
A Common-Sense Theory of Time 

James F. Allen and Patrick J. Hayes 
Departments of Computer Science and Philosophy 

University of Rochester 
Rochester, NY 14627 

Abstract 

The literature on the nature and representation of time 
is full of disputes and contradictory theories. This is 
surprising since the nature of time does not cause any 
worry for people in their everyday coping with the world. 
What this suggests is that there is some form of common 
sense knowledge about time that is rich enough to enable 
people to deal with the world, and which is universal 
enough to enable cooperation and communication between 
people. In this paper, we propose such a theory and 
defend it in two different ways. We ax iomat ic a theory of 
time in terms of intervals and the single relation MEET. 
We then show that this axiomatization subsumes Allen's 
interval-based theory. We then extend the theory by 
formally defining the beginnings and endings of intervals 
and show that these have the properties we normally 
would associate with points. We distinguish between these 
point-like objects and the concept of moment as 
hypothesized in discrete time models. Finally, we examine 
the theory in terms of each of several different models. 

Introduction 

The literature on the nature and representation of time 
is full of disputes and contradictory theories. This is 
surprising since the nature of time does not cause any 
worry for people in their everyday coping with the world. 
What this suggests is that there is some form of common 
sense knowledge about time that is rich enough to enable 
people to deal with the world, and which is universal 
enough to enable cooperation and communication between 
people. In this paper, we propose such a theory and 
defend it in two different ways. 

First the theory is powerful enough to include the 
distinction between "intervals" (i.e., times corresponding 
to events with duration), and "points" (i.e.. times 
corresponding to instantaneous events), as well as allowing 
substantial reasoning about temporal ordenng relations 
(including the abilities described in [Al len, 1984]). In 
addition, it includes a formalization of the beginning and 
ending of events by introducing the corresponding 
beginning and endings of times. We show that beginnings 
and endings act in many ways like "points," yet can be 
distinguished from them. 
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Second, the theory has as allowable models a number 
of the temporal models that are suggested in the literature. 
This includes models that equate time with intervals and 
points on the real number line, models that hypothesize 
discrete time, and any model which mixes real points and 
intervals. Our claim is that if our common-sense theory of 
time excluded any one of these models, then there would 
be no debate as to whether that model was valid, since in 
that case our own primitive intuitions on the matter would 
be extremely clear. We do make one restriction on the 
models considered: they must allow the possibility that 
two intervals MEET, which is defined as the situation 
where there is no time between the two intervals, and no 
time that the intervals share. The importance of this 
relationship for naive theories of time has been argued 
elsewhere (e.g., [Allen, 1983; 1984]), and so will not be 
defended again here. Even with this requirement, we shall 
see that substantially different models are possible. 

One important intuition which guides us is that time is 
occupied by events. If the universe did not change, there 
would be no time. Any sort of event or happening which 
can be described or thought of has a corresponding time, 
and the universe of times consists of these. We will often 
appeal to this intuit ion, which notoriously sometimes 
indicates continuity and sometimes discreteness. (In 
particular, it is the source of the need to allow time 
intervals to be able to MEET.) 

In Section 1, we axiomatize a theory of time in terms 
of intervals and the single relation MEETS. It is then 
shown in Section II that this axiomatization subsumes the 
interval-based theory proposed in [Allen, 1983; 1984]. 

We then extend the theory in Section I I I by formally 
defining the beginnings and endings of intervals and show 
that these have the properties we normally would associate 
with points. In Section IV, a distinction is made between 
these point-like objects and the concept of moment as 
hypothesized in discrete time models. Finally, in Section 
V, we examine the theory in terms of each of several 
different models. 

This paper is a condensed version of a report, [Allen & 
Hayes, 1985], henceforth referred to as the longer paper, 
which presents additional discussion and the proofs for all 
the theorems below. 
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Relation Inverse Definition 

BEFORE, b AFTER, a EXISTS k . I MEETS k MEETS J 

EXISTS kj . k MEETS I MEEIS I & 
k MEETS J MEEIS! 

OVERLAPS, o OVERLAPPED-BY, oi EXISTS a,b,c,d,e . a MEETS I MEETS d MEETS c & 
a MEETSb MELTS J MEETS c& 
b MEETS c MEETS d 

STARTS, s STARTED-BY,si EXISTS a.b.c a MEETS I MEETS b MEETS c & 
a MEETS J MEETS c 

FINISHES, f FINISHED-BY. fi FXIS IS a.b.c a MEETS b MEETS I MEETS c & 
a MEETS J MEETS c 

DURING, d CON'I AINS, di FX IS IS a.b.c.d . a MEETS b MEETS I MEETS c MEETS d & 
a MEETS J MEETS d 

Figure 1: The Relationships Between I and J in terms ofthe MEETS Relation 

I. An Axiomatization of Interval Time 

We start the formal development by positing a class of 
objects in our ontology that we shall call TIMES. These 
are intended to correspond to our intuitive notion of when 
some event occurs. We do not, at this early stage, make 
any committment as to whether all times are 
decomposable or not. 

The essential requirement of our intuition above is that 
two time intervals can MEET. We will take MEET as our 
primitive relationship between times and show that we can 
constructively define the complete set of possible 
relationships between intervals in terms of MEETS. Other 
reductions to a small set are possible; for example, 
Hamblin [1972] uses a relation we could define as less-
than-or-MEETS.) 

For example, we can define a relationship BEFORE to 
hold between intervals only if there exists an interval that 
spans some time between them. Thus 

I BEFORE J <= => EXISTS k . I MEETS k& 
k MEETS J. 

As a notational convenience, we shall abbreviate 
conjunctions such as the above into a chain, i.e., I MEETS 
k MEETS J. We shall also use the abbreviations used in 
[Allen, 1983] for disjunctions between pairs of intervals. 
Thus "J (o oi s f d) I" is shorthand for the formula 

(J OVERLAPS I) OR (J OVERLAPPED-BY I) 
OR (J STARTS I) OR (J FINISHES I) 
OR (J DURING I). 

A l l the possible relationships between times are 
defined in Figure 1. By including the inverses of these 
relations in the obvious way, we have thirteen relationships 
defined constructively in terms of MEET. Each entry 

defines the ordered relation between I and J (I BEFORE 
J, I OVERLAPS J, etc.). The inverses are also between I 
and J and are equivalent to the original relationship 
between J and I (e.g., I BEFORE J <= => J AFTER I. 
etc.). The small letters listed with each give the 
abbreviation for the relation that will be used later in some 
examples. 

With this reduction, we can axiomatize the interval 
logic entirely in terms of the MEETS relation, as follows. 

The first two axioms are based on the intuition that 
intervals have a unique beginning position and a unique 
ending position. As a consequence of this, if two intervals 
both meet a third interval, then any interval that one 
meets, the other meets as well. 

Axioms for Uniqueness of "Meeting Places": 

(Ml) ALL i j . 
(EXISTS k. I MEETS k & J MEETS k) => 

(ALL 1.1 MEETS K = > J MEETS 1) 

(M2) ALL i j . 
(EXISTS k . k MEETS I & k MEETS J) = > 

(ALL 1.1 MEETS I< = > i MEETS J) 

The third axiom captures the notion of ordering. It 
simply states that given two "places" where two intervals 
meet, then these places are either equal or one precedes 
the other. This is axiomatized without referring to places as 
follows: 

Ordering Axiom: 

(M3) A L L i j . k . I . 
(i MEETS j & k MEETS 1) => 

1) (i MEETS l)XOR 
2) (EXISTS m. i MEETS m MEETSl) XOR 
3) (EXISTS n.k MEETS n MEETS j) 
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In other words, we have exactly three possible cases, 
shown in Figure 2, for any four intervals i, j, k, and 1. 

Figure 2: The Three Possible Orderings 
of i, j, k, and 1 in Axiom M3 

Finally, we need some existence axioms. First given 
any interval, there exists an interval that meets it, and an 
interval that it meets, i.e., 

(M4) ALL i EXISTS j, k . j MEETS i MEETS k 

A consequence of this axiom is that no infinite time 
intervals are allowed in our theory. 

We need one more existence axiom, guaranteeing the 
existence of an interval which is the "union" or sum (+) 
of two adjacent intervals, defined by: 

Using the defined relations above, this axiom can be 
restated as 

We can prove that when I + J exists it is unique, and that 
+ is associative. 

With these five axioms and the definitions given in figure 
I, the entire transitivity table for interal relationships given 
in [Allen, 1983] can be derived. Thus, this set of five 
axioms concisely captures that logic. This is not to say, 
however, that an implementation should not use the 
expanded set of relations. There are some important 
efficiency gains from the larger set of primitives, as 
described in [Allen, 1983J. 

II. Nests: Beginnings and Endings 

There are classes of events described in English that 
cannot be associated with a temporal duration. These are 
often called "instantaneous" events, or "accomplishments" 
(e.g., [Mourelatos, 19781). Thus, we can say "I closed the 
door," but if we say "I closed the door for three hours," it 
means we are repeatedly performing the action (contrast "I 
sat on the floor."). Similarly, a click, or the flash of a 

strobe, cannot be qualified by a duration. Furthermore, 
the world after a click, or flash, could be essentially the 
same as before it, showing that these events cannot be 
identified with simple changes of state. 

One common approach to handling the times for such 
events is to model them as points (real points in the 
continuous model; integers in the discrete model). In this 
section and the following one, we shall develop two 
distinct notions of points from our interval logic. These 
will be compared in the final section. 

In this section we shall construct the equivalent of 
points within the interval logic defined in Section II by 
adopting a variant of filters, one of the standard 
mathematical constructions of points from intervals. 

In particular, we define the beginning of an interval to 
be the set of all intervals that "touch the beginning" in any 
way, and the end similarly. We can define the ending of an 
interval similarly. 

BEGIN(I) = { p | p (o s m fi di e si) I} 

This can be defined solelv in terms of the MEETS relation 
if one desires, but the above definition is simplest to 
understand. For convenience, we can define a nest as a 
beginning or an ending, and can now define relations over 
the set of nests which show them to have the properties of 
points. We shall say a nest N is before a nest M iff there is 
at least one interval in N that is before some interval in M. 

for any two NESTS, N and M 
N < M < = = > EXISTS n,m . n € N & m € M & 

n < m 

We show in the longer paper that nests have the important 
properties of points. The main result is that nests are 
totally ordered, i.e., 

Theorem 8: For any two nests N and M, 
either N < M, M < N or N = M 

We can also show that the intuitive definitions of the 
interval relations in terms of nests are theorems. For 
example, we have 

BEGIN(I) < END(I) 
I MEETS J < = = > END(I) = BEGIN(J) 
I OVERLAPS J < = = > BEGIN(I) < BEGIN(J) & 

BEGIN(J) < END(I) & 
END(I) < END(J) 

The second of these is especially important, as it shows 
that there is only one "place" where two meeting intervals 
actually meet This is, perhaps surprisingly, a delicate 
matter. Very small changes in the definitions of BEGIN 
and END fail to achieve this. It is perilously easy to get a 
point structure, which distinguishes two "sides" of a single 
point, and other oddities, as discussed in [Van Benthem, 
1982]. (We are grateful to Professor Dana Scott for 
bringing this and Hamblin's work to our attention, and 
emphasizing some of these subtleties.) We discuss this at 
greater length in the longer paper. 
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IV. Discrete Time and Time Points 

We can now show that discrete time models introduce 
a different kind of "point" than the points that are defined 
above. In particular, discrete time hypothesizes times that 
are not decomposable. Let us introduce a distinction 
between true-intervals and moments as follows: 

ALL I . TRUE-INTERVAL(I) < = > 
EXISTS a,b,c,d . a MEETS I MEETS d 

& a MEETS b MEETS c MEETS d 

ALL I . MOMENT(I) < = > ~1 RUE-INTERVAL(I) 
Thus, a true-interval has at least two sub-intervals (which 
might in turn be moments or true-intervals)--one that 
STARTS it and one that FINISHES. 

Before we continue, it is important to remember that 
all of the earlier theorems were proven before any 
distinction was made between moments and true-intervals, 
so they all hold for both classes: none of the proofs ever 
depended on the decomposability of an interval. These 
definitions allow us to prove that two moments cannot 
overlap in any way, yet they can MEET each other. More 
precisely, 

ALL IJ . MOMENT(I) & MOMENT(J) => 
I (< m = mi >) J 

Let us now consider the relationship between nests and 
moments. The definition of nests did not exclude nests 
defined at the beginning or ending of moments. In fact, we 
can show that the beginning of a moment is before the 
ending of that same moment! Thus, although a moment 
cannot be decomposed, we can distinguish its beginning 
from its ending. 

We can also show that moments and nests cannot be 
considered to be isomorphic to each other. This is easily 
seen from the observation that moments can MEET each 
other, whereas nests cannot. Intuitively, a moment is a 
time during which some event (a flash, a bang) occurs, 
while a nest defines an abstract "position" in the sequence 
of times. 

V. Discussion 

It is interesting to interpret these axioms in various 
possible models. The simplest one is discrete time: 
intervals are pairs of integers <n,m> with n < m, and <n,m> 
MEETS <m,k>. Then a moment is a nondecomposable 
interval <n,n + l>, and nests pick out integers, the places 
"between" moments. In this model there is a clear 
distinction between moments and points. We can also 
define several models based on the real line. For example, 
time intervals can be mapped into open or closed real 
intervals: however, then times can never MEET. A simpler 
continuous model, based on the integer model above, 

defines time intervals as pairs of reals <a,b>. with <a,b> 
MEETS <b,c>. Following through the axiomatic 
definitions with this as a basis makes nests define points on 
the real line, as expected, but now there are no moments at 
all, since even the smallest interval is decomposable. We 
might try to extend the model to allow intervals of the 
form <a,a>, which would qualify as moments, but now 
consider <a,b>, <b,b> and <b,c>. By our definitions, the 
first MEETs the last, yet they have the second between 
them, so the first is BEFORE the last, violating the 
ordering axiom. We have tried to fit real, substantial--
though very small-time intervals into merely mathematical 
"places," and they don't fit. 

However, another possible model is one which mixes 
these, using the same definitions of interval and MEET 
(from which all else follows) but allowing parts of the time 
line to be discrete and parts to be continuous. Intuitively, 
if we have only coarse time measuring tools available, then 
we can treat time as discrete, but the possibility always 
remains of turning up the temporal magnification 
arbitrarily far, if we have access to events which can make 
the finer distinctions, distinctions which can split 
"moments" into smaller and smaller parts. 

Our axiomatic theory allows all of these models and 
others; it is uncommitted as to continuity or discreteness of 
the sequence of times, yet is powerful enough to support a 
great deal of the temporal reasoning of common sense. 
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