
CONCURRENT PROGRAMMING OF INTELLIGENT ROBOTS

Yutaka Kanayama

University of Tsukuba
Sakura, Ibaraki 305 Japan

ABSTRACT between pu's has to be supported.

Real time in te l l igent robots usually consist
of more than one processing unit (pu) to ensure
paral le l operation of several functions. Each pu
in a robot executes repet i t ive monitoring and
control l ing operations as well as information ex­
change to and from other pu's. Since timing of
each operation is independent of others, i f the
robot operating software supports concurrent
process f a c i l i t i e s , it would be helpful in robot
programming.

A self-contained robot "Yamabico 9" has been
constructed to be a tool for investigating how a
mobile robot understands the outer world. In
order to support software production on the robot,
Robot Control System (RCS) has been implemented,
including simple job commands and a supervisor
ca l l (SVC) system. The concurrent process monitor
is a part of RCS and some of SVC's are for these
f a c i l i t i e s . The monitor adopts a "message send­
ing" method to synchronize execution of two pro­
cesses and to exchange information between pro­
cesses and pu's. An example of a concurrent pro­
cess program, "walk along l e f t wal ls" , is given
to demonstrate the describing power of our system.

Introduction

A human can walk, speak, th ink, look around,
hear and handle things at the same time. Like
human beings, multifunctional in te l l igent robots
consist of several independent processing units
(pu) that work in para l le l .

Even for a robot with multiple pu's, the op­
eration of each pu may be quite complex. An exam­
ple of concurrent operations in a pu of a robot is
shown in Figure 1. Processes 2 and 5 are semi-
autonomous ones which monitor outer environments
and/or control the effectors. Process 1 and 6
are, respectively, input and output processes of
th is pu. Process 2 conditionally wakes up process
3. Process 4 is a subprocess of process 2. The
to ta l of each process's occupation rate should be
less than 100 % of the time of the processor.

The concept of concurrent process in mul t i ­
processor systems is described in Figure 2. Con­
current process f a c i l i t i e s are especially useful
in multiprocessor systems,because communication

It is very d i f f i c u l t to program such a robot
in conventional sequential programming languages.
Hierarchical subroutining does not help us for the
purpose, because each subroutine occupies 100%
of processor time for a period and what we want is
interleaved execution of several tasks. Several
mechanisms have been proposed for process synchro­
nization and mutual exclusion of shared resources.
Semaphore [l] , monitor [2] , csp [3] and rendezvous
[4] are examples. We propose a simple mechanism,
sending messages, because' robot programming has
the following characteristics:

(1) A robot system is not a multiuser one. There­
fore task switching at a def ini te time sl ice
is not necessary and is even harmful.

(2) Processes need not be dynamically generated
nor k i l l e d . Each process is considered to be
a portion of the robot's intell igence and just
exists on the robot. Some processes are usu­
a l ly in "sleep" state and waked up when needed.

(3) The necessity for sharing memory or other re­
sources is not high in robot programming. Em­
p i r i ca l facts t e l l us that a pu in a robot
should be independent of every other as far as
possible and should send a small amount of
condensed information to others. A big amount
of data, such as map data or scene data, can
be supervised by only one process PO. If an­
other process P wants to use that , it just
asks a question to PO which returns the answer
to P. Human information processing subsystems
do not seem to share any common memory, and
each one ser ia l ly exchanges a small number of
signals with each of the others.

II Hardware and Software of Yamabico 9

We had already reported on the Yamabico
family of selfcontained mobile robots [5] [6] [7] ,
and the most recent member is Yamabico 9 which
has been constructed to be a tool for investigat­
ing how an autonomous machine can understand i t s
two-dimensional environment (See Figure 3). This
is an enhanced version of Yamabico 3.1 in the
sense that the cpu of the brain has been changed
from 6802 to 6809 and a 6809 processor system has
been added to the supersonic range finding system

Y. Kanayama 835

to be an independent processing uni t . [8]

Our ultimate objective with Yamabico 9 is to
implement a world-understanding intel l igence with
a map data base. We found that to implement a
well organized operating system on the robot is
inevitable for our future work, because if the
eff iciency of software production is low, it is
almost impossible to complete software developing
projects. The operating system is called Robot
Control System, RCS. The pr ic ipal functions of
RCS are as follows [9"].

(l) To support software production in 6809 as-
sembler language.

(?) To support simple Job control commands.

(3) To support a r ich set of supervisor ca l l s ,
SVC.

(4) To support concurrent process control using
SVCs..

The size of RCS is about 8K bytes. Programs
and data in RCS have the structure of a "memory
module" in 0S-9 software system [l 0] [" l l l . Each
program produced by OS-9 is relocatable and re-
entrant, so that the same text may be used by more
than one process. RCS and some basic user's pro­
grams are implemented on the ROM in the sel f -
contained robot. When a user constructs a pro­
gram, it is loaded from OS-9 on the base computer-
system to the robot via a communication channel.

Supervisor cal ls in RCS are in fact a com­
bination of a software instruction (SWI) of 6809,
a one parameter byte in instruction stream Just
after the SWI instruct ion, and in some cases one
or more input parameters that have been set on
registers.

1 I I Concurrent Process Fac i l i t ies

We adopted the "send message" function for
process synchronization and mutual exclusion in
common resource access. Several message sending
schemes embedded in high level languages have been
proposed [3] [l 2] [l 3] , but we propose another one
in which the protocol of RCS is very simple and
buffers are dynamically controlled by RCS i t s e l f .

RCS and user programs are composed of proc­
esses. Each process has a d is t inct process iden­
t i f i e r p id , whose length is one byte. Each
process takes one of the following three states
(See Figure 4):

: the cpu is executing th is
process.

: th is process is ready to run,
but there is a running one
which has a higher p r i o r i t y .

: th is process is waiting for
a massage from another one.

Each process has a unique working area which
contains a process descriptor which is under
supervision of the concurrent process monitor, a
part of RCS.

A process can go into the wait state by using
"wait" SVC to free the processor, but can't "wake
up"by i t s e l f from wait state. If there exists
more than one active process, the highest p r i o r i ­
ty one is selected to be in running state by the
dispatcher routine in RCS.

A process can send a message in a buffer to
another process by using a "send" SVC. The
length of a message should be from 0 to 255.
Each message buffer is allocated by RCS if re­
quested, and it is freed after the message is
processed by the receiver.

The functions stated above are controlled by
using several SVC's, and their parameters are set
on registers A, B, X and Y in the microprocessor
MC6809 • For the details see [9] .

IV Concurrent Programmi ng

When we write robot software in the RCS en­
vironment, a l l segments of procedures are in the
form of processes. When the robot is turned on,
after the process descriptors are i n i t i a l i zed a l l
processes go into the active state, and almost
a l l of them in turn into the wait state.

Tf a process has to be "ca l led" , we use a
"wake up" Job command, instead of using an "ex­
ecute" command. RCS has no "execute" commands,
because in a sense a l l processes are executed a l l
the time. In sequential programming, subroutines
are distr ibuted in time, but in concurrent pro­
gramming processes are distr ibuted in space.

In our programming, a task is divided into
one main process and several subprocesses. For
example, in Figure 5, P is a main process and, P1,
P-11 and P2 are subprocesses. When P is to direct
P11 to perform a subtask, P Just send a message M
to P11. That message M is called an input mes­
sage for P1_ and an output message for P. P i s
called a parent of P1_ and P1 a chi ld of P. A
parent always knows i ts ch i l i ren 's process id
(p id) , but a chi ld does not know or need not know
i t s parent's name beforehand. When a chi ld is
cal led, the parent's pid is given on register A,
which can be kept for la ter use.

Input messages are used to hand the parent's
intention to the ch i ld . Some of them are " s ta r t " ,
"stop" and "change parameter" messages. The f i r s t
byte of each message is called the key of the
message, which classi f ies i t s purpose.

V Example

To demonstrate how the concurrent process

836 Y. Kanayama

f ac i l i t i e s work, we w i l l show a simple user's
process called "Walk Along Left Walls", ab­
breviated WALW. This process makes Yamabico 9
walk in a building as though it were following a
wall with i t s " l e f t hand", and is useful for go­
ing out of a maze (See Figure (>).

(l) Input messages:
< 0 > start
< 1 > stop
< 2 t > designate cycle time
< > finished from CD

This process is more sophisticated than it
looks. We divide it into one main process WALW,
two chi ld processes FLW and MNTF and one grand-
chi ld process CD. The whole structure is the
same as Figure 5. Here we w i l l describe the four
processes.

A. Walk Along Left Walls (WALW) process

This is the main process.

(2) Output messages
<0 wwl0 wwll ss>

(l) Input messages:
< 0 >
< 1 >
< 1 wwl0 wwll ss

(2) Output messages:
< 0 > start
< 0 > start
< 1 > stop
< l > stop

start from RCS etc
stop from RCS etc
section from FLW

to FLW
to MNTF
to FLW
to MNTF

< 2 wl > change distance to FLW

(3) Functions:
a) At f i r s t , the robot looks around to f ind

the nearest wal l . If there are no walls,
i t stops.

b) Makes a turn so that it looks at the wall
on the l e f t side.

c) Begins to walk straight.
d) Wakes up FLW and MNTF.
e) The following tasks el ^ e5 are selec­

t i ve ly repeated.
el) If th is process receives a stop message,

quits walking and go to wait state.
e2) If th is process accepts an abnormal mes­

sage from FLW or MNTF, quits walking and
go to wait state.

e3) If the l e f t wall disappears, continue to
go another 100cm, turn l e f t and again
walk straight.

ek) If there is a wall to the front and
there is no wall to the r igh t , turn
r ight and walk straight again.

e5) If there are walls to the front and to
the r i gh t , make the robot stop, turn 180
and begin to walk straight.

The marks e3, e4 and e5 in Figure 6 cor­
respond to the tasks named above.

B Follow Left Walls (FLW) process

This process can be called by any process and
works under any parent, and is one of the " i n ­
t r i ns i c " or "basic" processes of RCS. This has a
chi ld process CD. When FLW is called by WALW, it
cooperates with the parent and monitors the l e f t
and front walls continuously. The robot t r ies to
be on an imaginary reference l i ne . (See Figure T)

<0 d>

t e l l the parent about the
change of walls
to CD

(3)

C.

Function:
a) At f i r s t if there is a f l a t wa l l , go

straight and define the reference l ine
(i n i t i a l i z e WWL00).

b) The following tasks are selectively re­
peated.

bl) If the distance to the l e f t wall sudden­
ly changes, send a message to the parent
and update WWL00.

b2) If the l e f t wall disappears, send a mes­
sage to the parent.

b3) If a "change parameter" message comes
i n , change the parameter.

b4) Otherwise, if the expected position
ahead is- s igni f icant ly away from the
reference l i ne , ca l l CD to change the
direct ion.

Monitor Front (MF) process

This is a simple process to monitor any ob­
stacle in f ront , and send a warning to the parent.

(1) Input messages:
< 0 > start
< 1 > stop
< 2 ssf > designate minimum distance (the

default value=30cm)

(2) Output messages
< 0 ssf > stationary obstacle found
< 1 ssf > moving obstacle found

(3) Function:
Monitor the distance to the front a l l the

time and determine if the object is stationary or
not; if the distance is less than the given value,
send a message to the parent. That discriminat­
ing f a c i l i t y is a part of the sonic range f inding
system of Yamabico [14].

D. Change Direction (CD) process

This process is called when Yamabico 9 is
walking and changes i t s direction by a given
value. The function of the " turn" command of the
Yamabico locomotion System is f u l l y u t i l i zed [6] .

(1) Input messages:
<0 d> start to change the direction by d.

The value may be negative.
< 1 > stop

(2) Output messages:
< > f inished, to the parent (nul l mes­

sage)

Y. Kanayama 837

(3) Function:
Terminate the currently executing command in

the locomotion system and send two motion commands
so that the heading direction is changed by d.
Ask the leg to send a message as soon as the locus
becomes straight again; the process then sends a
"f inished" message to the parent. This process is
running when Yamabico is on a curve between A and
C (See Figure 8).

pies, Prentice-Hall (1973)

[14] Kanayama, Y., S. Yuta, and J. I i j ima, A
Mobile Robot with Sonic Sensors and i t s
Understanding of a Simple World, Report of
Inst i tu te of Information Sciences and Elec­
tronics, University of Tsukuba (1981)

ACKNOWLEDGEMENT

The author thanks Professors S. Yuta of
University of Tsukuba and J. I i j ima of the Univer­
s i ty of Electro-Communications for their research
and development ef for t in the basic Yamabico 9
system.

REFERENCES

[l] Di jkstra, E. W., The Structure of the T.H.E.
Multiprogramming System, CACM, vo l .11 , no.5,
pp341-346 (1968)

[?.) Hoare, C.A.R., Monitors: An Operating System
Structuring Concept, CACM, vol.17, no.10,
PP547-557 (1974

13] Hoare, C.A.R., Communicating Sequential
Processes, CACM, vo l .21, no.8, pp666-677
(1978)

[4] United States Dept. of Defence, Reference
Manual for the Ada Programming Language (1980)

[5] Kanayama, Y. , J. I i j ima, II. Watarai and K.
Ohkawa, A Self-Contained Robot "Yamabico,
Proc. of 3rd UJCC, pp246-250 (1978)

[6] I i j ima , J . , Y. Kanayama and S. Yuta, Loco­
motion Control System for Mobile Robots, Proc.
of 7th IJCA1 pp779-784 (1981)

[7] I i j ima, J . , S. Yuta and Y. Kanayama, Elemen­
tary Functions of a Self-Contained Robot
"Yamabico 3 .1 " , Proc. of 11th ISIR, pp211-2l8
(1981)

[8] Motorola Inc. , MC6809-MC6809E Microprocessor
Programming Manual (1981)

[9] Kanayama, Y., RCS User's Manual, University of
Tsukuba. (1983)

[10] Microware Systems Corporation, 0S-9 Level
One Version 1.1 User's Guide (1981)

[l l] Microware Systems Corporation, 0S-9 Level
One Operating System VI.1 System Programmer's
Manual (1981)

[12] Spier, M.J., and E.I . Organick, The Multics
Interprocess Communication Fac i l i t y , Proc.
2nd ACM Symposium on Operating systems
Principles, pp83-91 (1969)

[13] Brinch Hansen, P., Operating System Pr inci -

838 Y. Kanayama

