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Abstract 

In this paper is presented a technique for transforming a class 
of recursive equations called linear equations into iterative 
equations. Linear equations are characterized by involving at 
the most one recursive call for any invocation. In contrast to the 
conventional techniques, the scheme of program transformation 
presented here involves finding the solution of the given linear 
equation and transforming this solution. The solutions of linear 
equations can always be expressed using a construct called 
abstract sequence. Two classes of abstract sequence programs are 
identified: right-associative and left-associative sequence 
programs. The former are obtained by solving linear equations 
and the latter correspond to iterative programs. The task of 
transforming linear recursive programs into iterative programs 
is thus reduced to the task of transforming right-associative 
sequence programs into left associative ones. Various 
transformation rules are developed based on an algebra of 
functional programs. 

I Introduction 

Since the pioneering work of [Darlington 1976, Burstall 19771, 
program transformation has come to be widely recognized as a 
program development tool. In this paper, we are interested in 
the application of program transformation to develop iterative 
programs from recursive programs. A generalized calculus for 
such transformations called unfold-fold method was given in 
I Burstall 19771. Given a recursive equation to compute a 
function f one finds another function / ' , such that 

1. there exists a recursive equation for f that is in iterative 
form, and 

2. /"can be defined in terms of/"' without using recursion. 
Once such a function f' is found, the unfold-fold method can be 
used to systematically develop the recursive equation for f from 
that for f The main problem with the use of this method is to 
find the target recursive function f. 

We submit that the cause of the problem is that the unfold-
fold method attempts to transform one recursive equation into 
another without regard to what the functions defined by these 
equations are. If we can find the solution of the given recursive 
equation, the function f, it may be possible to systematically 
develop the function f for which an iterative equation exists. 
But, unfortunately, it is not known how to express the solution of 
an arbitrary recursive equation. Even though the solution of any 
recursive equation can be specified as the limit of a 

monotonically increasing sequence of functions |Scott 1970, 
Manna 1972], the limit itself is, in general, not "expressible", i.e., 
cannot be specified using a closed form expression involving 
other functions. Backus 119781 initiated the development of 
notation and theory to formally derive and express the solutions 
of certain classes of recursive equations. Further developments 
of this approach can be found in I Backus 1979, Backus 1981, 
Williams 1982). 

In this paper, we shall consider the class of linear equations as 
defined in IBackus 19811. The solutions of these equations can 
always be expressed using a construct called abstract sequence 
[Reddy 1982a I. Further, the solutions fall into a class of abstract 
sequence programs called right-associative sequence programs. 
We will identify another class called left—associative sequence 
programs which are equivalent to iterative programs We will 
then present examples of transformation rules to transform 
right—associative sequence programs into left associative ones, 
based on the "algebra of functional programs" introduced in 
[Backus 1978]. 

II Notation 

We shall use the FP system given in [Backus 19781 as the 
language for presenting the transformations. An object in an FP 
system is either the undefined object ( I ), or an atom or a 
sequence of objects. The atoms include boolean values (T, F) and 
numbers. Sequences are enclosed in angular brackets (...) and 
the empty sequence is denoted by 0. A sequence containing I is 
equal to 1. All functions accept a single object as argument and 
yield a single object as result, either or both of which can be 
sequences. The application of a function on an object is denoted 
by the operator ":". All functions yield 1 when applied to I (i.e. 
they are strict). Unlike other functional languages, in an FP 
system, only first-order functions are defined. Using a small set 
of higher order functions called functional forms, functions can 
be defined without using X-abstraction. Such definitions are 
called function-level definitions in contrast to the object level 
definitions of the λ-calculus style. 

Appendix I contains a list of Backus's functions and functional 
forms which we shall use in this paper. Some new functional 
forms that will be used are given below. 
A bstract Sequence 

. 1 n 
seq r p:x - (x, r :x, ... , r :x) 

if p:r :x = T and p:r :x - F for all i<n 
J if no such n exists 
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For the sake of convenience, we shall use some purely 
syntactic extensions to the FP notation. First ly, we shall use 
object-level definitions as in λ-calculus based languages. Such 
definit ions can be translated into pure FP definit ions in much 
the same way as extended definit ions discussed in [Backus 1981]. 
Another notational extension we shall f ind useful is inf ix 
notation for binary functions. We shall wr i te f:{x,y) as x f y 
using inf ix notation. Prefix applications of functions have 
precedence over inf ix applications. 

The seq functional form was introduced in [Reddy 1982a] 
where a sequence yielded by the seq functional form was called 
an abstract sequence. As they play a pivotal role in our 
manipulat ions, we shall introduce informal notation to denote 
abstract sequences. In this notation, 
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If a powerful set of properties of associative duals, such as the 
one of theorem VI.3, is found then the use of duals may be a 
viable tool in transformations. But, currently we do not know 
enough useful properties of them. Therefore, instead of directly 
looking for the associative dual of the function used wi th inser t r , 
we would l ike to transform the given right-associative program 
into another r ight-associative program, so that the technique of 
duals can be used w i th the latter. 

VII Right-associative-To-Right-associative 
Transformations 

For most programs, the function h used w i th i nse r t r 
functional form, is too complicated to have an associative dual. 
We then transform it into another rights-associative program in 
which a simpler function h' is used w i th inser t r . The 
transformations that are possible for a specific function h are 
highly sensitive to the form of h and the properties that it 
satisfies. The fol lowing rules identify certain widely applicable 
forms and properties of h. But there may indeed be several 
others. The proofs of these rules can be found in [Reddy 1982b|. 
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VIII Discussion 

An automatic transformation system can be designed based on 
the techniques described here. Such a system would have three 
stages. 

1. Rewrite the l inear equation using a canonical l inear form 
and solve i t . 

2. If the reduction sequence can be inverted, then use it to 
produce a left-associative program. Otherwise, apply 
rights-associative-to—right-associative transformations, 
unt i l the right-associative function is sufficiently simple to 
have a dual. 

3. Transform the left-associative sequence program into an 
iterative equation or equivalently a loop. 

The stages 1 and 3 can be done algor i thmical ly, whereas the 
stage 2 handles a hard problem. We envisage the best approach 
for stage 2 to be a user—directed transformation system such as 
that of | Feather 1982]. 

The main advantage of our transformation scheme over the 
unfold-fold scheme IBurstal l 1977] is that the target recursive 
function is not guessed (by the so—called eureka steps) but results 
automatical ly from the transformation of the solution of the 
source recursive equation. However, Arsac and Kodratoff [1982) 
have recently suggested a generalization strategy which can be 
used to guess the target recursive equation based on the form of 
the source recursive equation. Even though their strategy is 
radically different from ours, the effects achieved by them are 
surprisingly close to ours. More investigation to f ind any 
possible relationship of our strategy w i th theirs is worthwhi le. 

The main drawback of our transformation scheme is that the 
algebraic properties of the rights-associative function h have to 
be restated in a form applicable to sequences, so they can be used 
in right^associative— to-r ight-associat ive transformations. The 
rules given in section V I I are such restatements. It is not always 
clear how the properties can be so restated. The unfold-fold 
method, on the other hand, directly uses the algebraic properties 
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of the functions involved. Further development of FP algebra 
may alleviate this problem. 

The r ight-associat ive-to-r ight-associat ive transformations 
are proved using an inductive proof s imi lar to the unfold-fold 
method. The rules used in such proofs are 1 and 2 or 1 and 3 of 
the following. 

1. i nse r t r h : ( , z ) = z 
2. i nse r t r h : (s apndr a, z) - i nse r t r h : (s, a h z) 
3. i nse r t r h : (a apndl s, z) ~ ah ( inser t r h : (s,z)) 

This suggests that it may be possible to apply these 
transformations directly on a recursive equation using un fo ld -
fold, in effect mimick ing the transformation of the sequence 
programs (because every right-associative sequence program is 
equivalent to a l inear equation and vice versa). Such a strategy 
would el iminate the need to restate the algebraic properties of 
functions in sequence form, and also integrate our technique 
w i th the unfold-fold method which is a much more general 
technique applicable to any recursive transformation. 

If our techniques have to be used for equations other than 
l inear equations, methods to express the solutions of those 
equations must be found. [Wi l l iams 19821 was a step in that 
direction. Further investigation of recursive equation solutions 
would faci l i tate the development of transformation techniques 
for nonlinear equations. 
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