
INTEGRATING PROLOG INTO THE POPLOG ENVIRONMENT

Chris Mel l ish and Steve Hardy*
Cognit ive Studies Programme,

Un ivers i ty of Sussex,
Falmer,

BRIGHTON, UK.

ABSTRACT

Although Prolog undoubtedly has i t s good
p o i n t s , there are some tasks (such as w r i t i ng a
screen ed i to r or network in ter face c o n t r o l l e r) for
which it is not the language of choice. The most
natura l computational concepts [2] for these tasks
are hard to reconci le with Prolog's dec lara t ive
nature. Just as there is a need for even the most
committed Prolog programmer to use "convent ional "
languages for some tasks , so too is there a need
for " l o g i c " or iented components in conventional
app l ica t ions programs, such as CAD systems [73 and
r e l a t i o n a l databases [5] . At Sussex, the problems
of i n teg ra t i ng logic with procedural programming
are being addressed by two p ro jec t s . One of these
[43 involves a d i s t r i b u t e d r ing of processors
communicating by message passing. The other
pro ject is the POPLOG system, a mixed language AI
programming environment which runs on conventional
hardware. This paper describes the way in which we
have in tegrated Prolog in to POPLOG.

I THE POPLOG ENVIRONMENT

The POPLOG system is an AI programming
environment developed at Sussex Univers i ty [3D. It
supports Pro log , POP-11, a d ia lec t of POP-2 [13 ,
and a basic LISP. POPLOG cur ren t l y runs on the
DEC VAX ser ies of computers under the VMS
operat ing system, but other implementations are in
progress.

In POPLOG, the l i nk between the programming
languages and the underly ing machine is the POPLOG
v i r t u a l machine. The compilers produce POPLOG
v i r t u a l machine i n s t r u c t i o n s , which are then
fu r the r t rans la ted in to the machine code for the
host machine. At the level of host machine code,
i t is possible to l ink in programs wr i t t en in
languages such as FORTRAN. Procedures for
" p l a n t i n g " i ns t ruc t i ons for the v i r t u a l machine
are f u l l y accessible to the user. Thus the Prolog
compiler is j us t one of the many possible POPLOG
programs that create new pieces of machine code.
In p a r t i c u l a r , i t is easy to create procedure
c losures. For the purposes of t h i s paper, a
closure is a s t ruc ture which contains a pointer to
a procedure plus a set of arguments for that
procedure. The closure can then be appl ied as if
it were a normal procedure with no arguments. Some

*Steve Hardy is now at Teknowledge I n c , 525
Un ivers i ty Ave, Palo A l t o , CA 94301, USA.

"syn tac t i c sugar" has been provided in POP-11 to
make it easy to create c losures; an expression
such as:

doub led 3 %)

evaluates to a closure which when la te r invoked
c a l l s the procedure DOUBLE with argument 3.

II BACKTRACKING AND CONTINUATION PASSING

In t h i s sec t i on , we i l l u s t r a t e , using
examples w r i t t en in POP-11, how backtracking
programs are implemented in POPLOG using a
technique ca l led cont inuat ion passing. Although
examples are shown in POP-11 for c l a r i t y , in
p rac t i ce Prolog programs are compiled d i r e c t l y to
POPLOG v i r t u a l machine code.

Continuat ion passing is a technique in which
procedures are given an add i t i ona l argument,
ca l led a con t inua t ion . This cont inuat ion (which is
a procedure closure) describes whatever
computation remains to be performed once the
ca l led procedure has f in i shed i t s computation. In
conventional programming, the cont inuat ion is
represented i m p l i c i t l y by the " re tu rn address" and
code in the c a l l i n g procedure. Suppose, for
example that we have a procedure, ca l led PROG,
that has jus t two steps: c a l l i n g the subprocedure
F00 and then the subprocedure BAZ, thus :

This d e f i n i t i o n presupposes that F00 and BAZ
do not themselves take cont inuat ions . If they do,
then we must arrange for BAZ to be passed
CONTINUATION and for F00 to be passed an
appropr iate closure of BAZ, thus:

534 C. Mellish and S. Hardy

def ine p rog(con t inua t ion) ;
foo(baz(%continuationX)>

enddef ine;

Thus F00 gets as argument a c losure . This
c losure , when app l i ed , w i l l cause BAZ to be
invoked with CONTINUATION as i t s argument.

Continuations have proved of great
s ign i f i cance in studies on the semantics of
programming languages C63. This apparently round
about way of programming also has an enormous
p r a c t i c a l advantage - since procedures have
e x p l i c i t cont inuat ions there is no need for them
to " r e t u r n " to t h e i r invoker. Convent ional ly ,
sub-procedures re turn ing to t h e i r invokers means
"I have f i n i shed - continue wi th the computat ion",
w i t h e x p l i c i t cont inuat ions we can assign a
d i f f e r e n t meaning to a sub-procedure return ing to
i t s invoker , "Sorry - I wasn't able to do what you
wanted me to do" .

This can be i l l u s t r a t e d if we def ine a new
procedure NEWPROG, whose d e f i n i t i o n is t r y doing
F00 and if that doesn't work then t r y doing BAZ,
thus :

def ine newprog(cont inuat ion);
foo(cont i nua t i on) ;
baz (con t inua t ion) ;

enddef ine;

If we now invoke NEWPROG (wi th a
cont inuat ion) then i t f i r s t ca l l s F00 (g iv ing i t
the same cont inuat ion as i t s e l f) . If F00 is
succesful then i t w i l l invoke the con t inua t ion . I f
not then the c a l l of F00 w i l l re turn to NEWPROG
which then t r i e s BAZ. If BAZ too f a i l s (by
re turn ing) then NEWPROG i t s e l f f a i l s by return ing
to i t s invoker .

def ine j ogs (x , con t inua t ion) ;
u n i f y (x , " c h r i s " , c o n t i n u a t i o n) ;
u n i f y (x , " j o n " , c o n t i n u a t i o n)

enddef ine;

UNIFY is a procedure that takes two data
s t ruc tures and a con t inua t ion . It attempts to
un i fy (that i s , "make equal") the two s t ruc tu res .
I f i t is unsuccessful , UNIFY immediately returns
to i t s invoker . I f , however, i t i s successfu l ,
then it appl ies the cont inuat ion and when that
r e tu rns , UNIFY undoes any changes it made to the
two s t ruc tures and then i t s e l f returns to i t s
invoker.

Before we can present a d e f i n i t i o n of UNIFY,
we must consider the representat ion of Prolog
va r i ab les . In Pro log, var iables s ta r t o f f
" un ins tan t i a ted " and can be given a value only
once (without backt rack ing) ; moreover two
"un ins tan t i a ted " var iab les when un i f i ed are said
to "share" , so that as soon as one of them obtains
a va lue , the other one automat ica l ly obtains the
same va lue.

In POPLOG, a Prolog var iab le is represented
by a s ingle element data s t ructures ca l led a REF.
REFs are created by the procedure CONSREF and
t h e i r components are accessed by the procedure
CONT. An un ins tan t ia ted Prolog var iab le is
represented by a REF containing the unique word
"undef" . If a var iab le is assigned some va lue,
t h i s value is placed in to the CONT. If two
var iab les come to "share" , we make one point to
the o ther . To f i n d the " r e a l " value of a
v a r i a b l e , espec ia l l y one that is shar ing , i t is
necessary to "dereference" i t (look for the
contents of the " innermost" REF).

Here now is a simple d e f i n i t i o n of UNIFY
wr i t t en in POP-11:

def ine u n i f y (x , y , c o n t i n u a t i o n) ;
if x == y then

cont inua t ionO
e l s e i f i s r e f (x) and cont(x) = "undef" then

y -> con t (x) ;
c o n t i n u a t i o n O ;
"undef" -> cont(x)

e l s e i f i s r e f (x) and cont(x) /= "undef" then
uni f y (cont (x) , y , cont i nuat i on)

e l s e i f i s r e f (y) then
un i f y (y , x , con t i nua t i on)

e l s e i f i s p a i r (x) and i s p a i r (y) then
u n i f y (f r o n t (x) , f r o n t (y) ,

un i fy(Xback(x) ,back(y) ,cont inuat ion%))
end i f

enddef ine;

The procedure f i r s t sees if the two given
data s t r u c t u r e s , X and Y, are i d e n t i c a l . I f so , i t
immediately appl ies the CONTINUATION. If the
s t ruc tures a ren ' t i den t i ca l then UNIFY looks to
see whether X is a REF and if so whether it is
un ins tan t ia ted (i e . whether i t s CONT is the word
"unde f ") . If so , UNIFY sets i t s value to Y (by
assigning to the CONT; assignment works from l e f t
to r i gh t in POP-11), does the CONTINUATION and if
t h i s returns (i e f a i l s) unbinds the REF by se t t i ng

C. Mellish and S. Hardy 535

t h e CONT back to " u n d e f " . The f i n a l case of UNIFY
d e a l s w i t h t he p o s s i b i l i t y t h a t X and Y may be
l i s t p a i r s . A comple te d e f i n i t i o n o f UNIFY must
have a case here f o r each t ype of d a t a s t r u c t u r e
r e c o g n i s e d as a P r o l o g complex t e r m . Note t h a t
t h e r e is no ELSE p a r t to the IF s t a t e m e n t . The
d e f a u l t a c t i o n i s s i m p l y t o r e t u r n (i e i n d i c a t e
f a i l u r e) .

As a more complex examp le , here is a
t r a n s l a t i o n o f the P r o l o g MEMBER p r e d i c a t e i n t o
POP-11. The P r o l o g d e f i n i t i o n i s :

m e m b e r (X , [X | Y 3) .
member (X , [Y |Z3) : - member (X ,Z) .

When t r a n s l a t e d i n t o POP-11, i t w i l l b e
necessary t o make e x p l i c i t t he u n i f i c a t i o n s which
a re i m p l i c i t l y done when a P r o l o g p r e d i c a t e is
i n v o k e d . I t may t h e r e f o r e be e a s i e r t o u n d e r s t a n d
the POP-11 t r a n s l a t i o n i f we r e w r i t e t he P r o l o g
d e f i n i t i o n t o make the v a r i o u s u n i f i c a t i o n s
e x p l i c i t :

member(X,Y) :- Y = [X |M3 .
member(X,Y) : - Y = [L | M 3 , member(X,M).

Th i s t r a n s l a t e s i n t o the f o l l o w i n g POP-11
p r o c e d u r e :

d e f i n e member(x, y , c o n t i n u a t i o n) ;
v a r s I ; c o n s r e f (" u n d e f ") - > I ;
v a r s m; c o n s r e f (" u n d e f ") -> m;
u n i f y (y , c o n s p a i r (x , m) , c o n t i n u a t i o n) ;
u n i f y (y , c o n s p a i r (l , m) ,

member(%x /m,cont i nuat i on%))
e n d d e f i n e ;

The f i r s t two l i n e s o f t h i s d e f i n i t i o n c r e a t e
new P r o l o g v a r i a b l e s (REFS w i t h c o n t e n t s " u n d e f ")
L and M. The nex t l i n e checks i f t he v a l u e of Y
can be u n i f i e d w i t h a newly c r e a t e d p a i r whose
FRONT is t he v a l u e of X and whose BACK is the new
v a r i a b l e M ; i f s o , UNIFY w i l l p e r f o r m the
c o n t i n u a t i o n . The l a s t l i n e o f t he d e f i n i t i o n
t r i e s u n i f y i n g Y w i t h a p a i r whose components are
t h e new v a r i a b l e s L and M; i f s u c c e s s f u l , UNIFY
w i l l i n voke i t s c o n t i n u a t i o n w h i c h , i n t h i s c a s e ,
is a c l o s u r e of MEMBER i t s e l f .

IV CONCLUSIONS

(2) The cont inuat ion passing model provides a
semantics for communication between these two
Languages which allows for far more than
simple "subrout ine c a l l i n g " .

(3) The cont ro l f a c i l i t i e s ava i lab le w i t h i n POPLOG
(not shown here) make it possible to implement
a system which is f a i t h f u l to the t heo re t i ca l
modeL, but which is nevertheless e f f i c i e n t .

ACKNOWLEDGEMENTS

We would l i k e to thank John Gibson, the main
implementer of the POPLOG v i r t u a l machine and the
POP-11 compi ler , for provid ing us with a powerful
programming environment, without which t h i s work
would not have been poss ib le . We would also l i k e
to thank Aaron Sloman and Jon Cunningham for many
usefu l d iscuss ions.

REFERENCES

[13 B u r s t a l l , R.M., C o l l i n s , J .S. and
Popplestone, R .J . , Programming in POP-2,
Department of A r t i f i c i a l I n t e l l i g e n c e ,
Un ivers i t y of Edinburgh, 1977.

[23 Hardy, S. , "Towards More Natural Programming
Languages" Cognit ive Studies Memo 82-06,
Un ivers i t y of Sussex, 1982.

[3] Hardy, S. , "The POPLOG Programming
Environment", Cognit ive Studies Memo 82-05,
Un ivers i t y of Sussex, 1982.

[43 Hunter J.R.W., M e l l i s h , C.S. and Owen, D., "A
Heterogeneous In te rac t i ve D is t r i bu ted
Computing Environment for the Implementation
of AI Programs", SERC grant a p p l i c a t i o n ,
School of Engineering and Applied Sciences,
Un ivers i ty of Sussex, 1982.

[5] Kowalski , R., "Logic as a Database Language",
Department of Computing, Imper ia l Col lege,
London, 1981.

[63 Strachey, C. and Wadsworth, C.P.,
"Cont inuat ions: A Mathematical Semantics for
Handling Ful l Jumps", Technical Monograph
PRG-11, Programming Research Group, Oxford
Un i ve r s i t y , 1974.

[7] Swinson, P.S.G, "P resc r i p t i ve to Descr ip t ive
Programming: A way ahead for CAAD", in
Taernlund, S. -A. , Proceedings of the Logic
Programming Workshop, Debrecen, Hungary,
1980.

We have p r e s e n t e d a s i m p l i f i e d v e r s i o n of how
P r o l o g is imp lemented in t he POPLOG e n v i r o n m e n t .
We b e l i e v e t h a t t h i s system p r o v i d e s a b a s i s f o r
t r u e m i xed - l anguage A I programming because :

(1) The POP-11 and P r o l o g c o m p i l e r s a re j u s t two
o f p o t e n t i a l l y many p rocedu res which gene ra te
code f o r t h e POPLOG v i r t u a l mach ine . Th i s
means t h a t t h e two languages a re c o m p a t i b l e a t
a low l e v e l , w i t h o u t t h e r e be ing t h e
t r a d i t i o n a l asymmetry between a language and
i t s i m p l e m e n t a t i o n .

