LARGE-SCALE SYSTEM DEVELOPMENT IN SEVERAL LISP ENVIRONMENTS!

Sanjal Naraln, David McArthur and Philip Klahr

The Rand Corporation
1700 Main Street
Santa Monica, Califoria 90406
USA

ABSTRACT
ROSS is an object-oriented for buildin,
u J [4l. Sw goveiope n

S|mulatrons 5, 6] is a program written
in that and offensive air
battle strat Given an ini |aI oonﬁ uration of military forces
SWIRL simu the resultlnq air battle. We have impleme

and S different Lisp envionments. We
report upon thls expenenoe by comparing the various environments
in terms of cpu usage, real-time usage, and various user aids.

1. INTRODUCTION
Over the six months we have been engaged in |mplemen11r}g

RCSS (an Fénabsjteot-onented know ledgebased simulation lai
and SWIRL (an a|r battfe S|mulat|on [5, 6]) in five drl’eren L|s

environments that the environments varied consi

erably in how weII pported system development. We report

upon our experience comparing the various environments in
ofopuu%u;e realtime usage ar‘duserards(eg edltorsand

file r am is to crltlcally examine several Lisps avail-

able today, |n order to help those who are bUI|dI large sgerrs to
an informed chaice about which dlae

appropriate for their application.
2. FIVE IMPLEMENTATIONS OF ROSS AND SWIRL
2.1. Maclisp on a DEC-20

Maclrs running under TOPS-20, wes the original uage in
pR(BS wa% |m%emented Approxmately S mahr"\gear
requrred to make mature” object-oriented pro-
grammor}g envionment. Two factors greatly oontnbuted to the

ROSS development. First, Macisp hes a very efficient
implementation on the DEC-20 that mede it ible urckl
experiment with additions and to the deS|gn gh
oourse, the speed of Madlisp also con nbuted to the eﬁioren of
SWIRL simulation written in ROSS. may be seen in bIe 1,
the implementation in the %ROSS version is, overall, the
fastest of all implementations of SWIRL.) Second, within Macllsp
we could make use of Emacs, a powerful screenonenbd editor, that
uns IocaIIy W|th|n Maclisp through the use of the LEDIT
Emacs had two features that were crucial to efficient program
development. First, Emacs understands Lisp structures (e.g., it does
automatic s-expression indentation, pretty printing and
balancing). Second, when using Emecs to edit a function definition
ore directly edits the file containing the function. The user is in full
oontrol over not only the format of function definitions, but also

functions are amanged in fies, and therefore in

hardoopy when printed.

What hindered the of ROSS in Maclisp wes the poor
?\j/lo%mentatlon of many et (éssenhal Ianthlage features|y Often mvrog
isp users regal laclisp as primitive, especl
Interlisp, which advertises such user as the C|IS iterative
facility, ‘the record theﬁ ckage, and the PRINTOUT
printi t? facility In fact al res exist in Maclisp, but until
recen u¥ you had a Madlsp wizard around, the only way to
find out about them wes browsing through the fles your
machine's Madlisp dlrectory his kind of search cost us at least a
month in development time.

e e L g o o it

The other maln problem with_the Maclisp implementation wes that
t resided on a DEC20. This machine is proving increasingly
|nadequate for Iarge Al programs, because of its small 18-bit address

2.2. Franrllsp on a VAX-11/780 [2]

Because of Franzlisp's advertised compatibility with Maclisp, we
thou ht it would be stralghtforward to convert our Maclisp versions
RL to work within the Franzlisp environment.
Thlsvras alrnostt‘nemse Abouttwoman-weelsofeffortovera
one month period wes required for the conversion process.
not]oe certain inconsistencies between Franzlisp and Madlsp but
were fairly essy to fix. Although ROSS and VVIRLareIarge
even when compiled (see Table 1), theYranaooeptably fast
V\ﬂen ulal

within Franzlisp, even running large simulations.

Our Franzlisp runs under the UNIX operating system and provides
us with a very useful link to our raphics programs. Com-
piled versions of programs can be directly loaded into Fran-
Zlisp. This feature allows us to dynamically view a SWIRL simula-
tion as it is running.

Franzlisp also soores high marks for some user development tools.
Like Maclisp, one can_ use as a screen-oriented local editor.
Here the interaction is a little different. The user is actually |n
Emecs and sends forms to Lisp for evaluation. The

this is that within Emacs, the user can move backwards fpr-
wards acoss forms, modifying them and resubmitting them to Lisp
as he dhooses, We find this 0 be a powerful environment for rapid
oode modification.

2.3. Interllsp-D on a Dolphin [12]

Our first Interlisp_version of ROSS wes
1100 (DoIphln) Processor. This version u substantral

not only because of the difference ﬁ)
Interhsp but also because we wanted to mgove upon the laclisp
version. It took us about four marHmonths for the new implementa-
tion, which was more time than € The_maijor problem wes
As the statistics in Table 1 indicate, the Dolphin was over an
order of magnitude slower than the Madrsp—20 version for running a
standard simulation. But the DoIphrn fared w?rse in speed of

software development tha ﬁaeed performance of a developed
tem File operations (eP oadrng fles or editing a function ﬂwﬁ
saving it on file, see Table 1) were the major botllenecks. Further,
since |nterpreted aode on the Dolphin usually executes too sl to
be tolerable, all code had to be compiled béfore being tested. This
substantlally increased the time between identifying a bug, fixing it,

and testing out the fix.

Perhaps the most outstanding feature of the Dolphin is its graphics
capabrllty We found it to be very powerful for qwckly implement-
|ng a raphi |cs tasks Also several user aids like the

augmented graphically and

endJle oe o dIS ay and hold far reater |nformat|on on the saeen
than with oonvent]onal terminals. Dolphin's g Iphrcs capablll-
ties, bitmap display, mouse and windowing are wel export
DEDIT the pnncrpe functlon editor. It is especially powerful vrhen
used with the TTYIN facility which, like Emacs, has some
ful features such as parenthesis matching, and moving forwards and

rds over s-expressions. We have one maior caveat: DEDIT |s
a function editor, not a file editor. With DEDIT ore
definition of a function, but MAKEFILE (the Inter1|sp funclion for
writing out a bolic ﬁIe) determines the appearance and location
of function definitions within files. In contrast, when editing func-

on the Xerox

860 S. Narain et al.

tions with Emacs in Maclistp, oe dg:g&e both the definition and
appearance, since one is editing a file a function simultaneously.

The Dolphin operatin% system does not provide a free structured
directory system, so that files cannot be stored as Jgglcally as one
would like them to be. The high, bandwidth (3 Mbi seclzwethemet
communication network connecting the Dolphins and the VAX-
1 t;/gSO alows one to quickly transfer large fles between different
stations.

24. Interlisp on a VAX-11/780 [1]

Bﬁn%ngeMe ROSS/SWIRL system up in VAX-Interlisp did not turn
out as straightforward” as we had € even though we
hed al OSS/SWIRL in Interlisp-D. T%ough
Interlisp-D source code was almost completely transportable, certain
subtle incompatibilities were fairly time consuming to discover. It
about one and a half manmonths to bring the ROSS/SWIRL

system up.

As with Interlisp-D, speed was the main factor slowing both pro-

ram development and_hindering s effective ue of the
SWIRL simulation. This sowness is partly due to working in a
time-sharing environment and partly due to the sheer size of Inter-
s} overhead involved in "evaluating an expression ge.g.,
DWIM, CLISP). We regard the Interlisp-VAX version of as
marginal for serious simulation applications.

Ore inconvenience of Interlisp-VAX, not shared by the other Inter-
lisp implementations, is that UNIX file names aré restricted to at
most 14 characters and do not have version numbers. Although
Interlisp does_attempt to simulate version numbers, it does so at the
UNIX level. These files all look alike and what results can be seri-
ously confusing at times. Also, considerable caution must be exer-
ased while manipulating files in UNIX since it is very essy to delete
or overwrite them.

Since the conversion task involved a non-trivial amount of file mani-
pulations (editing, copying, deleting) the process wes
mmensely_by the availability excellent fle editors (Emacs and
the local'Rand editor E), ani by the UNIX software support. We
rarely had ooccasion to use the Interlisp structure editor.

2.5. Interllsp on a DEC-20 (10)

ROSS/SWIRL hes been most recently) for Interlisp on the
DFX-20. It took about one manweek to bring up this version. Yet,
several factors made this a surprisingly painful process. Among
other things, the backquote facility (for defining macros) hed to be
redefined.” We also found that files bad to be in format
considerably so that Interlisp-10 would accept them. However,
Eeléase o:fu tlhe extremg efg'(]:ler#i dlg||(0 Orgg(_)zng on 1ht(ie DEC-20,
erful Emecs edifor, the frien operating system
(\A/I']igr?wms among other features, ex)clJelle.nt badmge supr?ort tree
structured file directories, altmode completlon%1 and Useful TOPS-20
resident software, it was possible to go through several iterations of
the S}ﬁtem fairly rapidly. Even so, SWIRL ran substantially slower
than the comresponding implementation in Maclisp on a DEC-20.

3. DISCUSSION

Through several years of experience in developing large Lispbased

. we haveyf%armed certain opinions aboE'rt rnges in various
Lisp environments, and their upon programmer productivity.
We summarize these below.

First, as perhaps with software development effort, the total
tumaround time betweenar\'/%/vriting a piece of code and testing it out
hould be minimal. This implies that the cycle of obtaining fresh
Lisp sessions, Ioadlngeﬁles, executing code, modifying code, and stor-
ing changes should be as rapid as possble. We found that Maclisp,
Franzlisp and Interlisp-10 satisfied this requirement, but Interlisp-
and Interlisp-VAX did not. A major botleneck in Interlisp-D @rg—
ram de ment file "operations. Not only did they
ke a long time to complete, but there was also a lack of a file
editor. We had to use the file editors on the VAX, particularly
when converting some of SWIRL files from Maclisp into Interlisp,
and a substantial increase in the number of ime-consumin
steps needed to make a change on disk. Also, Interlisp is
bigger than Madlisp or Franzlisp, and its large size causes frequent
swapping at_run time leading to considerable deterioration in execu-
tion speed. The presence of user aids (e.g. DWIM, Mas terse ope,
Programmers Assistant) if not deactivated, further adds to the time

needed to uce a response. Even while ramming in Int
lisp. wefogwrc)idwehad rareoa:asionbtse%of&&r]ogfeaMr
In'the rase of Interlisp-D, for example, DWIM operated so slow
It.hat it was quicker for the user to detect and correct his own sp
ing errors.

Secondly, we found it more desirable to create our code by direc,
writing into files, instead of defining functions within _L|sP, and usi
MAKEFILE to write them out to disk, as is done in Interlisp.
our opinion, programming style refers not only to the sfr
ture of functions, but also o the organization of functions in
larger, logically connected units of code. If it is difficult for the p
rammer to maintain full control over the appearance of lar
kggpls of code or Tﬂes it eveptrt]J_aIIy becomes \\//V S h?rgéo]r him
a good cognitive of his rams. Withou am
the rogramn?g?s u_ndgrgtgr]ding or%rﬁ’s program, and the rate
which he can modify it, diminishes as the gows lal
Maciisp and Franzlisp give the programmer complete control ov
the organization of code. Obtaining such control in Interlisp is pc
sible, but indirect, awkward, and time consuming.

Finally, we have come to increasingly believe that speed is as impo
tant a tool for software de 1 as any sophisticated user int
. Al has_been notorious for ignoring efﬁaeré%/ issues. Ma
research applications run in interpreted Lisp. en there is
decent Lisp compiler, and where there is, even Lisp
not know the special compiler declarations 1 to make good
of oomf)llatlon. As Al moves from developing theoretically intere;
ing but computationally light s into a market
demands computationally-intensive, scaledup systems that m
run in real time, there will be an increasing need for "industri;
strength Lisps". These would include, for example, compilers th
are _well documented, heavily optimized, that run in the san
environment as the interpreter, and that are guaranteed to. produ
code that runs the same as interpreted code. Presently no compi
mesis all these requirements, although Common Lisp [9] hopes
meet these goals.

4. REFERENCES

[Bats, R. L. Dyer, D, and Koomen, .J. Implementation
Interfisp on the VAX. Proc. 1982 ACM Sf\;m1p081um onlL
and Functional Programm/n% Plttsburq: , 1082..

(@ Foderaro, JK., and Sklower, KL. The Franz Lisp Manu
University of California, Berkeley, April 1982

[3] Gabriel, RP., and Masinter, L.M.” Performance of Lisp System
Proc. 1952 ACM \gémposmm on Lisp and Functional F
ming, Pltl:sburg'p, 1))

|4] Klahr, P., and augt;gt, W. S. KnowledgeBased Simulatic
Proc. AAA1-S0, Stanford, 1980.

6] Klahr, P., McArthur, D., and Narain, S. SWIRL: An Obje
Oriented Air Battle Simulator Proc. AAAI-82, Pittsburg

1982,
[@ Klahr, P., McArthur, D., and Narain, S. SWIRL: Simulati
Warfare in the ROSS Language. N-1885-AF, The Rand Cc

poration, Santa Monica, September .
[7] McArthur, D., and Klahr, P. The ROSS Manual,
1854-AF, The Rand Corporation, Santa Monica, Septemt

1982,
[8] Sandewal, E. Programming in the Interactive Environme
'%'g;s Lisp Experience. ACM Computing Surveys 10(1), Mar
) Stegle, G. An Ovenview of Common Lisp. Proc. 1982 AC
Symposium on Lisp and Functional Programming, Pitts

(10] Teitelman, W. Interlisp Reference Manual. Xerox Palo A"
search Center, October 1978. . .
[11] Teitelman, W., and Masinter, L. The Interlisp Programmi
Environment. IEEE C_omButer 14(4), April 1981.
[12] Xerox PARC, Interlisp-D Users Guide. Xerox Palo As
Research Center, February 1982

S. Narain et al. 861

Table 1. Time and space statistica for five implementations of ROSS and SWIRL.
(Timings made during January and February, 1983)

MaclisplD Franzlip® Interlisp-D(! Taterlisp-VAX'" Interlisp- 10°)
1. Start & fresh LISP /ROSS.
seconds of real time: 4 1.5 100 22 30
2. Invoke editor on a
funetion or behavlor.
seconds of total cpu Lime: - - 08/48 8.5/.18 A8/
seconds of real time: 5/216) 20107 58.0/5.08 70/ < 1%9) 12f <10
3. Store changed function
ot behavlor out to dlak.
peconds of total cpu Lime: - 53 24 T
seconds of real time: 3l il 76012} 45019 aph1)
4. Load files for complled
SWIRL behaviors.
seconds of tatal cpu time: 19.5 22 180 161 Nal?)
includes garbage collect time: 10.9 1 ? 0 NAlT)
seconds of real time: kE 30 285 230 NAT)
5. Load a complete SWIRL
simuletion environment.
seconds of Lotal cpu time: 109 50 550.7 310 133
includes garbage collect 1ime: 031 9 246 0 9
seconds of real time: 21 GG 622.0 365 23)
8. Run SWIRL (simulating
a three-hour battle).
seconds of votal cpu time: 63.0 156 1171.2 6690 480
includes garbage collect time: 316 2] 161.0 0 82
seconds of real time: 133 19 1197.5 1285 1117
7. Make & SWIRL syscut.
seconds of real time: 25 27 30 225 3
bytes [gize),
LISP & ROSS & SWIRL: 669,696 812,095 2,236,928 5,047,384 1,882,112
bytes (size}, LISP only: 174,080 440,383019) 1,849,856 4,060,876(1%} 1 247 232

Notes for Table 1.

1YMadlisp times are over three runs on a DEC-20 (approxi-
() p § 15) with 125 megabytes of(p%F;/sml

(2 Franzllsp version is Osz 38 8%[‘” 1082). Timings are
overthreerunson a VAX 11 (load averages of less than 1.
with 4 of physical memory.
(3)Interhsp— is”Chorus release of Fébruary, 1983. Timings are
averages over three runs on a Xerox 1100 Dol hin with 1
byte of physical memor{ (Timiry s on a DoIp in with 15 mega-
bytes memfAJr}z 19% faster.)
(4)Inter||spV Vprll 1982 release T|m|n S are averages over
three runs on a VAX 11/780 (approximate averages of 1.1)

with 4 me%byt% ical memory.

(5) Interlisp-I tlmlngspar)éS avera%m over three runs on a DEC-20
approximate load ‘averages of 1.5).

(6)First value is for first time LEDIT is invoked; second is for subse-
quent invocations. First value is_higher becase the LEDIT sub-

fork must be created. No cpu time is given because editing is

done outside of Lisp.

(7)First value is for first time EMACS is invoked; second is for sub-
sequent invocations. No cpu time is given because editing is done

outside of Lisp.

First value is for first edit, second is for subsequent edits. First
value indudes time to fetch interpreted functlon from a file into
an otherwise compiled environment.

31 0) Time to invoke EDITF (first/second times).
1) [Time taken to save afile in CS editor.

gg‘l'me to invoke the DEDIT local editor ﬁrst/seoond times).

12)Time required to execute MAKEFILE on a file of 33550 bytes
aﬂ?[scérée nction definition had been changed. RC option was
no

(13) Time required to execute MAKEFILE on a file of 35177 bytes
aﬂer ore function definition had been changed. RC optlon was

14 Tlme uired to execute MAKEFILE on a file of 35177 bytes
aﬂer unction definition had been changed. RC option was

150 3850 February, 1983) is larger (938,614 bytes for SWIRL
sysoleJJtS 30& %r Fra%ﬂlsp;gwm(w about m% same perfor-

preselease Inter lisp-VAX version of April, 1983 is smaller
22:214304 ytes) and seams about 40% faster.
‘Bven thou h SWIRL ocode could be compiled and run inside of
Inter1|sp-10 e loader generated an error when loading compiled
WIRL files. We have not been able to fix this error.

