, the
user may disregard VEXED's suggestions and instead use the
editor to manually refine the circuit module. It is in this later
case that LEAP will add to its knowledge of circuit design, by
generalizing from the implementation step contributed by the user
to formulate a new rule that summarizes a previously
uncatalogued implementation method.

As an example of this kind of learning scenario, suppose that
at some point during the design VEXED and the user are
considering the task of implementing a particular circuit module.
In the present example, this circuit module must compute the
boolean product of sums of four particular input signals which
appear in the context of the larger circuit. Assume further that
these input signals are regular streams of boolean values arriving
every 100 nanoseconds, remaining stable for approximately 70
nanoseconds, and encoded in positive logic**. Assume
furthermore, that the stream of input values for Inputl is known
to be an alternating stream of logical ones and zeros. The exact
definitions of the function to be implemented and of the signals
for which it must work are given in the top half of figure

J]-]***

Given this information about the module to be implemented,
the system searches its set of implementation rules for advice
regarding possible refinements of this circuit In this case, the
system may have a rule that suggests implementing the circuit
module wusing an AND gate and two OR gates. Suppose,
however, that the user disregards the advice of the system in this
case, choosing instead to implement the module using the circuit
shown in figure I1-1. This implementation contributed by the
user provides the system with precisely the kind of training
example that LEAP needs for learning a new implementation
rule. In general, then, each training example consists of (1) a
description of the function to be implemented, (2) a description
of the known characteristics of the input signals, and (3) a circuit
entered by the user to implement the given function for the given

**That is, a logical one is encoded as five volts, and a logical sero ai
sero volts.

***Signals, or "datastreams" In VEXED are described as an array of data
elements, each defined in terms of its Value, Start-Time, Duration,
Datatype, and Encoding.

Function to be lmplemented:
Inpute: Inputl, Input? Inpuid. Inputd
Outputa: Quiput
Funetion: [Equals [Value Output[1})
{And {Or (Value Inputl{i}) {Value Input2(s)}}
{Or (Value Input3(i}} {Value Inputdn)}})}

Where Input Signals Satisfy:
{Datatype Inputl{i})] = Booclean
{Value lnputl(i)) = i Mod 2
{Encoding Inputifi)] = Positive-Logic
(Start-Time Inputd{i}} = 100 + 1,
{Duration lnputl{i}) = 75 neec
{Datatype Input2(i)) = Boolean
{Value Input2(i]} = unknown
(Encoding Input2(i)) = Positive-Logic
(Start-Time lnput(i]) = i:100 + t,
{Duration Inpui2{i}} = 65 naec.
{Datatype lnpus2(1})} = Boolean
{Value Inpuid{i)} = unknown
(Encoding input3(i]) = Pomtive-Logic
(Start-Time Inputd(i)} = 100 4 ¢,
{Duration Input3{i)] = 58 naec.
{Datatype Inputd(i)} = Boolean
{Value Inputd{i)} = unknown
{Entoding Inputd(i}) = Positive-Logic
(Start-Time Inputd(i)) = i-100 + 1,
{Duration Inputd(i)) = 75 nsec.

Uner’s Solution:

A Treining Example for LEAP

Figare II-1:

input signals.****

Given such a training example, there are two kinds of changes
that one might expect the system to make to its knowledge base.
First, LEAP has the opportunity to acquire a new
implementation rule that can be wused in subsequent cases to
suggest the user's NOR-gate circuit where it is a potsiblc
implementation. Second, the system also has an opportunity to
learn a fragment of control knowledge for selecting between the
NOR-gate implementation and the previously known AND-OR
gate implementation, depending on which is preferred according
to some cost criterion. In VEXED, we have cleanly separated
out these two kinds of knowledge. Implementation rules
characterise only the possible correct implementations, while a
separate body of control knowledge will be used to select the

««**Although in this example the user's circuit has been refined down to
the gate level, in general it need only be one step more refined than the
sub-module it is implementing.



profrocr s e mrIAG G o an e L TS STE Y (PR ST TR R
In vur work to date and e this paper we conader learming nnly
of new implementation  rules  that  characterize  Lhe  general

condilions under which the ugers cireuit can be correctly used

IF ithe Function to be Implemented iz of the form:
Inputa: Inputl, Input2, Enputd, lnputd
QOutputs: Ouiput
Function: (Equals {Value Oulputfi])
{And {Or {Value lnputlfil} (Value lnput2(y)))
(Or {Value Input3(i})) (Value Inputd(i]])))

Where Input Signals Satisfy:
{{Datatype Inputl(y) - Baolean)
{{Enroding Inputl(i)) = Postive-Logic)
{{Datatype Inpui2(i) — Boolean)
{{Encoding Input2(i)) - Postive-Logir)
{{Datatype luput3{s)  Roolean)
((Encoding Inputs{i)} = Posiive-Logic)
{{(Datatype Inputd{i) - Boolean)
{(Encodirg Inputd{1}} - Positive-Logic)
(Length (Intersection (Interval Inputl{i}}

{Interval Input2{1})
(Interval Inputd({i])
{Interval Inputd{i)))] = 3 naec

THEN one possible implementation ia:

—— Gutpart

Figure I1-3: Inferred Rule with Generaliced Left-Hand Side

Given this training example, the most straightforward method
of acquiring a new implementation rule is to create a rule that
suggests the given circuit, can be used to implement the given
module function in precisely this context (e.g., whenever the input
signals are precisely the same as in the training example). Such
a rule would clearly be so specific that it would add little of
general use to the system's knowledge of implementation methods.
A better approach would be to generalise the preconditions (left
hand side) of the implementation rule, so that it characterises the
general class of input signals for which the given circuit correctly
implements the specified function. Such a generalised rule is
shown in figure 11-2 and the method for producing such
generalizations in LEAP is described in the following subsection.
A further step in generalizing the implementation rule would be
to generalize the wuser's circuit as well as the function it
(e.g., the essential idea behind the NOR-gate
implementation can be used to implement a class of functions
Such a
generalization of the implementation rule is shown in figure II-3,
and the method used by LEAP for generalizing the rule in this
fashion is described in subsection 2.3

implements.

related to the one encountered in this training example).

T. Mitchell etal. 575

IF the Function to be Implemented ir of the form:
Inputs: - ippuis
Outputs: - out -
Funecuon: [Equals {Velue - cut={i)}
{And - boolfn2> <boolfnl=>}) }

THEN one pomible implementation is:

(g
<Ir|n|ts3 H

Cinpiad
-
npe) |

With Specifications of the three modules as follows:
P]': (Equals {Value X(i}} {Not <bool-fn2>))
P,: (Equals {Value Y{i)} (Not <boolfnl>])

PS‘; {Equals [Value <out>(i}}) {Not [Or X[i) YO

Pigure I1.3:  Inferred Rule with Generalised Right-Hand Side

B. Generalizing the Rule Left-Hand Side

LEAP computes a justifiably general rule precondition by
using its theory of digital circuits to analyze the single training
example. In particular, LEAP first explains (verifies) for itself
that the circuit does in fact work for the example input signals,
then generalizes from this example by retaining only those
features of the signals that were mentioned in this explanation.
It is this set of signal features that is required for the
explanation to hold in general, and which therefore characterizes
the class of input signals for which the «circuit will correctly
implement the desired function. This explain-then-generalise
method for producing justifiable generalizations from single
examples is based on our previous work on goal-directed
generalization [7|, and is also similar to the generalization
methods employed in [8, 9, 10].

To illustrate this generalisation method, consider again the

training example introduced above in figure II-1. LEAP begins
by verifying that the example circuit will operate correctly for the
example input signals. In order to do this, it examines its

definitions of the primitive components that make up the example
circuit. Figure 2-4 shows the description of the primitive NOR
gate used in the present example circuit. The  Operating
Conditions in this description summarise characteristics of the
input signals that are required for the component to have a well
defined output. For example, the constraint " (Length
(Intersection  (Interval Input1(i)) (Interval  Inputt(i)))) > S nsec.”
indicates that for the NOR gate to operate correctly, its inputs



576 T. Mitchell et al.

inputs Input1. Input2
Outputs Output

Operating Conditions
(Equals (Datatype Inputl(i)) Boolean)
(Equals (Encoding Input1(i)) Positive-Logic)
(Equals (Datatype Inpui2(i)) Boolean)
(Equals (Encoding Input2(i)) Positive-Logic)
(Length (Intersection (Interval Inputl(i))
(Interval Input2(i)))) > S nsec.

Mapping.
(Equals (Value Output(i))
(Not (Or (Value Inputl(i)) (Value Input2(i)))))
(Equals (Encoding Output(i)) Positive-Logic)
(Equals (Start-Time Output(i))
(+ 10 (Latest (Start-Time Inputl(i))
(Start-Time Input2(i)))))
(Equals (Duration Output(i))
(Length (Intersection (Interval Inputl(i))
(Interval Input2(i)))))

The Operating Conditions describe minimum
requirements on input signals to assure the component
will  produce a well-defined output. The  Mapping
describes how features of the output signal depend on
the inputs.

Figure I1-4: Known Behavior of a NOR Gate.

must overlap in time by at least 3 nanoseconds*****.

These Operating Conditions of the individual circuit
components are constraints that must be verified for the example
circuit and the given input signals. Some of these operating
conditions can be tested directly against the descriptions of the
global circuit inputs (e.g., the operating conditions for the left-
most NOR gates in the example circuit can be tested against the
known characteristics of the circuit inputs). The operating
conditions associated with components internal to the example
circuit must be restated in terms of the equivalent constraints on
the global circuit inputs. These constraints are therefore
propagated to (reexpresaed in terms of) the global inputs of the
circuit network, then tested to see that they are satisfied by the
example input signals. For instance, the constraint “(Length
(Intersection  (Interval ~ X(i))  (Interval Y(@#)) > S nsec.* which
follows from the operating conditions of the right-most NOR gate,
is reexpresaed in terms of the four global circuit inputs to
produce the equivalent constraint “(Length (Intersection  (Interval
Input1(i))(  Interval Input2(i))( Interval Input3 (i))(Interval
Input4(i)))) > S nsec.,". By propagating the constraints
arising from the operating conditions of the circuit components,
as well aa the original constraint on the circuit output (e.g., that

*****The Initial of a data element is defined here as the time interval
beginning at the Start Time of the data element, and continuing for the
Duration of that data element.

******This constraint propagation step is performed in the VEXED
system by a set of routines called CRITTER [11) which is able to propagate
and check signal constraints in loop-free digital circuits, by examining the
function definitions of the primitive circuit elements.

it produce the . .. i -UP .l ,. i» I ih> inputs) || \|' .,
venfy that the user-imr«>du<rd UPUII will correctly implement the
desired function for the given inputs More important)) the

constraints that are propagated to the inputs of the circuit
network characterize precisely the class of inputs for which the
circuit will operate correctly, and therefore constitute the desired
general preconditions for the newly acquired implementation rule.

In summary, the procedure for computing the generalized
preconditions for the new rule is to (1) propagate each constraint
derived from the operating conditions of each primitive circuit
component, along with constraints on the global circuit output,
back to the global inputs to the circuit network, then to (2)
record the resulting constraints on the global inputs, with
appropriate substitution of variable names, as the generalized

preconditions for the new implementation rule. Figure 11-2
illustrates the resulting generalization for the training example
from figure 11-1. Notice that in comparing this generalized rule

with the original training example, values of several features of
the circuit inputs have been generalized Only the constraints on
Datatype and on Signal-Encodings remain intact, while the
detailed values for the signal Start-Times and Durations have
been replaced by the general constraint on overlapping time
intervals.

C. Generalising Rule Right-Hand Side

The previous section describes how LEAP is able to generalize
the left-hand side (LHS) of the rule by determining the class of
input signals for which the given circuit will work This section
describes how LEAP can also generalize the right-hand side
(RHS) of the rule; that is, generalize the circuit schematic along
with the functional specifications to be implemented

The key to generalizing the RHS is to first verify that the
circuit  correctly implements the desired function. This
verification can then be examined to determine the general class
of circuits and functional specifications to which the same
verification steps will apply. This method, which we call
Verification-Based Learning, is described more generally in [12].
That paper discusses the general applicability of this method to
learning problem-decomposition rules, or planning schema. Here
we discuss the application of this method to generalizing circuit
implementation rules, and illustrate the method using the training
example and rule discussed above.

1. Step 1: Forming the Composed Specification from
Rule RHS

The first step in the process of inferring a general circuit
design rule from a training example is that of verification:
ensuring that the function computed by the user's circuit meets
the original circuit specification.

We can derive a description of the circuit's function from its
structure by composing the functions of the submodules
constituting the circuit, according to the configuration in which
they are interconnected. For the wuser's NOR-gate circuit, this
composed specification is given as



(EQUALS (vaLUE Outpuiy .-
(NDT (OR (NOT (DR (VALUE Inputl(i))
{VALUE Inputa(i}))}
(NOT {(OR (VALUE Input3(i))

(VALUE Input4(i))))
»

Note that, in general, the composed specification will be a
syntactically reexpressed version of the original specification. For
example, the above composed specification is not syntactically
identical to the functional specifications* in the training example,
even though it does represent the same boolean function. This
frequently occurs in VLSI circuits in which, for example,
functional specifications in terms of AND and OR boolean
expressions are often implemented in terms of NAND and NOR
gates.

2. Step 2: Verifying the Circuit Function

To verify the correctness of the user-suggested NOR-gate
circuit, LEAP must show the equivalence between the composed
specification for this circuit and the original specification of the
circuit being implemented. Thus, it seeks to verify that

(INPLIES <composed-spec> <original-spwel)

or in this case
(IMPLIRS
(NOT (OR (NOT (OR (VALUE Inputl(i})
(VALUE Input2(i))))
(NOT (OR (VALUE Inputa(i))

(VALUE Inputa{i))))})

(AND (OR (VALUE Inputl(i)}
(VALUE Inputd(i}})
(DR (YALUE InputB3(i))

(VALUE Inputd(i}))))

LEAP verifies that the composed specification meets the
original specification by determining a sequence of algebraic
transformations which, when applied to the composed
specification, will yield the original specification. Each transform
has a precondition which describes the class of situations to which
it can be applied, and a postcondition which specifies the result
of the transformation.
the current example in the circuit domain are given below.

The two transforms that will be used for

T. Mitchell etal. 577

De-Morgans Law

Precondition:
(NOT (OR <bool-fni> <bool-fna>))

Postcondition:
(AND (NOT <baol-fp1>) (NOT <bool-fa3>))

Remove-Double-Negation:

Precondition:
(NOT {NOT <bool-fn>})

Paostcondition:
<bool-fn>

Here “<bool-fn>" represents an arbitrary boolean function,
Shown below is the verification as a wequence of transformations.

VERIFICATION
(NOT (DR (NOT (DR (VALUE Inputl(i))
(YALUE Inputa(i))))
(NOT (DR (VALUE InputB8(i))

(VALUE Input4(i)))})))
!
De-Morgan
I
(AND (NDOT (NOT (OB (VALUE Inputl(i})
(VALUE Input2d(i}))))
{NOT (NOT (DR (VALUE Input3(i))

(VALUE Input4(i)))}))

i
Remove-Double-Negation

1
(AND (OR (VALUE Inputl(i))}
(YALUE Isputa(i}))
(NOT (NOT (DR (VALUE Input8(i))

(VYALUE Input4{i1})))))
1
Remove-Double-Negation
i
{AND (0OR (VALUE Inputl{i))
{VALUE Inputa{i))}
(DR (VALUE Input®i{i})
(VALUR Inputa{i))))
3. Step 3: Determining the Generalised Composed
Specification

Given the verification tree shown above, the next step is to
determine the genera) class of expressions for which this sequence
of verification steps will correctly apply. This is essentially a

problem of  viewing the transformation sequence as a



578 T. Mitchell et al.

TR TTE T I | 'TA FLARFT O RV A YR UL O | TR R T S TLLL L AL B E fot
the operniol  sequencr LEAP  arcoinplishes thi- 1y back-
propagating the precondition of each transform in the sequence,
to determine the necessary conditions on the starting expression
This process is described in greater detail in 12). The sequence
shown below illustrates this back-propagation, and indicates the
resulting generalisation of the composed specification.

COMPUTING THE
GENERALIZED COMPOSED SPECIFICATION

(AND (OR (VALUE Iaputl(i})
(VALUE Inputa(i)))
(OR (VALUE Inputd(i))

(YALUE Inputea{i))))
!
Remove-Double-Neg
!
(AND (DR (VALUE Inputli(i))
{VALUE Inputa(i))}

{NOT (NOT <bool-fn13>)))
1
Remove-Double-Neg
1
(AND (NDT (NOT <bool-fn3>))
{NOT (NDT <hool-fnl>)))
1
De-Morgan
)
(NOT (OR (NDT <bool-fn3>)

(NOT <bool-fn1>)))

Notice that the final expression in the above sequence
describes the generalised composed specification for which the

verification will correctly apply. From it, we see that the
important feature of the two submodule specifications P; and P,
{the two leftmost NOR gates in figure II-lI) is that they both

compute the negation  of some boolean  function, while the
specifications of the third component cannot be generalised.

GENERALIZED SPECIFICATIONS OF SUBMODULES

P, 1 (BQUALS (VALUE X(i)) (NOT <bool-fn3>))
Pp'1 (BRUALB (VALUE Y(i)) (NDT <bool-fn1>))

Py 1 (BQUALS (VALUE <out>(i))
(NOT (DR X{i) Y{i))))

4. Step 4: Determining the Generalised Original
Specification

Having determined the generalised specifications of the circuit
submodules, the RHS of the new rule can now be formed.
However, LEAP must also produce a corresponding generalisation
of the original functional specification in the rule LHS. This
generalised original specification can be computed in a relatively
straightforward manner, either by reapplying the sequence of

AP EN e ddansle o Tin
of by using the varmble indings geneested when romputing 1he
generalized composed specification Following either of these two
approaches, the result is that the new original specification
becomes

I NRraE LTI e A PR TR e

(BQUALS (VALUE Output(i))
(AND <bool-fn2> <bwol-fnl>))}

Comparing the generalized original specification above with the
original specification of the circuit implementation in figure 11-1,
it is seen that a generalisation of the original specification has
been achieved from a conjunction of disjunctions to a conjunction
of any boolean functions.

5. Step 5: Forming the New Implementation Rule

We have shown in the last few paragraphs how the original
specification of a circuit module as well as the functional
specifications of each of the submodules P. in its implementation
could be generalized. The final step is to form the new
implementation rule  which is based on these generalized
specifications. The preconditions for this new rule are formulated
to require (1) that the function to be implemented match the
generalised original specification, and (2) that the input signals
satisfy the constraints that are determined as shown in the

previous subsection The right-hand side of the new rule is
formulated so that it produces the submodules with their
corresponding submodule specifications Pi. For the present
example, the new implementation rule formed in this
fashion******* js shown in figure 11-3.

Il Discussion

The previous section describes in some detail how LEAP
captures training examples from its users, and how it forms
genera] rules from these examples.
broadly the architectural issues involved in designing knowledge-

This section discusses more

based systems that can incorporate such learning methods In
particular, we discuss the major design features of LEAP that
appear important to the design of Learning Apprentice Systems
more generally. Three design features that have a major impact
on the capabilities of LEAP are: (1) the interactive nature of the
problem solving system, (2) the use of analytic methods for
generalizing from examples, and (3) the separation of knowledge
about when an implementation technique can be used from
knowledge about when it should be used.

A. Interactive Nature of the Apprentice Consultant

A fundamental feature of LEAP is that it embeds a learning
component within an interactive problem-solving consultant. This
allows it to collect training examples that are closely suited to
refining its rule base. In particular, training examples collected
by a Learning Apprentice"have two attractive properties:

1. Training examples focus only on knowledge that is
missing from the system. The need for the user to
intervene in problem solving occurs only when the
system is missing knowledge relevant to the task at
hand, and the resulting training examples therefore
focus specifically on this missing knowledge.

+«"sesNotice that in this rule, there are no final constraints that must
be satisfied by the input signals. This is because the left-most circuit
modules in the figure are defined so abstractly, that they pose no
constraints on the signal formats of their inputs.



DO The trann esaniphos e sy T TR S A
h()l\llll! Sleps The v e enarast Ler e v ol
traiming examples wsed baoather rule learming sysiems
such as Meta-DENDRAL 4 and INDUCE-PLANT [5],
in which training examples are complete problem
solutions By working with training examples that are
single steps, LEAP circumvents many difficult issues of
credit assignment that arise in cases where the training
example corresponds to a chain of several rules.

While to first order, LEAP acquires training examples that
correspond to single rule inferences, this is only approximately
true  We expect that LEAP will encounter training examples in
which its existing rules will correspond to finer-grained decisions
than the user thinks of as a single step For instance, the
system may have a sequence of rules to implement a serial-
parallel converter by first selecting a shift register, then a general
class of shift registers (e.g dynamic), and only then a specific
circuit, while the user may think of the whole series of decisions
as a single step, implementing the converter with a specific
circuit.

In such cases, LEAP could just go ahead and learn the larger-
grained rule that will follow from the user's training example, but
doing so could cause a number of problems One problem is
that it will result in a rule set with rules of greatly varying
grain. Such inconsistency in grain is likely to lead to redundancy
and lack of generality in the rules. A second potential problem
associated with large-grain  training examples is that our
analytical methods of generalization may be too expensive to use
on steps of large grain. Since the methods depend on
constructing a verification of the step, there is reason to fear the
cost may grow very quickly as the size of the step gets large
compared to the size of the transformations used in the
verification process.

Thus, the question of how to handle grain size mismatch may
be an important issue for future research One possible direction
would be to develop methods for examining a training example
that corresponds to a large step, then determining which existing
rules correspond to parts of this inference step, leaving only the
task of acquiring the missing finer grain rules

B. Use of Analytical Methods for Generalization

A second significant feature of the design of LEAP is that it
uses analytical methods to form general rules from specific
training examples, rather than more traditional empirical, data-
intensive methods. LEAP's explain-then-generalize method, based
on having an initial domain theory for constructing the
explanation of the example, allows LEAP to produce justifiable
generalizations from single training examples. This capability is
particularly important for LEAP since it is not at all clear how
LEAP could tell that two different training examples involving
different circuit specifications and different resulting circuits, were
in fact two examples of the same rule.

One significant advantage of the analytical methods involves
learning in the presence of error-prone training data. An issue
that seems central to research on Learning Apprentice Systems,
and one that LEAP must confront immediately, is that the users
who (unwittingly) supply its training examples are likely to make
mistakes. In particular, since we hope to first introduce LEAP
to a user community of university students who are themselves
learning about VLSI design, the issue of dealing with error-prone
examples is a major one. Our initial plan for dealing with this

T. Mitchelletal. 579

T L e e Y Ty T N T R TR N (L T LA R T CON P
fram those trmmng exatpl crona< vhee o onn venfy o ierms of
s knowledpe of crens Simer ats pencrabzation method requires
that it explain an example circuit before it can generalize it,
LEAP will be a very conservative learner Since it will be
unable to verify incorrect circuit examples that it encounters,
there is little danger of it learning  from incorrect
examples********  This method of dealing with errorful data is
attractive, but may be insufficient if we need to include empirical
learning methods along with analytical methods for generalisation

While analytical generalization methods offer a number of
advantages, they require that the system begin with a domain
theory that it can use to explain/validate the training examples
This requirement, then, constrains the kind of domain for which
our approach can be used In the domain of digital circuit
design, the required domain theory corresponds to a theory for
verifying the correctness of circuits In certain other domains,
such a theory may be difficult to come by For example, in
domains such as medical diagnosis the underlying theory to
explain/verify an inference relating symptoms to diseases is often
unknown even to the domain experts. In such domains, the
system would lack a domain theory to guide the analytical
generalization methods, and would have to rely instead on
empirical generalization methods that generalize by searching for
similarities among a large number of training examples. In fact,
our present methods for utilizing domain theories to guide
generalization are limited to cases where there is a strong enough
theory to "prove" the training example is correct. One important
research problem is thus to develop methods for utilising more
approximate, incomplete domain theories to guide generalisation,
and for combining analytical and empirical generalization methods
in such cases. One new research project that is interesting in
this light is an attempt to construct a Learning Apprentice for

well-log interpretation [13]. In  this domain, the underlying
theory necessary to learn new rules involves geology and response
of well-logging tools. Since these theories as inherently

approximate and incomplete, that research project must face the
issue of generating and utilizing approximate explanations of
training examples to infer general rules.

C. Partitioning of Control and Basic Domain Knowledge

A third significant feature in the design of LEAP is the
partitioning of its knowledge base into (1) implementation rules
that characterize correct (though not necessarily preferred) circuit
implementations, and (2) control knowledge for selecting the
preferred implementation from among multiple legal options
This partitioning is important because it helps in dealing with
the common problem that when one adds a new rule to a
knowledge base one must often adjust existing rules as well.

The first of these two parts of the knowledge base has the
convenient property that its rules are logically independent; that
is, when one adds a new implementation rule characterising a
new implementation method, it does not alter in any way the
correctness of the existing implementation rules. Thus, when a
new implementation rule is added, the only portion of the
knowledge base that might require an wupdate is the control
knowledge for selecting among alternative implementations. This

------ "Even this it not quite true. Since its domain theory is only
approximate (at will probably be true for Learning Apprentice Systems in
general), there may be incorrect circuits that it succeeds in verifying (say,
because is overlooks parasitic capacitances).



580 T. Mitchell et al.

Luiesl mlependence ol niden coatras v es peoale pnporiam
when combining sets of rules that may have been learned from
various users by different copies of the Learning Apprentice

While the problem of combining multiple rule sets learned from
different sources is in principle simply a matter of forming the
union of the rule sets, in fact the resulting set of correct rules
may be overly redundant and disorganized. Thus, we anticipate
that we may have to develop methods for
reorganizing sets of correct rules to make them more manageable.

merging and

To date, we have only considered learning the first type of
knowledge. In some sense, learning these rules is easier than
learning the control knowledge, because the complexity of
explaining a training example is much less for implementation
rules than for control rules. To explain/verify an example of an
implementation rule, the system need only verify the correctness
of the circuit fragment training example.
However, to learn a control rule that characterises when some
implementation is preferred, it is compare this
implementation with all the alternative possibilities. Thus, the
complexity of constructing the explanations is quite different in
these two cases. In the longer term, we see learning of control
knowledge as an important task for LEAP, and a task for which

it can easily capture useful training examples.

mentioned in the

necessary to

IV Conclusion

We have presented the notion of a Learning Apprentice
System as a framework for automatically acquiring new knowledge
in the context of an interactive knowledge-based consultant The
initial design of a Learning Apprentice for VLS| design has been
described. In particular, we have detailed the methods that
LEAP employs for learning new implementation rules, and for
generalizing both the left and right hand side of these rules.
Whereas previous attempts at automatic knowledge acquisition
have met with little success, the proposed Learning Apprentice
System differs in two important respects. it utilizes more
powerful analytical learning methods, and it is restricted to
knowledge-based systems which can easily capture
We are currently completing our initial
to test it on a user

interactive
useful training examples.
implementation of LEAP, and intend
community of students in a VLS| design course to gather data
and further insights on this initial design.

V  Acknowledgments

We thank several people who provided useful criticisms of
earlier drafts of this paper: Rich Keller, Yves Kodratoff, John
McDermott, Jack Mostow, Reid Smith, and Timothy Weinrich.
We also thank the members of the Rutgers AI/VLSI| project for
many useful discussions regarding the design of LEAP, and for
creating the VEXED system on top of which LEAP is being
constructed.  Schlumberger-Doll Research has made the STROBE
system available as a representation framework in which VEXED
and LEAP are being implemented. This research is supported by
the Defense Advanced Research Projects Agency under Research
Contract NO0O0014-81-K-0394, and by the National Science
Foundation under grant DCS83-51523.

[2]

[3]

151

[6]

171

(8]

[9]

[10]

[11]

[12]

[13]

References

Davis. R "Applications of meta level knowledge to the
construction and wuse of large knowledge bases/ in
Knowledge-based Systems in Artificial
R. and Lenat, D., eds , McGraw-Hill, New York, 1981

Intelligence, Davis,

Pohtakis, P., Using Empirical Analysis to Refine Expert
System Knowledge Bases, PhD dissertation,

University, August 1982.

Rutgers

"A Foundation
of the IEEE
IEEE,

Kahn, G., Nowlan, S., and McDermott, J
for Knowledge Acquisition " In Proceedings
Workshop  of Principles  of Knowledge-Based Systems
December, 1984, 89-96.

Mitchell, T M., "Model-directed
learning of production rules," in Pattern-Directed Inference
Systems, Waterman, D. A and Hayes-Roth, F, eds,
Academic Press, New York, 1978.

Buchanan, B. G. and

Michalski, R S. and "Knowledge

by Encoding

Chilausky R L.
Expert Rules Versus Computer
A Case Study using Soybean
Man-Machine  Studies. 12 63

Acquisition
Induction from Examples.
Pathology." Intl. Jrnl for

(1980)

Mitchell, T.M., Steinberg, L.I., and Shulman, J.S. "A
Knowledge-Based Approach to Design." |In Proceedings of
the IEEE Workshop of  Principles of  Knowledge-Based

Systems. |EEE, December, 1984, 27-34, Revised version to

Transactions on  Pattern  Analysis  and

September, 1985.

appear in IEEE

Machine Intelligence,

Mitchell, T. "Learning and Problem-Solving." In [JCA1-8S.
August, 1983, 1139-1151.

Dedong G. "Automatic Schema Acquisition in a Natural
Language Environment." In Second National Conference on
Artificial Intelligence. Pittsburgh, PA, August, 1982,
410-413.

Salzberg, S. and Atkinson, D.J. "Learning by Building
Causal Explanations." In ECAI-84 September, 1984,
497-500.

Minton, S. "Constraint-Based Generalization." In AAAI-84.

Austin, Texas, August, 1984, 251-254

Kelly, Van E. The CRITTER System - Automated
Critiquing of Digital Circuit Designs." |In Proceedings of
the 21st Design Automation Conference. |EEE, June, 1984,
419-425, Also Rutgers Al/VLS1 Project Working Paper No.

13

Mahadevan, S. "Verification-Based Learning: A
Generalization Strategy for Inferring Problem-Decomposition
Methods." In  Proceedings of the Ninth International  Joint
Conference  on Artificial Intelligence. ~ August, 1985.

Smith, R.G., Winston, H.A., Mitchell, T.M., and
Buchanan, B.G. "Representation, Use and Generation of
Explicit Justifications for Knowledge Base Refinement." In
Proceedings  of the Ninth International Joint  Conference  on
Artificial  Intelligence. ~ August, 1985.



