LEARNING AND ABSTRACTION IN SIMULATION

Sarah E. Goldin and Philip Klahr

The Rand Corporation
Santa Monica, California 90406

ABSTRACT

Complex simulation programs typically
require large amounts of computation to produce
highly detailed output difficult for users to
understand. Building abstracted simulation systems
that simplify both computation and output can make
simulation both more economical and more intelligi-
ble. Ve describe an approach to abstracted Simula*
tion that uses a scenario network to represent typ-
ical sequences of events in the simulation domain.
Abstract simulation output is generated by proba-
bilistically determined event-to-event transitions
within the network. A learning process determines
probabilities and builds up more abstract "chunked"
events based on the actual frequency of event
sequences in runs of the detailed simulator. The
approach is generalizable across domains, and ful-
fills many of the goals of abstracted simulation:
reducing computation, saving resources, filtering
information and providing aggregated, intelligible
output.

| INTRODUCTION

Artificial Intelligence techniques
developed over the last decade have enabled us to
create complex simulations in many domains. Such
simulations typically include many rules that
govern interactions between system entities and
engage in intensive computation in order to gen-
erate their output. The complexity of these simu-
lations can pose problems, however, in situations
where the user is time-limited, or cannot afford
the necessary computation, or is interested only in
rough results. Furthermore, the output of such
simulations, which often consists of an agonizingly
detailed trace of system events, can be difficult
to understand at a global or intuitive level.
These two considerations, economy of resources
(time, cycles) and intelligibility, argue for the
development of abstracted simulation systems. simu-
lations of reduced complexity that ignore certain
interactions or collapse over some dimensions
relevant in the detailed simulation. Abstracting a
detailed simulation can simplify both computation
and output, providing a general picture of simula-
tion events with a minimum expenditure of
resources.

Our interest in abstracted simulation was
stimulated by our work on the ROSS simulation
environment and our implementation of strategic air
warfare simulator [5]. The detailed simulator
includes objects such as bombers, fighters, radars,
targets and command centers. These objects
interact according to heuristic rules to produce
*vents such as radar detections, bombings, fighter

212

assignments, dogfights, and so on. Although ROSS
has a graphics output capability that improves
intelligibility, its main output is a lengthy event
history. Furthermore, its speed decreases as
increasing numbers of objects are included in the
simulation. Hence, we have turned to abstracted
simulation as a means of fulfilling several goals:
1) Filtering and aggregating output to improve
intelligibility; 2) Allowing "quick and dirty"
approximate simulations to save resources; 3)
Allowing the user to choose a level of detail
appropriate to his or her needs. In addition, we
have found that abstracted simulation provides an
arena for exploring a number of interesting Al
issues involving learning and knowledge representa-
tion.

I A SCENARIO-BASED SCHEME
FOR'ABSTRACTED SIMULATION

Many alternative approaches to abstracted
simulation are possible: 1) abstraction over time,
e.g. by coalescing micro-events into more aggre-
gated macro-events; 2) abstraction over instances,
e.g. by replacing individual objects with generic
class objects; 3) abstraction over space, e.g. by
combining spatial areas or schematizing spatially
defined entities (such as radar ranges or routes);
4) abstraction over procedures, e.g. by simplifying
computations or caching average results as a sub-
stitute for computation [6). In this research, we
have focused on alternatives (1) and (2). The
abstracted simulation model (ASM) generates event
output by following a probabilistically- determined
path through a scenario network that represents
prototypic event sequences within the domain. The
event network represents multiple levels of tem-
poral aggregation; through interaction with the
detailed simulation model (DSM), it builds abstract
events by chunking together lower level events that
tend to form recurring sequences in runs of the
DSM. The user can then choose a level of abstrac-
tion and run the abstracted simulator as an
independent system.

The abstracted simulation process includes
two phases, the learning phase, in which the ASM
uses DSM output to generate an initial scenario
network and build up new macroevents, and the event
generation phase, in which probabilistic event-to-
event transitions are used to produce an event
trace similar to the DSM output. Each of these
phases is described in more detail below.

II1_LEARNING PHASE

Building up an abstracted simulation model
begins with user specification of elementary simu-
lation events. The set of elementary events
derives from the output events produced by the
detailed simulation model. In the ROSS air battle
simulator, we used the event messages sent to the
event reporting module to extract an elementary
event set, e.g. "Radar4 detects bomber3", "Fighter9
detects bomber8". During the learning phase, these
elementary events are connected by links indicating
temporal succession to create elementary event net-
works .

Once the elementary events have been speci-
fied, they must be grouped according to the roles
involved in each event. The actors in an event
description determine its roles. For instance, the
roles associated with "Radar4 detects bomber3" are
RADAR and BOMBER Typically, the event trace of a
detailed simulation will indicate clusters of roles
that interact (participate in common events) during
some portion of the simulation history. For exam-
ple, bombers interact with radars, with fighters
and with targets, radars interact with command-
centers and with bombers, and so on. We refer to
these role clusters as interaction sets. At the
conclusion of the learning phase, the ASM scenario
network will include a subnetwork corresponding to
each interaction set, comprised of events that
share the same roles.

In the learning phase, the elementary event
srt is modified in response to input from the DSM.
Links between elementary events are created when
those events occur in succession in the DSM input.
Probabilities for each event-to-event transition
are built up by monitoring the frequency of DSM

events. Each event in the network keeps track of
how often instances of that event occur in DSM
runs; each event-to-event link keeps track of how

often the two events it connects occur in succes-
sion. The ratio of link frequency to first-event
frequency defines the conditional probability of
transiting to the second event from the first.

Fig. 1--Chunking to form abetrect events

213

When several events occur together with
sufficient frequency, the ASM chunks them to create
an abstract event that represents that event
sequence as a single entity (Fig. 1). This chunk-
ing depends on the fact that each link can also be
viewed as a higher order event (namely, "event 1
then event 2"). Abstract events are created by
linking together two pre-existing links. This pro-
cess of aggregation can extend upward, generating
more and more general descriptions of domain
events.

Each interaction set is considered
separately during the learning process. Links are
created and incremented within each interaction set
subnetwork, but not between subnetworks. However,
the ASM monitors for the first event occurrence
relevant to each subnetwork. When a first
occurrence is detected, the ASM attaches a con-
straint action to the preceding event, indicating
that the preceding event activates the new subnet-
work. In the air battle domain (and, we suspect,
in other domains as well), interaction sets operate
in cascade. Bomber/radar interactions trigger
radar/command-center interactions, which trigger
command-center/fighter interactions, and so on.
The constraint actions associated with a triggering
event represent these inter-subnet dependencies.

Figure 2 shows a portion of the subnetwork
structure build by the current version of the ASM,
including event transitions, abstract events, and
constraint actions. The set of subnetworks created
during the learning phase provide the basis for

event generation.

Lovel 1 - Abstract svents

[Activate bombes /
Lovel 2 - Abstract svants

Largent subset)

Fig. 2—Part of the sbetracted scenario for sir bettie simulator

IV EVENT GENERATION PHASE

In the event-generation phase, the ASM acts
like a Markov model, moving from eventestate to
ovent-state based on the transition probabilities
built up during learning. Event generation begins
with the activation of the first subnetwork and the
starting of a simulation clock. Activating a sub-
network involves setting its current state to a
predefined start state and scheduling its first
transition. Each subnetwork makes a transition

every x clock ticks, where x is a subnet-specific
parameter. The transition procedure probabilisti-
cally selects the next event state from the candi-
date set specified by the network. Sometimes, no
linked event will be chosen, and the subnet will
remain in the same event-state until the next move.
As each subnet transits to a new event-state, it
can output the name of that event, thus producing
an event history similar to that of the DSM.

subnetworks usually generate
However, contingencies
the execution of con-

The different
events independently.
between subnets require
straint acts associated with triggering events.
For example, the event "Radar reports detection to
command-center", a part of SUBNET2, should not he
generated until after the SUBNET1 event "Radar

detects bomber". During the learning phase, the

constraint action (ACTIVATE SUBNET2) will be asso-
ciated with the "detection" event. If the subnet
transits to that event, its constraint actions will

allowing the "report" event to be gen-
in SUBNET2.

be executed,
erated by transitions

The event-generation phase of ASM allows

the user to select several output modes. In the
sampling mode, the user selects one or two roles to
follow through the network. Only events involving
the sampled roles are reported. Thus, this mode
fulfills an information filtering function. Alter-

natively, the user may select the statistics mode,
specifying statistics of interest (e.g. number of
bombs dropped) and the number of each role should
be considered. The ASM treats the probabilities
associated with inter-event transitions as propor-
tional factors, multiplying probabilities through
the network until the event relevant to the statis-
tic is reached.

has focused at the
the same pro-

discussion so far
level. However,

All
elementary event

cedures apply to generating events at higher levels
of abstraction, since the structure of event
objects and links is the uniform. In general, the
higher the level of abstraction chosen, the fewer
the events in the network, and the faster the ASM
runs.

V EVALUATION AND CONCLUSIONS

A. Implementation Status

Both the detailed and the abstracted simu-
lation models are implemented in the ROSS language
|71, an object-oriented, message-passing language
based on Kahn's DIRECTOR (4). The learning mode

has been implemented, using elementary events from
a first generation detailed air battle model. The
event-generation mode is in the process of imple-

mentation. Meanwhile, a second generation DSM is
being created. Its more complex event structure
will better test the power of the abstracted simu-
lation approach described here.

le Limitations of the ASM Approach

Although the current approach seems promis-
ing, it does have some limitations. First, no
methods currently exist to guide the selection of

214

elementary event messages for the original DSM. We
have not defined "event" in any formal way, but
have relied on intuition to structure the simula-
tion output into useful and manageable units.
Further experience with this approach may enable us
to translate these intuitions into formal pro-
cedures for event specification. Second, ASM
learning capabilities are limited to chunking
together existing event concepts; it cannot dis-
cover new concepts. However, much of human learn-
ing consists of similar chunking processes |3].
Third, the ASM is not as flexibly parameterized as
would be desirable. The detailed model allows the
user to change both object parameters and rules of
behavior [5]. The ASM trades flexibility and modi-
fiability for intelligibility and speed.
C+. Advantages of the ASM Approach

The ASM approach offers many advantages.
It can be generalized to simulation in practially
any domain. Any detailed simulation model can
provide a set of elementary events on which the
abstracted simulation can be based. Furthermore,
this approach does fulfill many of the goals of
abstracted simulation. It reduces computation,
saves resources, allows information filtering, and
generates aggregated, intelligible output.
Finally, this prototype-based scheme in many ways
it parallels the workings of human learning and
memory. Based on world experience, humans build up
prototypic event sequences that represent likely
occurrences, i.e., scripts or schemata [8). These
event sequence representations can be considered at

multiple levels of aggregation, e.g. scenes,
episodes, etc. (1) When asked to predict the
events that will occur in a specific situation,
humans will retrieve typical events in the order
they are likely to occur |[2). The ASM is not

intended as a serious model of human memory and
mental simulation. However, it may have heuristic
value in investigating these areas, as well as
practical value in improving simulation effective-
ness.

REFERENCES
|1) Abbott. V. and Hack, J.B."The Representation

of Scripts xn Memory". Yale University Cog-
nitive Science Technical Report #$, 1980

|12] Goldin, St "Script* and Mental Simulation".
Paper In preparation

(3) Hayes-Roth, |. "Evolution of Cognitive Struc-
ture* and Processes." Psychological Review.
1977, 4, 260-27%\

IM Kahn. KM. "Director Guide", A! Heex> 4S2B.
Massachusetts Institute of Technology 41
Laboratory, Cambridge. HA. 1f79.

|5] Klahr, P. and Faught. VS. "Knowledge-baaed
Simulation " InProc—dint*. first Annual
National Conference "on Artificial IntelUsance.
Stanford University, 1960.

|6) Unit. D , Hayes-Roth. F. and Klahr, P. "Cogni-
tive Econoaiy in Artificial Intelligence Syateae."
In Proceedinss UCAI»7e,

531-536

(7] McArthur, 0. and Sovitrel, H. MAn Object-
oriented Language for Constructing Simulations."
'" Proceedings UCAI-tI.

(0) Schank, R. and Abelton. R. Scripts. Plans.

Go,«U and Understanding Lawrence Erlbeue Associates, 1977.

