TRIVIALIZING THE FROCF OF TRIVIAL THECREVS

Y. Kodratoff and J. Castaing

LRI, Bat. 490 - Universite de Paris-Sud - F. 91405 CR3AY CHXEX

ABSTRACT

Besides a definition of "trivial" theorem,
this paper presents a sketch of our methodology
for the generalization of recurrence proofs on
"trivial" theorems but that lead, in a context of
automatic theorem proving, to very lengthy (or
even impossible to achieve) proofs.
This paper reduces to a description of a detailed
example, we hope to make clear that our methodolo-
gy is of a much wider field of application.

| INTRODUCTION

In the field of theorem proving by induction,
the need for an efficient generalization system has
been expressed several times [2,3,5]. The methodo-
logy presented here differs from the one already
used in existing systems [2,4]by two main features.
First, our heuristics are driven by example proofs
run on particular values of the variables (in this,
we follow [6,7]. Second, instead of a progressive
generalization expected to eventually reach a state
where the theorem is provable, we go the other way
round: we "savagely" generalize the theorem into an
expression which is (in general) FALSE, and use a
progressive particularization expected to eventual-
ly reach a state where the theorem is TRUE (and
provable). This coincidence of truth and provabili-
ty of a progressively particularized expression is
implicitly part of our definition of "triviality".

IT OQUR DEFINITION OF A TRIVIAL THEOREM

1I.1 Sketch of our methodology

We suppose that we are 1n an enviromment of
recursive definitions as im [1] (Burstall 69) and
that we have at our disposal a well-founded orde-
ring. Let t(x) be a theorem to be proven by induc-
tion on x. Let a(x) be the successor of x in the
well-founded ordering. An induction proof contains
two steps. The first one is the basis case (which
we conaider here as already proven). The second
tries to prove that t(x) implies t(s(x}). Let R be
the set of rules we have at our disposal {section
3}, and let te(x)=p t(s(x)) be the expression one
obtains after having applied R to t(s(x}).
Definition: We say that t(x) r—matches te(x) iff
|- there exists a substitution O such that
gat(x}=te(x)
2= dsx 18 less than or equal to x in the well-foun-
ded ordering.
Remark: This definition implies that the substitu-
tion x+a(x) is a failure of the r-matching.

It is clear that the r-matching of t{x) to-
wards tc(x) proves thst the implication t{x)+t(e(x))
is valid in the theory. ILf the r-matching of t to-

wards tc fails, we analyse the conditions at which
it could succeed. These conditions are considered
as recursively generated new theorems to be proven
by the same methodology.

I1.2 Definition of "trivial"

The theorems we are able to prove are trivial
in the following sense:
a- If the proposition to be proven is FALSE, it
must "quickly" evaluate to FALSE for the first par-
ticular values of its variables. In the list domain
these values are NIL, (OONS A NIL), (OCONS B (CONS
A NIL)),... where A, B are atoms.
b- When the matching of t towards tc fails then it
often happens that the conditions which express how
to avoid this failure are a system of equations
(of the diophantine type) among a set of new varia-
bles. "Trivial® means also here that this system
is "easy" to solve. The words quoted above, i.e,
"quickly" and "easy" can have different definitions.
In our system, we have chosen the following:
"quickly" is "at once" (an untrue expression must
evaluate to FALSE for the first element of the well-
founded ordering) and "easy" means that only equa-
lity relationships linking the variables directly
are allowed. Notice that even with that ground de-
finition of trivial, we are able to prove (trivial)
theorems the proof of which is very difficult.

II1 THE REWRITING SYSTEM

The functions we are to uze are given below
under & case representation (Burstall 69).
{EQL x y } type : boolean
{EQL NIL NIL) = TRUE
{EQL (CONS A x) NIL) = FALSE
(EQL NIL (CONS A y)) = FALSE
{EQL (CONS A x) (CONS B y)) =
(aND (EQN 4 B) (EQL x y))

(AND x y)} type : boolean
{AND TRUE y) = y

(AND FALSE y) = FALSE

(APP x y) type : list
(APP NIL y) =y
(APP (CONS A x) y) = (CONS A (APP x y))

(REV x)} type : list
{REV NIL} = NIL
{REV (CONS A x)) = (APP (REV x) (CONS A NIL})

(FOO x y) type : list

(FOO NIL y) -y
FOO (CONS A x)y) - FOO x (CONS A y))
EN x y) type : boolean

EQN ZHRO ZERO) = TRE
EQN (SUCC x) ZERO) = FALSE
EQN ZERO (SUCC y)) = FALSE
EN SUCC x) BUCC y)) = EN x)

vV DESCRIPTION OF O.R METHODAOGY

It consists of four steps, the first two of
which will be exemplified by the proof of:
= EQL APP REV x) (FOO x IlIL))

FOO (APP x x) NIL)).

Assuming that the basis case has been proven, a
recurrence proof of t consists of an induction
step done by the substitution x<(CONS A x) and the
rewritings of section Ill. This leads to:
tc= EQL (APP (APP (REV x) (CONS A NIL))
(FOO x (OONS A NIL))) (FOO APP x (QONS A x))
(CONS A NIL)))
and the proof of tc under the hypothesis that t is
TRE is not at all trivial.

IV.1 Step one
We "savagely generalize the variables of t,

giving a different name to all of them. The obtai-
ned expression, named TI, is generally wrong. We
particularize Tl so that it will eventually take
the form tl which evaluates to TRE (for the first
values of its variables). As in section I1.1, we
compute tcl and if there exists a substitution a:
Oo tl = tcl, the problem is solved. Otherwise, we
have to use step 2.

Example: The theorem t given above is savagely
generalized to:

TI- EQL (APP REV xl) (FOO x2 NIL))
(FOOAPP x3 x4) NIL)).
Let xil, I<i<4, be an atom, we give to each varia-

ble xi the value (CONS xil NIL) and look for the
conditions on the xil insuring that Tl takes the
value TRUE. The expression of T1((CONS xil NIL))
is equal to:

(EQL (APP (REV (QONS xil NIL))

(FOO (OONS x21 NIL) NIL)) (FOO (APP (CONS x31 NIL)
(CONS x41 NIL)) NIL)).

A call - by - name evaluation of the definitions
given in section 3 leads to evaluate first the
underlined functional symbols, so that

Tl (CONS xil NIL)) becomes

(FOéE Coﬁpﬁ(ﬁm@%\%ﬂu (OONS xil NIL))

(FOO (CONS x31 (APP NIL (OONS x41 NIL))) NIL)).

- (EQL (APP (APP NIL (CONS xil NIL))
(FOO (CONS x2 NIL) NIL))
(FOO (APP NIL (OONS x4 1 NIL)) (OONS x31 NIL))).

(EQL (APP (OONS xil NIL) (FOOOONS x21 NIL) NIL))
(FOO (OONS x41 NIL) (OONS x31 NIL))).

= (EQL (OONS xI (APP NIL (FOO (CONS x21 NIL) NIL)))
(FOO NIL (CONS x41 (QONS x31 NIL)))).

Y. Kodratoff and J. Castaing 931

- EQL OONS xI (APP NIL FOO (QONS x21 NiL) NIL)))
(OONS x41 (OONS x31 NIL))).

- (AND EQN xII x41)
(EQL (APP NIL (FOO (QONS x21 NIL) NIL))

(CONS x31 NIL))).
The evaluation stops at this point since xll and
x41 are variables and we cannot evaluate
EN xll x41). We therefore state that EQN xl 1 x41)
is a condition for TI ((CONS xil NIL)) evaluating
to TRUE. We replace EN xil x41) by TRE and the
evaluation proceeds on (and is left to the reader)
up to the result:
- (AND EN x21 x31 (EQL NIL NIL)).
In the same way as above, we must have EMN x21
x31).From these conditions, we deduce that xl=x4
x2 = x3 which are put in Tl in order to obtain tl:
tl- EQL APP REV y) FOO z NIL))
FOO (APP z y) NIL)). .
We leave to the reader to verify that tl cannot be
trivially proven by induction on y (or z). We the-
refore proceed on to step 2.

IV.2 Step two:Obtaining new theorems.

Broadly speaking, we apply again the same
strategy which is too much generalizing and then
finding for particular values of the variables the
conditions which bring the generalization to TRUE.
In this step the generalization is made according
to the following heuristics: the matching of tl to-
wards tcl fails, and we mark the terms in tl that
do not contain the recurrence variable and fail to
match with tel. Each marked term is generalized to
a different variable vl,...vi and tl takes the form
T2. In T2, we give particular values to the varia-
bles different from the vi's, and find conditions
on the vi's so that these particular expressions
evaluate to TRE (as in step 1). Our triviality
condition "insures" that the system of equations
linking the vi's is easy to solve. The solution is
put into T2 which becomes t2. If t2 does not match
tc2, we recursively apply step 2 to t2 (obtaining
t3...). This step stops in two cases: either the
theorem is proven or the failure of the matching
is the same in ti and ti+1. In the last case we
proceed on to step 3.

Example: Choosing z as the inductive variable, so
that z is replaced by (CONS A z) into tl
tl= EQL (APP REV y) (FOO z NIL))
FOO (APP z y) NIL)), we obtain
tel™ EQL APP REV y) (FOO z (OONS A NIL)))
(APP z y) QONS A NIL))).

The r-matching of tl and tcl fails because it would
lead to the substitution NIL <{CONS A NIL), which
is forbidden since the left part of a substitution
must be a variable. As above explained, we replace
the two occurences of NIL by two different varia-
bles vl and v2. We have

T2- EQL APP REV y) (FOO z vl)) FOO (APPzy)v2))
Giving to y and z the value NIL we obtain (as in
step 1) the condition (EQL vl v2) which is put into
T2 in order to give t2:

2=EQ AP FREVy) FOO z u) FOO (APPzy)u)).
The reader will find that inducting on z (which is
replaced by (CONS A z) in t2), one obtains tc2 such
that there exists a substitution a such that

Oot2 = tc2, 0-=-(CONS A u). This proves the induc-
tion step for t2, because u is not the induction

932 Y. Kodratoff and J. Castaing

variable. We assume here that the basis case has
already been proven, so this ends the proof of r.

Iv.3 Step three: Inducting lemmata from a
partial matching.

We suppose that step 1 and step 2 failed and
we must now prove the theorem t' obtained after
applying step 1 and step 2, We restrict ourselves
to the cases where the property to be proven
about t' is not & unary operator. An instance of
this operator is EQL cf arity 2, when t' is con-
cerned with liet equality.

Let t' = (P 51{x) ... Sn(x)) where x is the in-
duction variable, and t'c = (P Scl(x} ... Scen(x))
such that t' does not matech t'e.

Let us suppose that one subterm Si(x) matches
Se¢i{x) : there exists a substitution ¢ such that
Gy 51 (x) = Sci(x) and gex+vx. It is evident that
t'= (P Sl{x) ... Sn(x)) matches

t" = (PogS1(x)...0¢%n(x)). It follows that if we
are able to prove the n-l lemmata:

JaS1{x) = Scl(x),...0p5n(x) = Scn{x), we will
have proven t'. This is really a heuristic since
nothing proves that the n lemmata are easy ones.
Our simple remark is that this is the last hint
one can find and is therefore worth trying.

IV.4 Step four: Inducting lemmata from a par-
ticular values of the induction variable.

We suppose that step 3 fails because no Si(x)
matches an Sci(x).
Let s{D)<s{s(0))<.., be the successive canonical
forms of the well founded ordering. We write:
(P SI(0),... Sn(0))}, (P Sl{(5(0)) ... Sn(s(0))),...
and evaluate all the Si's with our rewriting rules,
We attempt to match the evaluated 5i{0) ad 5i(s(0})}
(as we have already seen 0O+5(0) is excluded as a
matching failure). If this succeeds for ome i, a
substitution ¢ is found apd used as in step 3.

V. CONCLUSION

Our main goal has not been to give a syntac-
tical characterization of the class of theorems
we are able to prove in that way. Notice never-
theless, that improving our possibility to solve
systems of equarions and to detect our constant
subpcitutions will extend the class of trivial
theorems as defined here.

REFERENCES

[1} Burgtall R., "Proving properties of programs
by structural induction”. Computer J.. 12 (1}
(i969) 41-48,

[2} Aubin R., "Mechanizing structural induction".
Ph. D. Thesis. Univ. Edinburgh (1976).

[3] Boyer R.S. and] S, Moore, "A computational
logic". Academic Press (1980).

[4] Castaing J., Y. Kodratoff and P. Deganc,
"Theotem proving by the study of example proof
traces". Proc. Int. Workshop in Program Cons-—

truction Bonegs, (1980).

[6] Castaing J. and Y. Kodratoff, "Generalisation
de theories". Actes reunion GROSSEM, Poitiers
(1980), 141-166.

[6] Degano P., J. Castaing and Y. Kodratoff, "In-

ductive hypothesis extracted from proof traces',
Atti AICA 80, 114-116.

| 71 Degano P. and F. Sirovich, "Inducting function
properties from computation traces". IJCAI-79,
208-216 and "Inductive generalization and
proofs of function properties”, Comp. Ling.
(1979), 13, 101-130.

