Theory of Linear Equations Applied to
Program Transformation

Uday S.Reddy
University of Utah, Salt Lake City
Barat Jayaraman
University of North Carolina at Chapel Hill

Abstract

In this paper is presented a technique for transforming a class
of recursive equations called linear equations into iterative
equations. Linear equations are characterized by involving at
the most one recursive call for any invocation. In contrast to the
conventional techniques, the scheme of program transformation
presented here involves finding the solution of the given linear
equation and transforming this solution. The solutions of linear
equations can always be expressed using a construct called
abstract sequence. Two classes of abstract sequence programs are
identified: right-associative and left-associative sequence
programs. The former are obtained by solving linear equations
and the latter correspond to iterative programs. The task of
transforming linear recursive programs into iterative programs
is thus reduced to the task of transforming right-associative
sequence programs into left associative ones. Various
transformation rules are developed based on an algebra of
functional programs.

I Introduction

Since the pioneering work of [Darlington 1976, Burstall 19771,
program transformation has come to be widely recognized as a
program development tool. In this paper, we are interested in
the application of program transformation to develop iterative
programs from recursive programs. A generalized calculus for
such transformations called unfold-fold method was given in
|Burstall 19771. Given a recursive equation to compute a
function f one finds another function /', such that

1. there exists a recursive equation for f that is in iterative
form, and
2. ["can be defined in terms of

without using recursion.

Once such a function f' is found, the unfold-fold method can be
used to systematically develop the recursive equation for f from
that for f The main problem with the use of this method is to
find the target recursive function f.

We submit that the cause of the problem is that the unfold-
fold method attempts to transform one recursive equation into
another without regard to what the functions defined by these
equations are. If we can find the solution of the given recursive
equation, the function f, it may be possible to systematically
develop the function f for which an iterative equation exists.
But, unfortunately, it is not known how to express the solution of
an arbitrary recursive equation. Even though the solution of any
recursive equation can be specified as the limit of a

monotonically increasing sequence of functions |Scott 1970,
Manna 1972], the limit itself is, in general, not "expressible", i.e.,
cannot be specified using a closed form expression involving
other functions. Backus 119781 initiated the development of
notation and theory to formally derive and express the solutions
of certain classes of recursive equations. Further developments
of this approach can be found in IBackus 1979, Backus 1981,
Williams 1982).

In this paper, we shall consider the class of linear equations as
defined in IBackus 19811. The solutions of these equations can
always be expressed using a construct called abstract sequence
[Reddy 1982al. Further, the solutions fall into a class of abstract
sequence programs called right-associative sequence programs.
We will identify another class called left—associative sequence
programs which are equivalent to iterative programs We will
then present examples of transformation rules to transform
right—associative sequence programs into left associative ones,
based on the "algebra of functional programs" introduced in
[Backus 1978].

Il Notation

We shall use the FP system given in [Backus 19781 as the
language for presenting the transformations. An object in an FP
system is either the undefined object (1), or an atom or a
sequence of objects. The atoms include boolean values (T, F) and
numbers. Sequences are enclosed in angular brackets (...) and
the empty sequence is denoted by 0. A sequence containing | is
equal to 1. All functions accept a single object as argument and
yield a single object as result, either or both of which can be
sequences. The application of a function on an object is denoted
by the operator ":". All functions yield 1 when applied to | (i.e.
they are strict). Unlike other functional languages, in an FP
system, only first-order functions are defined. Using a small set
of higher order functions called functional forms, functions can
be defined without using X-abstraction. Such definitions are
called function-level definitions in contrast to the object level
definitions of the A-calculus style.

Appendix | contains a list of Backus's functions and functional
forms which we shall use in this paper. Some new functional
forms that will be used are given below.

A bstract Sequence
.1 n
seq rp:x - (X rix, .., r:x)
if p:r :x =T and p:r :x - F for all i<n
J ifno such n exists

Insert from left
insertl A : {2, (5.5, 0 = (.,.t{zhs, Vhglh dhsy)
insertlh: (z, (% = 2
Vi) = CLls hs)h L0 AR

Vh (s = 5
Wi 5 = left identity of A if il exists and is unique
| otherwise

Insert from right
insertr h: {(s),...5,). 2} = (3, h (s, A . hisp h2)))
insertr h . (1. 2) = z

Cumulate from left
cuml b1 {z, {5,850 = {, &, . 4}
where {, = insertl / : {z, ("‘J"“'sn))

Cumulale from right
cumr h:{(s;...5.0 20 = (Gt o, b}
where ¢, = insertr h . ((s,,_..,s!),)

Example 1: The factoriai function can be defined in ¥P using
these functional forms as

factorial = {insertr x) " |(seq pred eql}), J]
pred = - "[id, 7|
eql = eq°lid, 7!
The application of this function to 3, for instance, yields
factorial : 3 = insertr » : {§eq pred eql:3, I}
= insertr x: {{3.2,1}, I}
=6
O

For the sake of convenience, we shall use some purely
syntactic extensions to the FP notation. Firstly, we shall use
object-level definitions as in A-calculus based languages. Such
definitions can be translated into pure FP definitions in much
the same way as extended definitions discussed in [Backus 1981].
Another notational extension we shall find useful is infix
notation for binary functions. We shall write fi{xy) as x fy
using infix notation. Prefix applications of functions have
precedence over infix applications.

The seq functional form was introduced in [Reddy 1982a]
where a sequence yielded by the seq functional form was called
an abstract sequence. As they play a pivotal role in our
manipulations, we shall introduce informal notation to denote
abstract sequences. In this notation,

Vage s At

where x, = t:x

Xiag = T

px,
denotee (seq r p:t:ix). The symbols n, i, and z; are all formal
peremeters in this notation. It is implicitly understood that px,
does not hold for all i<n. Using these syntactic extengions, the
definition of factorial in example 1 can be written as

factorial : a = insertr x:{n,, ..., n,),)

wheren, = n; n,,, =n-1I, neql
The functions tl, tir, dietl, distr, all g, cuml & preserve abstract
sequences, i.e., applying any of them on an abstract sequence
produces another abstract sequence that can be expressed using
the functionsl form seq. Therefore, we shall use liberalized

U. Reddy and B. Jayaraman 11

absirace seguence notation to denete the expressiona in which
the above functions are applied or other abstract wequences. For
instance,

<x|‘..'""' xn J)

wherex, — tx; x| ;-
denotes itlseq r ptx)

;P

Hl Linear Functionals and Canonical Linear Forms

Definition: A functionn! of arity » is 8 higher-order function,
thal maps every luple of i functions into a function. {7]

A functivnal is an abstruct ohject. A representation of a
functional that can be delined 1o FP is called a form.

Definition: [Backus 1981) Let V = {f, ... f,] be a set of (function)
variables. Then we shall say that Ef, .. [, isa form, or E is a
form in V, if exactly one of the following holds:
1. £f, ... f, = r for some function r, or
2, E,f; iy = fl for aome i, or
3. There are forms £, .. E, in V and u primilive ferm
{functional form) I' with k parameters such that Ef, ... f, =
ME,... K.
n

Consider a recurgive equation of the form

f=p—>q Hf
where p and ¢ ure functions and H is a functional. Using the
approuch of | Kleene 1952], the solution of such an equation is the
limit of the sequence of functions:

fo=1 .

i=p—-q HI
L=p—>qHp—>qH)
H~p—rqHp—>qgHp—>qHIN

Finding the lim:t of such a sequence of functions is a nontrivial
exercige owing to the nesting of the functional H in the
approximating functions. If there exists another functional H,
such that
Hip-—=>q;ri = Hp—= Hq, Hr
then, each of the approximating functions can be simplified to
fo = p—>qHp—>Hg; . ;H{n_}p——> H"_Iqr; H'T
The limil of this sequence of functions can be eanily found.
Definition: [Backue 1981] A functional Hf iz lnear if there
exists anpther functional H [called its predicate transformer, so
that
1. for all functions o, 5 and c,
Hig —> b;¢) = Ha —> Hb, He
2. for all ohjects x, if H1.x # |, then for all functions a,
Hax=T
A form that represents a linear functional ie a linear form. []

Example 2: The following recursive equation for factorial
f=egd—>T; x°[id, f °pred]

involves a linear functional
Hf = » ®[id, f°pred]

with the predicate transformer
Hf = f°pred

g

12 U. Reddy and B. Jayaraman

L has been proved by [Backus 1981] that, whenever H is n
linear functional. the recursive equalion
- p—-qHf
for any p and ¢, hax ax its solulien, Lhe linear expansion,
&
f-p—-@qHp—=Hg Hp—.- qu;

Buckus then gues on Lo characterize some of the forms thal can
be constructed in FP as linear. [n the fellowing, we shall give a
much simpler characlerization of linear functionals, which is
essenlially the same ar that of lincar recursive schema of
|Walker 1973

Definition: A form of Lthe kind
Hff =~ p—2gi k70, fOrl
is ¢alled a canronical finear form. | |

It can be verified thal a canvnical linear form represents a
linear functional with the predicate transformer, Hf - f'r.

Theorem IIL.1: |Reddy I1983] A functional is linear if and only if
there exists a canonical linear form that represents it. |

Using this theorem, wc can also formulate a simple
operational test to check if o form is linear.

Corollary I11.2: |Reddy 1983) A form A is linear if and only if
for all functions & and objects x, either the computation of FHb.x
involves a b-application on al most one distinct value, or
Hbx - .01

Example 3;: The form used in the factorial equatien of EKxample
2 is a canonicu! linear form. As a more complex example,
consider the one given in [Hackus 19811

Hf = a—= f®h h° e == o; [ti—~j k" m "))
It is a linear form, with the predicate transformer

Hf = a—:=f°h andlei| -~ T, f'g
Note thal the computation of Hfx for any x would invelve only
one f—applicstion, either on h:x or on gix.

The following canonical linear form H'f is equal to Hf.
Hf=a—>"gy"lid f* 48]

where
a = and ¢ |not’a, orle.|]
B~ h"[dl
y=a—:>2 h"[(e"] —= d°1; 2), 1°1 —> 1, A" lm”1.21)
b=aq—>b g
Cl

Even though the ilest given in corollary II1.2, cannot be
performed by un algorilthm, it ia possible to mechanically identify
most, useful linear forms and also to transform them Lo canonical
linear forme.

IV Solutions of Linear Equations

A linear equation is a recursive equation of Lthe form
f=a—>b Hf
where H is a linear form. Using theorem I11.1, we can see that
every such equation can be rewritten in the form
f=p—>q h°lid, frl
We shall call the function r, the reduction function of this
equation, because it reduces the problem of computing fx to that
of computing £ir:x. As shown in [Backus 1978}, this equation has

as its solulion, the infinile expansion:

f=p—rqpr—rg;;.. ;IP"r"—::- Gy i

whereq, = /h"lid, r,r5 . F ! } q”rll

If we define

R, ~ lid.r,", .t foralli =0
then

g, = /A" apndr " |tlr, ¢"Ir| " R - insertr A "|tlr, ¢"Ir|" R,

¢ = /h"apndr“Itr, 4"1r]" R = insertr h *|tlr. "17| " R,
The sequences yielded by K are called reduction sequences. We
can now rewrile the solution using Lthe reduction sequences as:

f-p—RRupr—-h"R, .. p"rﬂ — hUR

where 2" — insertr A “{tlr, ¢"1r]

or as

f=h tp—rRupr—>R, o pr—-R..0
The infinite conditivnal in the parentheses is itself the solulion
of the linear equation

R = p—>lidl; apndl © lid, R°r|
Using the functional form seq defined as

seqrp = p—:|idl; apndl “lid, (seq r p) ° rl
we can express 8 wilhout recursisn.
Theorem [V.1:
equation

F- p—q hiid, for]
is, for all functions p, ¢, &, and r,

[— insertr k" [Ur, ¢"ir| "weq rp
L

Example 4: The definition of fuclorial in example 1 is nothing

Iliackus 1978] The solution of the linear

but the solution of the [actorial eguation given in example 2. [!

V Left-associative and Right-associative
Sequence Programs

Definition: A right-associative (sequencel program s ane of the
two lorms

fx = insertr k : (seq r pix, fx)

fix - th:seqrp:x
Similarly, a left—associative (sequencel program is one of the two
forms

fix = insertl & : {f,:x, veq r p:x}

fx=\h:seqrp x
rt

Note that an abstract sequence can be transformed into both a
right—associative program and a left-associative program. Se
can a program in which a right selector, such as 1r, which is
applied on an abstract sequence. For instance:

Ir:seqrp:x=/2:8eqrp:x

=\:seqrp:x

Every left—associative program can also be trivially lransformed
into a right—associative one.

The solution of a linear recursive equation is a right-
associative program and vice versa. On the other hand, every
left-associative pequence program can be transformed into an
iterative (tail-recursive) equation. Suppose

fix = insertl k {(f;x, seq r pix)

We can find an iterative function simply by generalizing fx.

[{yx) = insertl & : {y, seq r px)

fx=f":{fgx x)

The iterative equation for ' is

Friyxd = pix — o Ry frithidva), rxd
I fyx is defined by another lefl-ussoeiative program, it cun be
ridefined using another iterative equation. All iterative
cquations ean alse be trivially transformed inte lefl- associative
programs.

Thus, we have a kind of strong equivalence between linear
equations and righl-associative programs, on the ene hand, and
between iterative equations and lefi-asseciative programs, on
the other. The problem ol tranaforming a linear equation into an
iterative one is therefore reduced to the problem of transforming
a righl—associative program into a left—associative program.

Example 5: We have seen that the solution of the following
{uctorin] equation of example 2 is the nghl-associative program
given in example 1. This gan be directly transformed to the
fallowing left—associative program using the facl thal =~ is
associative and commutative:
factorial:n - inmertl » - {I, {n,.. .M
This, in turn, can be transformed inte an ilerulive program.
factorial:n - Ffact:{2,n)
fact:{pn) - neql! — - p »x 1; fuctip~n, n-1}
[l

V| Right-assoclative-To—Left—assoclative
Transtormations

There are basically three methods to transfurm a right—
apsociative sequence program into a left—associalive one:
1. Using a stack
2. Reduction inversion
3. Associulive Duals

Using a stack, all right—associalive programs can be Lransformed
into lefi—asrociative ones. This is not surprising since all
recursive equations can be Lrunsformed inte iterative ones using

u stack. We shall concentrate on the latter two methods.

A. Reduction Inversion

If fis defined by the right-associative program

fx = insertr A : (Rux, fiyx)
fi:x is the reduction sequence of the corresponding linear
equation and is defined as an abatract requence. If rev.R:x can be
defined as an nbetract sequence revfR:x, then fix can be defined by
the left—associative program

fx = ingertl (A " swap) : {{;x, revR)

where swap:{x,y} = {yx)
Thisa ia the simplest technique to use when the reduction function
has an inverse. Suppose

Ry o= (xy,...x)

where x, = x; x;,, = rix;; px_

and the reduction function has an inverse g so that

rigx = x whenever px = F
If the last clement of the reduction sequence (z,..x.) is fx,
then,

revit:x = all 1: {ypx),. .00 20

wherey, = &x; ¥, ; = ¥, ¥, oF

The function ¢&x can, in turn, be defined uwsing the left-
associative program

tx=I1r:seqrp:.x

U. Reddy and B. Jayaraman 13

Huwever, it is not desirable 1o have two abstracl sequences in the
transformed program. Sv, this transformation should nut
normally be used unless £x can be defined withoul using an
abstracl seguoence.

Example 6: Consider the very common reduction sequence
Ran - L P Ty
whore Ry oonoR, R, I; . e 7
The inverted sequence i
revfioe = abll 1 {{mgn)...., (mﬂ,n))
where mg, = @, m

- mlH’; my QR

[l

It is semetimes possible to use reduction inversian, even if the
reduction funclion decs not huve an inverse, but has severul
righl-inverses.

Example 7: Consider the more interesting reduction sequence
fin iy omy)
wheren, nain,, ;- ndivZ myeqd
The halve function has two right—inverses:
doubler = 2 > n
doubleadd:n - 2 » n +
Let
ceilingpower:n - the smullesl 2 such that # - 2
This 1s nothing bul one plus the length of the reduction sequence
and can be defined by a left—-associative program. The reversed
reduction sequence can be defined using the two right—inverses.
revfiin = genseq : {nr, cellingpower a}
genseq:n.py — all :{{a,.n,). . {a, A0, 0
wherea, - & my, — ny p, = p
a, ;- BT div 21 — - doubleadd:a; double:a
= on o ipdiv2)— aip div) a
B,y - pdiv2
Prga 1
]

B. Associative Duals

The method «of reduction inversion has only limited
applicability. The use of mssociative dusls has much wider
upplicability and forms the main core of our transformation
technigue. Congider, again, the right—associative program

fix = insertr & : {(x,,.... 1}, [;x}
We may be able to {ind a function A', so that

fx = insertl h': {fpx, (xpo.. 2,0}

Definition: If, for af] sequences »,

insertr & : {(2,5) = insertl b' : (s}
then the funclione th', &) are said to be gssociative duals with
respect to z. A" is called the left associative dual ol h with respect
to 2, and A is called the right associative dual of &' reapect to z.]

Theorem VL.1: |Reddy 1982h] If th', h) are duals with respect to
z, then (h"swap, h'°swap) are duals with respect to z. (]

The concept of associative duale was introduced by [Kieburtz
1981). But, their definition differs from ours. We can show that
their definition is a sufficient condition for oura.

Theorem V1.2: [Reddy 1982h| If two functions

h:AxB—>B, and

hM:BrxAaA—>R
satinfy the following conditions, for some z e B,

14 U. Reddy and B. Jayaraman

lL.ehz=2hu Yar A
2ahtbh c)—tahbh'c YoarcAandbr B
then th', b} are duals with respect to z. {_

Example 8: The functions (apndr, apndl) are duals with respect
to the empty sequence, (7, because

aapndi i) ~ {@} = J apndr o

a apndl Us,...5,) apndr ¢) = ta spndl {s ,...s }) apndr ¢
The function rev, for reversing a sequence can be defined by the
lincar equation

revis — seq @ —= &5 apndrirevitls, i)
Its right associative solution is

revis = jnsertr (apndrswap) : (all 1:(s,,...5,) D

wheres, = &1 5,,, = s, 5,eq@

Since (apndr. apndl) are duals with respect to (], the functions
(apndl"swap, spndriswup) are also duals with respect to 075, by
thearem VI.1. Hence,

revis = insertl (apndl*swap) : {7, all 1:{s,,.....5, ;)

O

A special case of dumis occure when an operation # is
associative. If it has an identity f. then & is its own dual with
respect to [. If it is associative as well as commutative, then it is
its own dual with respect to any value. The functions such as +,
—, min, and max are examples of such funetions.

Theorem V1.3: [Reddy 1982b| If 1A, &) are duals with respect to
zthen (h"* f1 4°2/, h * {%°1,2)) are duals with respect to 2, {or any
function k. [J

If a powerful set of properties of associative duals, such as the
one of theorem VI.3, is found then the use of duals may be a
viable tool in transformations. But, currently we do not know
enough useful properties of them. Therefore, instead of directly
looking for the associative dual of the function used with insertr,
we would like to transform the given right-associative program
into another right-associative program, so that the technique of
duals can be used with the latter.

VIl Right-associative-To-Right-associative
Transformations

For most programs, the function h used with insertr
functional form, is too complicated to have an associative dual.
We then transform it into another rights-associative program in
which a simpler function h' is used with insertr. The
transformations that are possible for a specific function h are
highly sensitive to the form of h and the properties that it
satisfies. The following rules identify certain widely applicable
forms and properties of h. But there may indeed be several
others. The proofs of these rules can be found in [Reddy 1982b|.

1. If the function A satisfies the property
ahlbhe)=(ab Bl ke
for some function A’
insertr A : {(s,,..., 8,0, 2}
= (/' (8,8 5,..8 Nhz
The k' may have a dual or may be simpler than h. For
example, conpider
h = exp ®swap
where exp is the exponentiation function.
ahbhe)=ah(cexph) = (cexpblexpea

ceexplhxa)=(axMhe
The functien x is associalive and commutative, whereas £ is
neither.

2. If & is of the form
hixyy = k' (kx, v
then
msertr h :{{s,...5,) 2}
= insertr A’ : ({k:si,..,,k:s"),)

3. If h is of the form
hixyy = R {x ko)
und & distributes over A’
kv, B yy) = by, B by,
then
insertr A : {(s,,....s). 2} .
= insertr k' J{{k =, k Sy, k

" ;:sn), k J'giz)
Example % Consider the following linear program from [Arsuc
19RL |
finbd) = rneq0—:= 0,
10 findivhby + nmod b
The right associative solution is
Finby = insertr b (({rg b, ... (n, b)), 0)
wheren, = n: n, , , — nr divh npeqt')
Ri{ndy, vy - 10 %y + nmod b
Since the r maod # parl ducs not depend on ¥, we cun simplify the
function k, using rule 2.
Finb) = insertr &' : {{n gnod b.... n prmod b),)
Mimy) - Ity +m
Let t10 :y = 10 x v Since it diatributes over +, using rule 3,
Finb) =
insertr 1 :(t10"(n, mod),...010" “n, ,.b0.0)
Now, the function + wused with insertr iz associalive and
commutative. So, [can be defined by the left-ussociative
program (it is nol exactly a program yet)
finb)y =
N [/ 7
insertl +:{{/{t10 :tn,; mod bl.,.,,tlﬂp :Inp_,.b]))
The t10' factors can be handled by introducing another
parfimeter r, in the eclements of the sequence, so that
10 = ¢ xx
Find) =
insert] + 40, {c,*(ngmod b),...c, ;%in, ; mod b))}
wherec, = I, ¢, , = 10 x ¢,
This can now be rewritien using an iterative equation.
fi{n,by = 7:(0,1,n,6)
firend) =neql—=r,
f'idr + exinmod b), 10xc, ndivb, b)
0

4. This rule is a generalization of 2 and 3 above, Suppose A is of
the form
hix,y = h'dax, kd{bxyy
and k is distributive over &' in the second variable position,
ie.,
kix(y, 2yl = kixy) A kilx, 3)
Further, let & be agsociative and have an identity J. Then
insertr 4 : {(z;,.... 5,), 2)
= insertr &' : ({5'},.., 8), ')
where z' = E:0M{bisg,.., 08y, 2)

s ke (\k:(.‘::.-;j,....hzq_r), ws)
- ingertr &7 (ke ke, ey) Kl 20
where cp = !

e,y - Rl bis)

5. This is a variant of rule 4. Suppose b s of the form
hiixwy - R, Bodux v
k is diatribulive over &',
hixyy = R (ke{bixaix), Byl
Further, assume that & is associative, I need not have an
identity.
insertr /i : TR B S
insertr i :((h:(e, aes b kil 08, ki)
where e, = b,
A k:{ci, b:sr . ‘.}

6. IM % 15 & conditional of the lorm
huixyy - px— v
and &' has a lofl identity /,
IThy = yiurally
then, we can redeline k& as
hdxyy — b px— - xy)

7. This is a generalization of rule 6. Suppose A is of the form
Rixyy — pa— 0 holayh hplaw
Suppose
hpx = by logpx by (am:x,.._,k“, : (u_,p:x. ¥on
We are only interested in the sequence of funclions
Bpp Ryg ooy,
Let us call them the embedded sequence of functions \n h,.
There will be a similar sequence far &,
ko kyy -kzq
We need to lnd o sequence thal generalizes these two
sequences, so thal,

v, hy substituting some of the funetions in the generalized
sequence by the idenlity function (id°2) we can obtain
each of the vriginal sequences, and

b. each of the functions that need 10 be substituted has a
lefi identity.

We can then construct a functivn with the generalized
embedded sequence using the left identilics of the embedded
functions, so that thie function equals the conditional 2. We
can extend this methed for any number of conditional
branches, This seheme of generalization has been used wilh
unfold-fold meihod by |Arsac 19821,

Example 10: Consider the linear gquation
mult:{a,b) - beqO0 —= 0,
even:b — 2ximult:iae, bdiv 2,
multf{eb-1} + a
Its right—associative aotution is
mult:{a,b) = insertr h ; ({{a,f),...la.8 N, 0)
where b, = b
b,,; = even:b,—> b.div2. b, -1
boeqd
h:{le,b),y) = even:b—> 2xy; aty
The embedded sequences for the conditional branches are x and
+ respectively, The generanlized embedded sequence can be
either +.x or x.+. Let us choose the former. We can redefine
the function A to have this generalized embedded sequence.

U. Reddy and B. Jayaraman 15

o y) = Blaby + siab) x ¥

by even:h— -0

sfa by — ovenh— - 2; !

Since > distribules over 1+ we can use the rule 4.

mult:{a. b

—insertr +:{{r, > Blebh. 0, pilad DO

where e, = 1 tleft identity of =)
€yt -‘"X.‘ii(ﬂ.hr)

—insertl 1 {0, (¥ b)0, pBleb)
Nute thal cach of the coeflicients ¢, iz a power of 2. Using a
“shift left” operalion

kalx - 2k ¥ ox

il can be rewrillen as

mull:ia.by —
insertl +:(0(k, sl tlabyh kol Lah |)
where &k, -
kr p - evenh, — - k4 1k

It ix also possible Lo obluin a program without the shift left
operation, by noting that » commutes with /. Sec |Reddy 1982bl.
[

VIII Discussion

An automatic transformation system can be designed based on
the techniques described here. Such a system would have three
stages.

1. Rewrite the linear equation using a canonical linear form
and solve it.

2. If the reduction sequence can be inverted, then use it to
produce a left-associative program. Otherwise, apply
rights-associative-to—right-associative transformations,
until the right-associative function is sufficiently simple to
have a dual.

3. Transform the left-associative sequence program into an
iterative equation or equivalently a loop.

The stages 1 and 3 can be done algorithmically, whereas the
stage 2 handles a hard problem. We envisage the best approach
for stage 2 to be a user—directed transformation system such as
that of | Feather 1982].

The main advantage of our transformation scheme over the
unfold-fold scheme I|Burstall 1977] is that the target recursive
function is not guessed (by the so—called eurecka steps) but results
automatically from the transformation of the solution of the
source recursive equation. However, Arsac and Kodratoff [1982)
have recently suggested a generalization strategy which can be
used to guess the target recursive equation based on the form of
the source recursive equation. Even though their strategy is
radically different from ours, the effects achieved by them are
surprisingly close to ours. More investigation to find any
possible relationship of our strategy with theirs is worthwhile.

The main drawback of our transformation scheme is that the
algebraic properties of the rights-associative function h have to
be restated in a form applicable to sequences, so they can be used
in right*associative— to-right-associative transformations. The
rules given in section VII are such restatements. It is not always
clear how the properties can be so restated. The unfold-fold
method, on the other hand, directly uses the algebraic properties

16 U. Reddy and B. Jayaraman

of the functions involved. Further development of FP algebra
may alleviate this problem.

The right-associative-to-right-associative transformations
are proved using an inductive proof similar to the unfold-fold
method. The rules used in such proofs are 1 and 2 or 1 and 3 of
the following.

1.insertrh : (,z) = z

2.insertr h : (sapndra, z) - insertrh: (s, ahz)

3.insertr h : (a apndl s, z) ~ ah (insertr h : (s,2))

This suggests that it may be possible to apply these
transformations directly on a recursive equation using unfold-
fold, in effect mimicking the transformation of the sequence
programs (because every right-associative sequence program is
equivalent to a linear equation and vice versa). Such a strategy
would eliminate the need to restate the algebraic properties of
functions in sequence form, and also integrate our technique
with the unfold-fold method which is a much more general
technique applicable to any recursive transformation.

If our techniques have to be used for equations other than
linear equations, methods to express the solutions of those
equations must be found. [Williams 19821 was a step in that
direction. Further investigation of recursive equation solutions
would facilitate the development of transformation techniques
for nonlinear equations.

Acknowledgements

We would like to thank Don Stanat, Manton Matthews and
Gyula Mago for several discussions and suggestions.

Appendix |

This appendix contains informal definitiona of some FP
functions and functional formes that are used in this paper.
Basic functions

identity dix = x

Basic functional forms

constant cx=c¢ ¢l = |
T is therefore the everywhere-undefined function
composition ["g:x = fig:x
construction Lf;...f,]1:x = {fpx,...f:x)
condition (p->f; gr:x = if p:x = T then fix
else if prx = F then g:x
else)

Functions on seguences
selectors Yoz, x) = x; 2:x,,...x,) = x ete.
right selectors 1r:ix,.x) = x eic.
tail tl:(::,,,..,xu) = {x,,... %)
tlr:(:,....,xn) = (x‘....,g_)
append apndl:{a, .. x) = daxd,..x)
apndr.'((xl,.‘..xn), a) = {%,...%,a)

Functional forms on sequences
apply togll all f: XXy} = {Fxy. 20}
ingert If:{x,..x) = f:{x, ffilz,..x))

References

[1) Arsac.J., Kodratoff, Y. 119821, Some techniques for recursion
removal from recursive functions, ACM Trans, on Prog.
Lang, and Systems, 4, 2, 295-322.

[21 Backus, J.W. [1978], Can programming be liberated from
the von Neumann style? A functional style and its algebra
of programs, Cornm. ACM, 21, 8, 613—641.

[31 Backus, J.W. 11979], On extending the concept of program
and solving linear functional equations, |BM Research
Division, San Jose.

[41 Backus, J.W. [1981], The algebra of functional programs:
functional level reasoning, linear equations and extended
definitions, (in) Formalization of programming concepts, (ed)
Diaz and Ramos, Springer-Verlag.

[5] Burstall, R.M., Darlington, J.[1977], A transformation
system for developing recursive programs, Journal of ACM,
24, 1,44-67.

[6] Darlington, J., Burstall, R.M. [1976], A system which
automatically improves programs, Acta Informatica, 6,1,
41-60.

[7d Darlington, J. [1978], A synthesis of several sorting
algorithms, Acta Informatica, 11,1, 1-30.

18] Feather, M.S. [1982], A system for assisting program
transformation, ACM Trans, on Prog. Lang, and Systems,
4,1, 1-20.

[9|Kieburtz, R.B., Shultis, J. [1981], Transformation of FP
program schemes, 1981 Conf. on Functional Programming
Languages and Computer Architecture, ACM, 41—48.

[10] Manna, Z., Vuillemin, J.[19721, Fixpoint Approach to the
theory of computation, Comm. ACM, 15, 7, 528-536.

[11] Reddy, U.S. [1982aJ, Programming with sequences, ACM
Southeast regional conference, Knoxville, Tennessee.

[121 Reddy, U.S. [1982b], Transformation of linear recursive
programs using sequences, Dep. of Comp. Sci., University of
North Carolina at Chapel Hill.

[13] Reddy, U.S. [1983], A simple characterization of linear
recursive equations, Dep. of Comp. Sci., University of Utah,
Salt Lake City.

[14] Scott, D.[1970], Outline of a mathematical theory of
computation, Programming Research Group Tech. Memo.
PRG-2, Oxford University Computing Lab.

[15] Walker, S.A., Strong, H.R. [1973], Characterizations of
flowchartable recursions, J. of Computer and System
Sciences, 7,404-447.

[16] Williams, J.H. [1982], On the development of the algebra of
functional programs, ACM Trans, on Prog. Lang, and
Systems, 4, 4, 733-757.

