
LARGE-SCALE SYSTEM DEVELOPMENT IN SEVERAL LISP ENVIRONMENTS! 

Sanjal Naraln, David McArthur and Philip Klahr 

The Rand Corporation 
1700 Main Street 

Santa Monica, California 90406 
USA 

ABSTRACT 
ROSS |7] is an object-oriented language developed for building 
knowledge-based simulations [4l. SWIRL |5, 6] is a program written 
in ROSS that embeds knowledge about defensive and offensive air 
battle strategies. Given an initial configuration of military forces, 
SWIRL simulates the resulting air battle. We have implemented 
ROSS and SWIRL in several different Lisp environments. We 
report upon this experience by comparing the various environments 
in terms of cpu usage, real-time usage, and various user aids. 

1. INTRODUCTION 

Over the past six months we have been engaged in implementing 
ROSS (an object-oriented, know ledge-based simulation language [7jj 
and SWIRL (an air battle simulation [5, 6]) in five different Lisp 
environments We discovered that the environments varied consid­
erably in how well they supported system development. We report 
upon our experience by comparing the various environments in 
terms of cpu usage, real-time usage, and user aids (e.g., editors and 
file packages). Our aim is to critically examine several Lisps avail­
able today, in order to help those who are building large systems to 
make an informed choice about which dialect may be most 
appropriate for their application. 

2. FIVE IMPLEMENTATIONS OF ROSS AND SWIRL 

2.1. Maclisp on a DEC-20 

Maclisp, running under TOPS-20, was the original language in 
which ROSS was implemented. Approximately one man-year was 
required to make ROSS a reasonably mature object-oriented pro-
gramming environment. Two factors greatly contributed to the 
speed of ROSS development. First, Maclisp has a very efficient 
implementation on the DEC-20 that made it possible to quickly 
experiment with additions and changes to the ROSS design. (Of 
course, the speed of Maclisp also contributed to the efficiency of the 
SWIRL simulation written in ROSS. As may be seen in Table 1, 
the implementation in the Maclisp-ROSS version is, overall, the 
fastest of all implementations of SWIRL.) Second, within Maclisp, 
we could make use of Emacs, a powerful screen-oriented editor, that 
runs locally within Maclisp through the use of the LEDIT package. 
Emacs had two features that were crucial to efficient program 
development. First, Emacs understands Lisp structures (e.g., it does 
automatic s-expression indentation, pretty-printing and parentheses 
balancing). Second, when using Emacs to edit a function definition, 
one directly edits the file containing the function. The user is in full 
control over not only the format of function definitions, but also 
exactly how the functions are arranged in files, and therefore in 
hardcopy when printed. 

What hindered the development of ROSS in Maclisp was the poor 
documentation of many essential language features. Often novice 
Maclisp users regard Maclisp as primitive, especially compared to 
Interlisp, which advertises such user packages as the Clisp iterative 
facility, the record package, the filepackage, and the PRINTOUT 
printing facility In fact all these features exist in Maclisp, but until 
recently, unless you had a Maclisp wizard around, the only way to 
find out about them was by browsing through the files your 
machine's Maclisp directory. This kind of search cost us at least a 
month in development time. 

t The views expressed in this paper are the authors' own and do not represent 
thope of Rand or any of its research sponsors. 

The other main problem with the Maclisp implementation was that 
it resided on a DEC-20. This machine is proving increasingly 
inadequate for large AI programs, because of its small 18-bit address 
space. 

2.2. Franrllsp on a VAX-11/780 [2] 

Because of Franzlisp's advertised compatibility with Maclisp, we 
thought it would be straightforward to convert our Maclisp versions 
of ROSS and SWIRL to work within the Franzlisp environment. 
This was almost the case. About two man-weeks of effort over a 
one month period was required for the conversion process. We did 
notice certain inconsistencies between Franzlisp and Maclisp but 
they were fairly easy to fix. Although ROSS and SWIRL are large 
systems even when compiled (see Table 1), they ran acceptably fast 
within Franzlisp, even when running large simulations. 

Our Franzlisp runs under the UNIX operating system and provides 
us with a very useful link to our C-based graphics programs. Com­
piled versions of these programs can be directly loaded into Fran­
zlisp. This feature allows us to dynamically view a SWIRL simula­
tion as it is running. 

Franzlisp also scores high marks for some user development tools. 
Like Maclisp, one can use Emacs as a screen-oriented local editor. 
Here the interaction is a little different. The user is actually in 
Emacs and sends forms to Lisp for evaluation. The advantage of 
this is that within Emacs, the user can move backwards and for­
wards across forms, modifying them and resubmitting them to Lisp 
as he chooses. We find this to be a powerful environment for rapid 
code modification. 

2.3. Interllsp-D on a Dolphin [12] 

Our first Interlisp version of ROSS was developed on the Xerox 
1100 (Dolphin) Processor. This version underwent substantial 
redesign not only because of the difference between Maclisp and 
Interlisp but also because we wanted to improve upon the Maclisp 
version. It took us about four man-months for the new implementa­
tion, which was more time than expected. The major problem was 
speed. As the statistics in Table 1 indicate, the Dolphin was over an 
order of magnitude slower than the Maclisp-20 version for running a 
standard simulation. But the Dolphin fared worse in speed of 
software development than speed of performance of a developed sys­
tem. File operations (e.g., loading files or editing a function then 
saving it on file, see Table 1) were the major bottlenecks. Further, 
since interpreted code on the Dolphin usually executes too slowly to 
be tolerable, all code had to be compiled before being tested. This 
substantially increased the time between identifying a bug, fixing it, 
and testing out the fix. 

Perhaps the most outstanding feature of the Dolphin is its graphics 
capability. We found it to be very powerful for quickly implement­
ing a wide range of graphics tasks. Also several user aids like the 
trace and break packages have been augmented graphically and 
enable one to display and hold far greater information on the screen 
than with conventional terminals. The Dolphin's graphics capabili­
ties, bitmap display, mouse and windowing are well exploited by 
DEDIT, the principle function editor. It is especially powerful when 
used with the TTYIN facility which, like Emacs, has some very use­
ful features such as parenthesis matching, and moving forwards and 
backwards over s-expressions. We have one maior caveat: DEDIT is 
a function editor, not a file editor. With DEDIT one changes the 
definition of a function, but MAKEFILE (the Interlisp function for 
writing out a symbolic file) determines the appearance and location 
of function definitions within files. In contrast, when editing func-



860 S. Narain et al. 

tions with Emacs in Maclisp, one changes both the definition and 
appearance, since one is editing a file and a function simultaneously. 

The Dolphin operating system does not provide a tree structured 
directory system, so that files cannot be stored as logically as one 
would like them to be. The high bandwidth (3 Mbits/sec) ethernet 
communication network connecting the Dolphins and the VAX-
11/780 allows one to quickly transfer large files between different 
stations. 

2.4. Interlisp on a VAX-11/780 [1] 

Bringing the ROSS/SWIRL system up in VAX-Interlisp did not turn 
out to be as straightforward as we had expected even though we 
had already developed ROSS/SWIRL in Interlisp-D. Though 
Interlisp-D source code was almost completely transportable, certain 
subtle incompatibilities were fairly time consuming to discover. It 
took about one and a half man-months to bring the ROSS/SWIRL 
system up. 

As with Interlisp-D, speed was the main factor slowing both pro­
gram development and hindering subsequent effective use of the 
SWIRL simulation. This slowness is partly due to working in a 
time-sharing environment and partly due to the sheer size of Inter-
lisp and the overhead involved in evaluating an expression (e.g., 
DWIM, CLISP). We regard the Interlisp-VAX version of ROSS as 
marginal for serious simulation applications. 

One inconvenience of Interlisp-VAX, not shared by the other Inter-
lisp implementations, is that UNIX file names are restricted to at 
most 14 characters and do not have version numbers. Although 
Interlisp does attempt to simulate version numbers, it does so at the 
UNIX level. These files all look alike and what results can be seri­
ously confusing at times. Also, considerable caution must be exer­
cised while manipulating files in UNIX since it is very easy to delete 
or overwrite them. 

Since the conversion task involved a non-trivial amount of file mani­
pulations (editing, copying, deleting) the process was helped 
immensely by the availability excellent file editors (Emacs and 
the local Rand editor E), ani by the UNIX software support. We 
rarely had occasion to use the Interlisp structure editor. 

2.5. Interllsp on a DEC-20 (10) 

ROSS/SWIRL has been most recently developed for Interlisp on the 
DFX-20. It took about one man-week to bring up this version. Yet, 
several factors made this a surprisingly painful process. Among 
other things, the backquote facility (for defining macros) had to be 
redefined. We also found that files bad to be massaged in format 
considerably so that Interlisp-10 would accept them. However, 
because of the extremely efficient disk operations on the DEC-20, 
the powerful Emacs editor, the friendly TOPS-20 operating system 
(which has among other features, excellent backup support, tree 
structured file directories, altmode completion), and useful TOPS-20 
resident software, it was possible to go through several iterations of 
the system fairly rapidly. Even so, SWIRL ran substantially slower 
than the corresponding implementation in Maclisp on a DEC-20. 

3. DISCUSSION 

Through several years of experience in developing large Lisp-based 
systems we have formed certain opinions about features in various 
Lisp environments, and their effect upon programmer productivity. 
We summarize these below. 

First, as perhaps with any software development effort, the total 
turnaround time between writing a piece of code and testing it out 
should be minimal. This implies that the cycle of obtaining fresh 
Lisp sessions, loading files, executing code, modifying code, and stor­
ing changes should be as rapid as possible. We found that Maclisp, 
Franzlisp and Interlisp-10 satisfied this requirement, but Interlisp-D 
and Interlisp-VAX did not. A major bottleneck in Interlisp-D pro­
gram development concerned file operations. Not only did they 
take a long time to complete, but there was also a lack of a good file 
editor. We had to use the file editors on the VAX, particularly 
when converting some of SWIRL files from Maclisp into Interlisp, 
and suffered a substantial increase in the number of time-consuming 
steps needed to make a change on disk. Also, Interlisp is much 
bigger than Maclisp or Franzlisp, and its large size causes frequent 
swapping at run time leading to considerable deterioration in execu­
tion speed. The presence of user aids (e.g. DWIM, Mas terse ope, 
Programmers Assistant) if not deactivated, further adds to the time 

needed to produce a response. Even while programming in Int 
lisp, we found we had rare occasion to use many of these featur 
In the rase of Interlisp-D, for example, DWIM operated so slow 
that it was quicker for the user to detect and correct his own sp 
ling errors. 

Secondly, we found it more desirable to create our code by direc 
writing into files, instead of defining functions within Lisp, and usi 
MAKEFILE to write them out to disk, as is done in Interlisp. 
our opinion, good programming style refers not only to the str 
ture of functions, but also to the organization of functions in 
larger, logically connected units of code. If it is difficult for the p 
grammer to maintain full control over the appearance of lar 
hunks of code or files, it eventually becomes very hard for him 
keep a good cognitive map of his programs. Without such a m 
the programmer's understanding of his program, and the rate 
which he can modify it, diminishes as the system grows larg 
Maclisp and Franzlisp give the programmer complete control ov 
the organization of code. Obtaining such control in Interlisp is pc 
sible, but indirect, awkward, and time consuming. 

Finally, we have come to increasingly believe that speed is as impo 
tant a tool for software development as any sophisticated user int 
face. Al has been notorious for ignoring efficiency issues. Ma 
research applications run in interpreted Lisp. Often there is 
decent Lisp compiler, and where there is, even good Lisp hackers 
not know the special compiler declarations needed to make good 
of compilation. As AI moves from developing theoretically intere; 
ing but computationally light systems into a market place th 
demands computationally-intensive, scaled-up systems that m 
run in real time, there will be an increasing need for "industri; 
strength Lisps". These would include, for example, compilers th 
are well documented, heavily optimized, that run in the san 
environment as the interpreter, and that are guaranteed to. produ 
code that runs the same as interpreted code. Presently no compi 
meets all these requirements, although Common Lisp [9] hopes 
meet these goals. 

4. REFERENCES 

[l] Bates, R. L.. Dyer, D., and Koomen, .J. Implementation 
Interlisp on the VAX. Proc. 1982 ACM Symposium on L 
and Functional Programming, Pittsburgh, 1082. 

(2) Foderaro, J.K., and Sklower, K.L. The Franz Lisp Manu 
University of California, Berkeley, April 1982. 

[3] Gabriel, R.P., and Masinter, L.M. Performance of Lisp System 
Proc. 19S2 ACM Symposium on Lisp and Functional Progra 
ming, Pittsburgh, 1982. 

|4] Klahr, P., and Faught, W. S. Knowledge-Based Simulatic 
Proc. AAA1-S0, Stanford, 1980. 

(5] Klahr, P., McArthur, D., and Narain, S. SWIRL: An Obje 
Oriented Air Battle Simulator Proc. AAAI-82, Pittsburg 
1982. 

[G] Klahr, P., McArthur, D., and Narain, S. SWIRL: Simulati 
Warfare in the ROSS Language. N-1885-AF, The Rand Cc 
poration, Santa Monica, September 1982. 

[7] McArthur, D., and Klahr, P. The ROSS Language Manual, 
1854-AF, The Rand Corporation, Santa Monica, Septemt 
1982. 

[8] Sandewall, E. Programming in the Interactive Environme 
The Lisp Experience. ACM Computing Surveys 10(1), Mar 
1978. 

[9) Steele, G. An Overview of Common Lisp. Proc. 1982 AC 
Symposium on Lisp and Functional Programming, Pittsburg 
1982. 

(10] Teitelman, W. Interlisp Reference Manual. Xerox Palo A" 
Research Center, October 1978. 

|11] Teitelman, W., and Masinter, L. The Interlisp Programmi 
Environment. IEEE Computer 14(4), April 1981. 

[12| Xerox PARC, InterIisp-D User's Guide. Xerox Palo As 
Research Center, February 1982. 



S. Narain et al. 861 

Notes for Table 1. 
(1)'Maclisp times are averages over three runs on a DEC-20 (approxi­

mate load averages of 1.5) with 1.25 megabytes of physical 
memory. 

(2'Franzlisp version is Opus 38 (April, 1082). Timings are averages 
over three runs on a VAX 11/780 (load averages of less than 1.5) 
with 4 megabytes of physical memory. 

(3)Interlisp-D is Chorus release of February, 1983. Timings are 
averages over three runs on a Xerox 1100 Dolphin with 1 mega­
byte of physical memory. (Timings on a Dolphin with 1.5 mega­
bytes memory averaged between 6% and 19% faster.) 

(4)lnterlisp-VAX is April, 1982 release. Timings are averages over 
three runs on a VAX 11/780 (approximate load averages of 1.1) 
with 4 megabytes of physical memory. 

(5) Interlisp-lO timings are averages over three runs on a DEC-20 
(approximate load averages of 1.5). 

(6)First value is for first time LEDIT is invoked; second is for subse­
quent invocations. First value is higher because the LEDIT sub-
fork must be created. No cpu time is given because editing is 
done outside of Lisp. 

(7)First value is for first time EMACS is invoked; second is for sub­
sequent invocations. No cpu time is given because editing is done 
outside of Lisp. 

(8)Time to invoke the DEDIT local editor (first/second times). 
(9) First value is for first edit, second is for subsequent edits. First 

value includes time to fetch interpreted function from a file into 
an otherwise compiled environment. 

(10) Time to invoke EDITF (first/second times). 
(11) [Time taken to save a file in EMACS editor. 
(12)Time required to execute MAKEFILE on a file of 33,550 bytes 

after one function definition had been changed. RC option was 
not used. 

(13) Time required to execute MAKEFILE on a file of 35,177 bytes 
after one function definition had been changed. RC option was 
not used. 

(14)Time required to execute MAKEFILE on a file of 35,177 bytes 
after one function definition had been changed. RC option was 
not used. 

(15)'Opus 38.50 (February, 1983) is larger (938,614 bytes for SWIRL 
sysout, 605,302 bytes for Franzlisp) with about the same perfor­
mance. 

(16)'A pre-release Inter lisp-VAX version of April, 1983 is smaller 
(3,214,304 bytes) and seems about 40% faster. 

(17) Even though SWIRL code could be compiled and run inside of 
Interlisp-10, the loader generated an error when loading compiled 
SWIRL files. We have not been able to fix this error. 


