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As scientists interested in studying the phenomenon 
of "intelligence", we first choose a view of Man, 
develop a theory of how intelligent behavior is 
managed, and construct some models which can test 
out and refine that, theory The view we choose is 
that Man is a symbolic information processor The 
theory is that sophisticated cognitive tasks can be cast 
as searches or explorations, and that each human 
possesses (and efficiently accesses) a large body of 
info imal uiles of thumb {heinistics) which constrain 
his search The source of what we colloquially call 
"intelligence" is seen to be very efficient searching of 
an a priori immense space Some computational 
models which incorporate this theory arc described. 
Among them is AM, a computer program which 
develops new mathematical concepts and conjectures' 
involv ing them, A M is guided in this exploration by 
a collection of 250 more or less general heuristic rules. 
The operational nature of such models allows 
experiments to be performed upon them, experiments 
which help us test and develop hypotheses about 
intelligence. One interesting result has been the 
ubiquity of this kind of heuristic guidance: intelligence 
permeates everyday problem solving and invention, as 
well as the kind of problem solving and invention 
that scientists and artists perform. 

1 This work was supported in part by the Defense 
Advanced Research Projects Agency (R4620-73-O0074) 
and monitored by the Air Force Office of Scientific 
Research. 

Much of the behavior which we regard as "intelligent" 
involves some sort of discovery process.2 This is obvious 
for some of the the most creative and intellectually 
difficult human activities (identifying an unknown 
chemical compound, composing a new sonnet, deriving a 
new c.osmological model, conjecturing a new theorem, 
solving the NY Times crossword puzzle,...). We'll see 
that it's no less true for our everyday activities (cutting 
cheese, finding our way about Boston, solving the 
Pittsburgh Press crossword puzzle,...). 

1 • 1 • Mode l -Bu i ld ing in Scienee 

We in the field of Artificial Intelligence (AI) want to 
understand how its's possible to do such things, to 
understand the mechanisms of intelligence. To go about 
it scientifically, we must first propose some hypotheses, 
use the results of experiments to modify and develop 
them into a theory, and then embody that theory in 
several concrete, testable models. This is the paradigm 
of Science; it has great power, as we all know. 

In very "hard" sciences, objective data are available 
about isolated and relatively simple phenomena. This 
enables the construction of small yet quite rigorous, 
predictive models, using the language of mathematics 
(e.g., Maxwell's equations for electromagrietisrn). But in 
the so-called "soft" fields, the phenomena cannot be 
measured precisely, or are not so reproducible, or (as in 

2 Much of the rest of "intelligence" involves algorithmic 
solving of well-structured problems. That topic will not 
be emphasized in this paper. We take the position that 
"algorithms known and used by experts" is just a proper 
subset of "knowledge experts use to reduce search". 
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the case of human intelligence) cannot be easily isolated 
for study. The resulting models are usually only 
descriptive, and may often be presented in everyday 
prose (e.g., psychological theories of personality). 

Scientific models serve two functions: (i) to unify large 
masses of empirical data; and (ii) to predict new effects, 
which subsequently can be tested for by conducting 
experiments. The physicist's model (his set of 
equations) is better than the psychologist's model (his 
prose description) because he is able to draw on the 
power of established mathematics3 to make his model 
quantitatively predictive. 

What kind of model can we build for the phenomena of 
discovery and creativity? The more formal, 
mathematical models have the greatest potential 
predictive power, but humans seem just too complicated, 
sophisticated, and unpredictable for their behavior to be 
captured by a few equations. Planets and atoms behave 
in much more regular a fashion than do people. 

Is that the end, then? Are we forced to build purely 
descriptive models of creativity? Are we limited to 
sterile prose discussions about the mysteries of 
incubation and illumination (e.g., as in [Poincare' 1929] 
and [Polya 1954])? Can we draw only metaphorical 
pictures (e.g., as in the 'hooked atoms' image that 
Einstein reports by introspection [Hadamard 1945])? 
T h e answer, unti l quite recently, was unfortunately 
"Yes". 

1.2. Choosing an Approach in Science 

F.ach science is differentiated from the others not merely 
by the set of phenomena it claims as its object of study, 
but also by the approach it takes (the science's view of 
those phenomena; its paradigm [Kuhn 1970], if you 
will). 

So even though we've decided to study the phenomena 
of human intelligence (creativity, problem solving, etc.), 
we must still choose a view of Man. 

3 The power to solve analysis problems in closed form 
(e.g., to solve a differential equation simply by repeatedly 
manipulating it according to Known transformations), or 
the power to make approximations when necessary, or 
the power to somehow "run" the model (to "grind out" 
solutions to his equations). 

4 Attempts to formalize "soft" phenomena do go on 
continually, but the interpretation of the resultant 
rigorous mathematics is often a topic of heated debate (a 
current example is Catastrophe theory [Kolata 1977]). 

If we view Man as a Gestalt actor whose internal 
thought processes can't be investigated, then we are 
called "classical psychologists" and we study his external 
behavior. If we view Man as a brain, as a piece of 
hardware built out of neuions, then we're called 
"biologists" and we study rieuruphysiological responses 
(eg., by implanting electrodes) If we view Man as a 
machine, then we're called "cyberneticists", and we 
investigate mathematical piopertics of feedback 
networks of simple components. If we view Man as a 
collection of atomic particles, then were called foolish : 
this is too fine a "granularity" with which to investigate 
intelligence. 

Another view arose about twenty years ago, from three 
separate sources: engineering (Broadbent), 
psycholinguistics (Chomsky), and computer science 
(Newell and Simon). Man can be viewed as a symbolic 
information processor. If we adopt that view of Man, 
and are interested in the mechanisms of human memory, 
then we're called "cognitive psychologists". If we adopt 
that view and are interested in the mechanisms of 
human thinking, then we're "information processing 
psychologists". Finally, if we view Man as information 
processor only to learn more about problem solving and 
creativity, then we're working in the field of "Artificial 
Intelligence" 

1.3. The Foundation for Artificial Intelligence 

Suppose we view Man as information processor [Newell 
and Simon 1976], How can we construct some models 
of intelligence which are predictive rather than just 
descriptive? We might build operational models, which 
can exhibit whatever behavior our theory called for. To 
do this, we need to use a general purpose symbol 
manipulator, an automatic way to carry out each bit of 
information processing. 

5 Unlike the Brownian motion of atoms in a perfect gas, 
the fundamental information processes of intelligence are 
not random. 

No one view is "righl" or "wrong"; each is adopted 
because from it we can build a model, which in turn has 
some practical consequences and uses. When I'm ill, I 
want to go to a doctor who practices medicine based on 
Man as an animal, not Man as an economic agent. It is not 
productive to argue whether or not any specific view of 
Man is "correct", is "immoral", etc. At the present limited 
state of our understanding, any one view is bound to be 
simplistic and incomplete. On the other hand, we never 
capriciously adopt a view with impunity. It is the whole 
man who lives and reacts, even though we can only view 
him, first this way, then that. 
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A general purpose information processing system must 
provide (i) a way to specify what processing' gets clone 
when, (ii) a memory in which to store symbol 
structures, and (iii) an "engine" which can actually 
cause such processing to occur The science of Artificial 
Intelligence ("AI") sprang into being soon after the 
invention of one such computational engine, the general 
purpose electronic digital computer. In fact, AI is 
sometimes called "Machine Intelligence". 

Computational models of some task can be used directly 
to carry out (a simulation of) the modelled activity 
(composing- sonnets, doing astrophysics research, 
devising new ways to cut cheese, defining and 
investigating new concepts in mathematics, navigating 
this city, etc.). If our computer program does perform 
the desired task adequately, then we accept it as 
verification that our theory adecjuately explains one way 
in which intelligent performance at that task might be 
achieved. 

1.4. The Paradigm of AI Research 

We in A I have evolved the following paradigm: 
1) Choose some human cognitive activity (like playing 

chess, proving theorems, understanding spoken 
English), 

ii) Develop hypotheses and eventually a theory about 
what kinds of information processing could be 
taking place to produce such ability, 

i i i ) Incorporate that theory into a computer program, 
which serves as the model.8 That computer 
program is made to carry out the original 
activity, and the researcher can observe how well 
it does, 

iv) By experimenting with his program, he attempts 
to find out where the apparent "intelligence" is 
really coming from 

Over the last twenty years, we've hypothesized and 
tested scores of models, for several different sophisticated 

Symbol processing is not the same as mere data 
processing. A "universal Turing machine", e.g., is just a 
data processor, because the marks on its tape aren't 
symbols, they don't represent anything but themselves. 
It was some years after its discovery that the digital 
computer was perceived as a general symbol manipulator. 

8 AI deviates from cognitive psychology at this stage. 
Psychologists would run experiments on people, to see if 
they really do fit the theory. We in AI are more 
concerned with whether the programs containing the 
hypothesized mechanisms are capable of any sort of 
"intelligent" behavior — even if differs somewhat from 
human performance at that task. 

tasks. There have been many successes, and many 
failures - and we've learned much from thern. Some of 
these experiments will be described later (Section 3); for 
now, I just want to present a single, very central result. 

It turns out that we can model a surprising variety of 
cognitive activities (problem solving, invention, 
recognition) as a search or exploration, in which the 
performer is guided by a large collection of informal 
rules of thumb, which we shall call "heuristics". But 
what's really exciting is that not only can this single 
theory (intelligence as heuistic rule guided search) 
explain the behavior of the brainstorming math 
researcher and the wandering Boston visitor, but when 
we go off and build up such models in detail, we find 
that they can all contain more or less the same informal 
rules. 

Before trying to justify this result, let's notice two rather 
surprising consequences of it: 

(i) Every day, each of us is forced to - and does 
successfully - carry out a great deal of "creative 
research" just to deal effectively with our 
complicated world; 

(ii) There's a large component of non-formal, "plain 
common sense" knowledge that is necessary to do 
creative new work in lhe sciences or the arts. 

Now that you see where I want to take you, let's see how 
to get there. I'll have to spell out this "heuristic rule 
based search" theory of intelligence, convince you that it 
makes sense and that it can account for the way in 
which people perform such disparate tasks as solving 
the 8 puzzle and performing scientific research. Also, I 
must demonstrate that there is a large core of heuristics 
which is common to all such activities. 

2. HEURISTIC RULE GUIDED SEARCH 

2 .1 . The Theory 

There is a theory of intelligence lurking here, upon 
which some models - some computer programs - have 
been constructed. The theory goes something like this: 

1. Human cognitive tasks can be cast as searches, as 
explorations wandering toward some goal which 
is well- or i l l defined. 

2. We are guided in these searches by a large 
collection of informal rules of thumb: heuristics. 

3. We access potentially relevant heuristics in each 
situation, and either (a) select and then follow a 
single relevant heuristic, or (b) quickly "stitch 
together" some of the relevant ones, and then 
follow the "combined" advice. 
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That 's it.9 It sounds plausible; in fact, it sounds trivial. 
Yet the models which incorporate this theory are 
capable of simulating sophisticated behaviors at many 
tasks which one would suppose require intelligence: 
organic chemistry problem solving, organic chemistry 
research, chess playing, discovery of new math concepts 
and conjectures 

2.1.1 Intel l igence and Informat ion 

T h e theory contains two important implicit assumptions, 
which might be worth stating explicitly: 

> Man is viewed as a processor of symbolic 
information. 

> Man exhibits "intelligence" by his 
performance at various cognitive tasks. 

Let's take a moment to try to justify these -remarks, that 
intelligence has something to do with information 
processing. 

Twenty-seven years ago, Alan Tur ing [1950] rejected as 
meaningless the question "Can machines' think?". He 
replaced it with a game, called the Imitation Game (now 
commonly referred to as the Tur ing Test). One version 
of that game would go as follows: A human interrogator 
is placed in an isolated room A teletype exists in the 
room, and by using it he can communicate with a 
computer and with another human, both located in the 
next room. The interrogator asks them each some 
questions, and then must guess which is the human and 
which is the machine. If we can program the machine 
in such a way that it fools the interrogator into making 
the wrong identification at least 507. of the time, then we 
shall say that the machine (as programmed) is 
"intelligent". Many of you are familiar with this game. 
Now let me introduce you to a slightly different one: 

Thir teen years ago, Keith Gunderson [1964] rejected as 
meaningless the question "Can rocks thfnk?". He replaced 
it with a game, an Imitation Game. A human 
interrogator is placed in an isolated room A small hole 
exists near the bottom of the door, through which the 
interrogator can shove most of his foot. On the other 

9 Notice the conspicuous absence of the word 
"representation" anywhere in the theory. To.design and 
construct a model for this theory would entail grappling 
with representational issues, much as any running 
instance of an abstract algorithm must exist on some 
particular machine. But the validity and power of the 
theory are independent of representation, just as the 
validity and complexity of an algorithm are independent of 
which machine it's implemented on. 

side of the door are located a human and a rock. 
Sometimes the human will stomp on the interrogator's 
foot, and sometimes the rock will be dropped on it. The 
interrogator must guess which one is the human. If we 
can shape a rock in such a way that it fools the 
interrogator at least 507. of the time, then we shall say 
that the rock is "intelligent". 

Why does the dialogue test sound so much less silly, so 
much more indicative of intelligence, than the stomping-
test? Because unrestricted dialogue is open-ended; to do 
well at it requires a massive wealth of knowledge, 
experiences, cognitive abilities, emotions, and common 
sense. Unrestricted foot stomping requires none of these. 
In short, the first test permits genuine interrogation of 
information and information processing capabilities, 
while the second test doesn't. If you agree that the first 
test is genuine and the second one bogus, it must be 
because intelligence has something to do with 
sophisticated processing of massive quantities of 
infot mation. 

Thus it seems that the informal ion processing view of 
Man is an especially good one from which to study 
intelligence. Let's elaborate on it a bit more, and then 
go on and see what happens when one tries to build 
models based on it 

2.2, Some Examples 

Let's take a look at some heuristic searches that people 
perform, and in the process hopefully convey their 
universality, their ubiquity, and their power. We'll then 
be in a position to examine some specific Al models 
(computer programs) that they have built; this will be 
done in Section 3. 

2.2.1 Everyday Problem Solving 

Suppose we decide to plan a n ip from C M U to M I T . 
How can we find a good route to take? We will 
probably find a detailed road map and begin searching. 
We have some powerful rules of thumb which make our 
search very short, usually. We look for some main 
highways that will take us most of the way, and then do 
some "fixing up" around the termini (from C M U to the 
first highway, from the end of that stretch to the 
beginning of the next one,.., to MIT) . 

Th is is the heuristic of planning in an abstraction space: 
we take the original detailed map (our "search space") 
and simply ignore all but the biggest roads marked on 
it. Needless to say, this makes the map much simpler. 
We also assume that whenever two big roads go nearby 
each other, they do in fact connect, and that big roads 
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w h i c h go near to cities do in fart pass th rough them. 
N e x t , we solve the prob lem in this very small space 
(cal led the "abstract ion space"), Fimally, we use that 
so lu t i on as the skeleton of a real solution We may have 
a few more searches to pe r fonu (e.g., how do we realty 
get. f r o m the Boston exi t to the M I T campus itself) -
bu t not ice that al l these add i t iona l searches w i l l be 
sma l l , local ized f i x u p s to the skeleton solut ion Us ing 
the heur is t ic method of planning has reduced our 
search d ramat i ca l l y . 

T h i s b r ie f examp le has hopeful ly demonstrated how we 
can e x p l a i n eve iyday prob lem solv ing behavior in terms 
ot the "heur is t ic ru le sea i rh " theory of intell igence. 
W e ' v e seen a typical p rob lem, and explained how to 
mode l i t , how one could imagine even a computer being 
able to solve it: Cast it as a quest for a solution m some 
huge "search space", w i t h the searcher being heavi ly 
cons t ra ined by knowledge embedded in general 
common sense rules of t h u m b (hem islics). In the next 
subsect ion , we' l l show that the same k ind of analysis can 
e x p l a i n episodes of b ra ins to im ing ( in par t icu lar , the 
i n v e n t i n g some new k i tchen gadget). 

2 . 2 . 2 . Eve ryday I n v e n t i o n 

Suppose we're conf ronted w i th the fo l low ing prob lem: 
we're f o n d of eat ing cheese, but every t ime we cut it 
w i t h a k n i f e , it crumbles il we try to cut it very t h i n . 
We cou ld con t inue just cut t ing cheese the old way, but 
let's assume we try to design an improved tool We are 
n o w fac ing a search in an enormous space of 
poss ib i l i t ies . P>ut we have many in fo rma l rules of 
t h u m b w h i c h may help us 

1. Sometimes, there will be a good way (perhaps a 
recent invention) to do somothing, more general than 
what is str ict ly asked for. 

2. Consider what variables affect the success/failure of 
the current (inadequate) technique. Look for 
motivation at the extreme cases of the various known 
relationships involving those variables. 

3. Look carefully at what is truly wanted; maybe the 
problem can be completely bypassed; at least, 
perhaps it's over-specif ied. 

O n e of t h e m (*2) says to look for mot iva t ion at the 
extreme cases of var ious known relat ionships. T h e r e 
seems to be some re la t ionship between the thickness of 
the k n i f e and the thinness of the slices we can cut. So 
we m i g h t consider as an extreme the thinnest kn i fe 
possib le, just a kn i f e edge, and voila'. we've invented the 
w i r e cheese cutter. Or we might look at the extreme 
case of the re la t ion that says that most cheese can be cut 
t h i n n e r if it's softer. We may ask ourselves if we can 
get the cheese very soft; an extreme case of that wou ld 
be to get the cheese directly under the knife-edge 

comple te ly mo l ten ; and voila', we've invented the "hot-
k n i f e " ; p r o b a b l y Genera l Electric w i l l come out w i th one 
soon. 

No t i ce tha t the same heurist ic leads to several solutions. 
T h i s was but a t iny example of heuristic guidance in 
ac t ion . In real i ty , we possess many hundreds of 
heur is t ics . I nco rpo ra t i ng them into a computer model 
w h i c h cou ld then tirelessly apply them seems l ike a very 
p r o m i s i n g d i rec t ion to fo l low We' l l fol low i t in Section 
3 . Bear in m i n d , however, that invent ions are rarely 
m a d e w i t h l i t t le search. In the cheese cut t ing case, there 
m i g h t be many ways of app ly ing each heuristic, only a 
few of w h i c h are even remotely viable. 

It's w o r t h n o t i n g that both of the other heuristics m igh t 
be used, too, fo r th is s i tuat ion. T h e first one could have 
us look at recent invent ions which "cut": a laser for 
cheese sl ic ing? T h e t h i r d heurist ic might have us bu i l d 
a bet ter mouset rap: go in to business sell ing already 
sl iced cheese; or t ry to devise a "cheese press" that takes 
the c r u m b s and squeezes them together into slices. 

2.2.2.1 Jndging 'Intnrcstinfliioss* 

Let's p u t ou r theory to a most severe test, by asking 
w h e t h e r i t can account for our everyday judgments 
abou t w h a t is and isn't " interest ing". T h i s would seem 
to be the rea lm of i n tu i t i on , emot ion, taste, and 
aesthetics — the ant i thesis of logical empir ic ism 

If in fact there is a large "hormona l component" to such 
j u d g m e n t s , then it is not surpr is ing if they lie outside 
the power of any theory founded on a view of M a n 
w h i c h ignores that aspect of h im. So even a par t ia l 
success at e x p l a i n i n g "taste" in terms of heuristic rules 
w o u l d be a m a j o r t r i u m p h for the theory, showing i t 
h a d some relevance to these phenomena 

S u c h a p a r t i a l exp lana t ion is easy to f ind. Texts on the 
arts a b o u n d w i t h " ru les" o f composit ion. They analyze 
w o r k s in terms of symmetry, coincidence, recency, 
u n c o n v e n t i o n a l i i y , ha rmony , balance, ut i l i ty , associations, 
etc. A t yp ica l ru le m igh t say 

IF two apparently disparate, par is of the work arc suddenly 
recognized as being very closely related, 

THEN that increases the i n te re t i gncM; of both parts, and 
of the whole work as well. 

T h i s exp la i ns the eternal popular i ty o f the " recurrent 
t h e m e " in al l genres of l i terature and cinema. I t 
e x p l a i n s the impact of hav ing a single melody recur 
f r e q u e n t l y bu t w i t h s l ight differences each t ime ( the 
concept of "musica l var ia t ions") Dickens' success is due 
in no smal l measure to his mastery of this heurist ic (i.e., 
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"coincidence"): the reader is always astonished and 
pleased when two separate diameters are discovered to 
be one and the same person. The above heuristic also 
explains why (aside from cost) the hot-kiufe might be 
better received than the laser-knife (the consumer 
alrearly possesses hot combs, electiic blankets, electric 
knives,... so the hot knife would be instantly 
accommodated, with even a modicom of pleasure at the 
new bit of "closure" that had occurred in his world). 

2.2.3 S c i e n t i f i c P rob lem So lv ing 

Suppose we're designing a molecular genetics 
experiment, which will ultimately result in a certain 
biochemical end product. We must design a very long 
chain of steps (perhaps reaching into the thousands), 
each of the form "raise the temperature to x", "add the 
following" nucleotide...", etc 

The search for a successful solution (a path, a sequence 
of steps leading to the final product) is made much 
simpler when we're able to apply some heuristics. It's a 
common practice, for example, to ignore certain kinds of 
minor steps, and to concentrate on finding a relatively 
small sequence of important intermediate products. 
That is, we should first find a solution in a heavily 
restricted (hence small) space. Afterwards, we can "fix 
up" the connections between these steps (e.g., in case one 
of them must occur at 12° and the next must occur at 
25°) by adding many minor steps. We don't begin to 
execute the first step until this detailed sequence of steps 
is fully specified. We solved the problem by applying a 
general heuristic: planning. The basic technique of 
planning can be expiessed as follows. 

IF you arc lated with a search through a Iarge space of 
possible solutions;, and some aspects of each 
" intermediate stale" along the way to a solution are 
mote important than others. 

THEN try to ignore some of the delailed aspects of the 
problem, thereby simplifying i l . Solve the simpler 
problem, and t ry to extend that solution into a solution 
of the or ig inal hard problem. 

In the molecular genetics case, we chose to ignore such 
factors as the temperature at which a step must be 
carried out. The heuristic used is just the one we used 
in the previous subsection to find a route from C M U to 
M I T . There, we chose to ignore all minor roads on the 
map. Th is repetition is not accidental; it illustrates the 
commonality between everyday problem solving and 
scientific problem solving. The next section will show 
the similarity between everyday invention and scientific 
invention. And that's what we set out to show! 

2.2.4 Scientific Invent inn 

Suppose we're confronted with the following problem; 
we're fond of factoring numbers (e.g., 12=4x3), but often 
there are many little sets of factors that they crumble 
into (e.g., 12 crumbles into the following four sets: {1,12), 
{1,2.6), {1,3,4}. {1,2,2,3}). We may be content with this 
situation, or we may try to improve it in some way, or 
we may wish merely to find out more about factoring. 

The latter two options both involve searches in 
enormous spaces (looking for a new kind of factoring; 
looking for new facts about factoring). But we have 
many rules of thumb to help us, including the three 
rules which were displayed in Section 2 22. 

One of them («2) says to look for motivation at the 
extreme cases of various known relationships. The 
relation in this case is "Divisors of". It maps a number 
into a set of numbers (e.g., Divisors of(I2) 
{1.2.3.4.6,12}). An extreme case would be when it 
mapped a number into an extreme kind of set - say a 
singleton, doubleton, or empty set. In other words, 
consider the-set of numbers with no divisors, with one 
divisor, and with two d.ivi.sois. Voila, we've invented 
prime numbers. Notice that we used the very same 
heuiistic (#2 in Section 222) that Jed earlier to the 
invention of the wire cheese cutter and the hotknife. 

2.2 4.I Judging' In i t iest ingness' 

Even allowing that the "heuristic rule guided search" 
theory could account for the discovery of prime numbers, 
could it also explain how a researcher might have 
noticed that they were valuable, interesting, worth 
naming, and worth remembering? 

Let's look at how the following three heuristic rules 
could lead to the conclusion that "Primes" is interesting, 
soon after it had first been defined. 

IK specializations of conccpl 0 have just been created, and 
the current task is to find examples of eaeh of them, 

T H K N one rnetliod is to look over I lie known examples of C; 
they may he examples of some of the new specialized 
eoneepls as well. 

IK all examples of a concept C, turn out to be examples of 
another concept D as well, and C was not previously 
known to he a specialization of D, 

T H K N conjecture that C is a specialization of D, and raise 
the "interestirifti icss" value o| hnl.lt concepts. 

IK all examples of a concept turn out to he in the domain of 
a rarely-applicable function K, 
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TH KN i l 's w o r t h compuing al l their K-values (their images 
u in l r r llto (m i l l i on I"), ami Minlying lltal roller! ion of V 
values as a Kcparnlr concept. 

Suppose we've just defined the set of numbers wh ich 
h a v e no d iv i so rs , the set of numbers wh ich have only 
one d i v i s o r , on ly two d iv isors, only three-div isors. T h e 
lust of the three heurist ics tolls us a quick way to find 
examp les of those new special k inds of numbers: look at 
the k n o w n examples of numbeis , say the integers f r om I 
to 1000, and d u m p each one into whichever new 
specia l ized set(s) it belongs. If we do th is , we get the 
fo l l ow ing ; emp i r i ca l results: 

Numbers with no divisors: (none found) 
Numbers with I divisor: 1 
Numbers with 2 divisors 2, 3, 5, 7, 11, 13, 17, 19, ... 
Numbers with 3 divisors: 4, 9, 25, -19, 121, 169, 289, ... 

We can then apply the second heuristic: to each set of 
n u m b e i s , to see if it's interesting. In this way, we'll 
not ice tha t the last set, numbeis w i th three div isors, are 
al l per fect squares. Heur is t ic #3 directs us to take then 
square roots. Lo and behold t l iey ' ie piecisely the t h u d 
set of n u m b e r s (i.e., numbers w i th two div isors; i.e. 
p r imes ) Heur i s t i c #2 notices this, and drastical ly 
increases the interesl in^ness values .of both Nos-wi th-3-
d i v i s o r s and Pr imes. 

So we were able to f i t th is k i nd of judgmenta l evaluat ion 
of " in tercst ingness" in to the same theory. Notice that 
the heur is t ics above are actually qu i te general: they (or 
at least analogues of them) can be used to evaluate 
w o r k s of art and new mechanical gadgets, as well as to 
eva lua te new mathemat ica l definit ions. We saw the 
ana logue of heur ist ic #2 used before, in Section 2 2 2 1 , 
to he lp judge the intetestingness of A Tale of Two Cities 
and of a new k i n d of cheese cutter. O the r analogous 
heur is t ics , w h i c h favor var ious k inds of "closure" are 
used in al l sciences (e.g., consider the popular i ty of 
" c h a r m " , even before the conf i rming discovery of the D-
meson [R i ch te r 1977]). Par t ia l de-mystif ication of such 
p h e n o m e n a as i l l u m i n a t i o n , incubat ion, aesthetic taste, 
etc., is one va luab le result of this k i nd of AI research. 

3. MODELS 

Let me now describe a few landmark computer 
p r o g r a m s tha t have been wr i t ten , models based on the 
t heo ry of intel l igence as heurist ic rule guided search. 

10 In the terminology of that section, the two "disparate 
p a r t s " we re "numbers-wi th -2-d iv isors" and "numbers-
w i t h - 3 - d i v i s o r s " . 

T h e s e p rog rams f o r m but a t h in sliver of the work that 
has gone on under the label of "Ar t i f i c ia l Intell igence". 1 
don ' t wan t to distract f r om the themes of this talk by 
ca ta log ing ( l ie var ious efforts; a gl impse at the table of 
contents of th is conference's proceedings wi l l g ive you a 
p i c t u i e of then scope. 

3 . .L L T a n d G P S : G e n e r a l P r o b l e m So l v i ng 

P r o b a b l y one of the earliest AI p iograms wri t ten was 
the Log ic Theo r i s t ( " I T " , to its fr iends) [Newel l , Shaw, 
and S i m o n 1957] It was repeatedly g iven symbolic logic 
theorems f r o m P i h u i p i a Mathematica, and its task was 
to f ind a f o r m a l p roo f of each theorem LT had some 
g i v e n ax ioms and rules of infe ienre. To search for a 
p roo f , in a completely exhaust ive, systematic manner, 
w o u l d be qu i te an under tak ing ! But LT had a few 
heur is t ics w h i c h constrained its search: 

"...selecth/e pr inciples that enable solutions to be 
f o u n d af ter examin ing only a relatively t iny 
subset of the set of possibilities. One such 
p r inc ip le — i l lustrated by the methods in the 
Logic Theorist - is to Renerate only elements of 
the set that are already guaranteed to possess at 
least some of the properties that define a 
so lu t ion. Another pr inc ip le -- i l lustrated by the 
ma tch ing process in LT -- is to make use of 
i n f o r m a t i o n obtained sequentially in the course 
of generat ing possible solutions in order to guide 
the con t i nu ing search. A th i rd pr inciple --
i l l us t ra ted by the use of s imi lar i ty tests in LT --
is to abstract f r om the detai l of the problem 
expressions and to work in terms of the simpler 
abstract ions." 

- [Newel l and Simon 1972]. p. 137. 

A f t e r they learned the power of heuristics f rom L T , the 
same g r o u p of researchers then worked on a p rogram 
cal led G P S , for Genera l Prob lem Solver. Its a im was to 
embed the above heurist ics in a domain independent 
f o r m , one not t ied to so lv ing any part icular problem, the 
way tha t LT was t ied to proposi t ional calculus I t was 
h o p e d that any p rob lem could be representee] in the 
G P S f o r m a l i s m , and hence solved by GPS. G P S 
con ta ined a few new heuristics: 

1. Means ends analysis: T a k i n g differences (between 
t h e - c u r r e n t state and the desired goal), locat ing 
opera to rs re levant to reducing those differences, 

AI includes such disparate pursuits as machine 
pe rcep t i on (speech understanding, image parsing,...), 
natura l language understanding, novel ways to represent 
Knowledge, novel ways to control the attention of the 
computer , and ways to transfer some of what's been 
learned into improved teaching methods for people. 
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and applying those operators. Note that this 
heuristic guides forward search toward a goal. 

2. Setting up subgonls, especially subgoals of the form 
"GPS wants to apply operator X, so X's 
preconditions must becomr satisfied (True)". This 
heuristic is equivalent to the idea of problem 
ieduction, to divide and conquer strategies, etc. 

3. Work on the most difficult of the subproblerns first. 
T r y to reduce the most important difference first. 

4. Planning in an abstraction space. Systematically 
ignore some kind of details in the original 
problem. This results in a much smaller search 
space, m which a solution can be more readily 
found. This solution is then used as a guide to 
finding a solution in the original, huge search 
space. 

I el's say a few more words about that last heuristic, 
planning, and how it was used when GPS was set to the 
very same task which LT had al tempted: propositional 
calculus theorem proving. What GPS did was to take 
all the axioms, rules of inl'eience, and the desired 
theorem, and then simply remove all the logical 
connectives from them. Thus the modus ponens rule of 
inference would be transformed from "from 'P' and 'P 
implies 0', conclude '()'" into this more abstract form: 
"from 'P' and 'POJ, conclude 'Q" This would sometimes 
produce fallacious proofs, or proofs with missing steps, 
etc., but by and large it was quite cost effective, allowing 
the rapid solution of many otherwise intractable 
pioblerns. After the planning process was over, there 
would still have to be some "fixing up" of the details 
between steps; this was also what we observed for route 
planning and for molecular genetics experiment 
planning, 

A decade or two of research has shown that, yes, a large 
array of problems can be cast in terms that GPS can 
deal with (states, operators, difference tables), but no, 
GPS' general heuristics just aren't powerful enough to 
solve problems as difficult as can be tackled by humans. 

3-2. DENDRAL: Scientific Problem Solving 

T h e next giant step along the line of development we're 
fol lowing was taken by Ed Feigenbaum and Joshua 
Lederberg [Lederberg 1964], soon to be joined by Bruce 
tUichanan [Buchanan et al 1969]. They ' * recognized 
what was lacking: expertise. Humans had to train in 

l* At about the same time, Joel Moses independently 
arrived at the same conclusions. He developed an expert 
program for the task of symbolic integration [Moses 
1967]. 

specialized fields for quite a while before tbey were able 
to solve any hard problems in them. This phenomenon 
ought not just be a reflection of human brain frailties, it 
might indicate a necessary requirement for intelligent 
problem solving in a complex knowledge rich domain. 

in 1965 they conceived a new computer program, and in 
the process a whole new appmach for A l : they were 
wi l l ing to commit then program to working on a very 
specific kind of problem - in their case, the enumeration 
of atom bond graphs of organic molecules {based on 
analysis of mass spectrograph data and nuclear mass 
resonance data). They built their program, DENDRAL, 
around a body of heuristics -- not just a few, but a few 
tens of heuristic rules. Some of them were as general as 
the rules that LT had, but most of them were domain-
specific informal rules of rhumb which they extracted 
from chemists (including some of the top experts in the 
field). These new heuristics were task-dependent: they 
won't work equally well for identifying images as for 
identifying unknown compounds; they were specific to 
the field of mass spectroscopy. Even more important 
than their specificity is then power: they constrain the 
searching tremendously.' * 

The success of this research confirmed some of the 
conclusions of Newell, Shaw, and Simon: the tradeoff 
between generality and powei, the importance of 
heuristics for guidance Feigenbaum, Lederberg, and 
Piiichanan were will ing to tap some of the "power" that 
humans need for.specific technical tasks. 

3.3. AM: Scientific .Invention 

We now jump to quite recent research, by the author. 
T h e next step in the progression we're chronicling 
involved collecting hnuheds of heuristics, used in some 
very difficult task, on the frontiers of what humans can 
perform. In this case, the task chosen was that of 
discovering interesting new concepts in elementary 
mathematics, that of scientific theory formation, of open-
ended research This is scientific invention, as compared 
to Dendral, which performs scientific problem solving. 

The size of the space to be searched is greatly 
reduced, hence searching will take much less time. Thus, 
heuristics (which serve to constrain) are equivalent to 
power (more efficient searching). 

This is not the "inductive vs. deductive" issue: both 
Dendral and author's program, called AM, performed quite 
inductive tasks. The difference was that Dendral was 
given specific problems to solve (specific mass spectra to 
identify), whereas AM's activities were open-ended 
research, with no particular goal specified. 
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AM's heuristics guided it to make promising new 
definitions, explore those new concepts, and judge the 
interestingness of its discoveries AM noticed 
connections between concepts, and was thus a theorem 
proposer, but it had no theorem proving abilities 
whatsoever. A different set of heuristics would be 
required if AM were supposed to prove any of the 
conjectures it proposes Making the necessary 
definitions to notice the fundamental theorem of 
arithmetic (numbers factor uniquely into primes) is quite 
a bit different (more ill-de.fmed, more sophisticated) than 
proving it once you've conjectmed it. 

3.3.1 Math Discovery as Heuristic Rulc-Cuided Search 

The task which AM performs is the discovery of new 
mathematics concepts and relationships between them. 
The simple paradigm it follows for this task is the one 
specified by our theory (in Section 21): 

1. The activity of open-ended math research is 
viewed as a search, an exploration in a space of 
partially-developed concepts. The goal of this 
search is ill-defined; it is to maximize the 
interestingness value of what's being worked on 
at the moment. 

2. AM is guided in this process by a collection of a 
few hundred heuristic rules. They are relatively 
general rules of thumb which guide it to define 
and study the most plausible thing next. 

3. In each situation, AM accesses potentially relevant 
heuristic rules, finds which of them are truly 
relevant, and then follows them. 

For example, AM possessed a rule of the form "If f is 
an interesting relation, Then look at its inverse". This 
rule fired (was relevant and was actually followed) after 
AM had studied "multiplication" for a while. The rhs 
(r ight hand side, T H E N - part) of the rule directed AM 
to define and study the relation "divisors-of (e.g., 
divisors of( 12) - {1,2,3,16,12}). Another heuristic rule 
which later fired said " / / / is a relation from A into Bt 

then it's worth examining those members of A which map 
into extremal members of B'\ This is a specialized 
version of our old friend, rule *2 from Section 2.2.2. In 
this case, f was matched to "divisors-of", A was 
"numbers", B was "sets of numbers", and an extremal 
member of B might be, e.g., a very small set of numbers. 
Thus this heuristic rule caused AM to define the set of 
numbers with no divisors, the set of numbers with only 
1 divisor, with only 2 divisors, etc. One of these sets (the 
last one mentioned) turned out subsequently to be quite 
important; these numbers are of course the primes (as 
we saw in Section 224). The above heuristic also 

directed AM to study numbers with very many divisors; 
such "highly composite" numbers were also found to be 
interesting (by A M , by the author, and by professional 
mathematicians) Heuristics like those in Section 2.2.4.1 
quickly led AM to boost the "interestingness" rating of 
the Primes concept. 

3.3.2 Representation of Mathematical Knowledge 

What exactly does it mean for AM to "have the notion 
of" a concept? It means that AM represents that 
concept somehow, that there is a data structure of some 
kind which is meant to correspond to, and contain 
information about, that concept. While the entire issue 
of representation of knowledge lias been de-emphasized 
in this paper, it is helpful to glance at how one typical 
concept looked after AM had defined and explored it: 

N A M K : Prime Number*, Primes, Numl»ers-u'itli-2- Divisors 
D K F I N I T I O N S : 

O R I G I N : NiiMil>ei-of-«liv.sor*~of(x) - ?. 
PRKI>.-GAI,0|II,1IS: PrimeU) * (V./.)(/|x -> z=l XOH /,«x) 
I T K R A T I V K : (for x>l): Kor i from 2 to x - 1 , -(.|x) 

KX AM P ITS : 2, 3, .r>, 7, 11, 13, 17 
BOUNDARY: 2, 3 
l U H I N D A K Y - T A I I T K K S : 0, 1 
KA1UIKKS: 12 

C K N K R A U Z A T I O N S : Niunhers, Numbers with an even 
no. of divisors, Ni imlx is with a prime no. of divisors 

SPECIAL IZAT IONS: Prime, pairs, Prime uniqiielv-addablrs 
C.ON.JKC'.S: Unique faelorr/.at ion, Coldbaeh's conjecture 
ANALOGIES: Maximally-divisible number* are 

converse extremes of Divisors-of 
I N T E R E S T : ConjecV ty ing Primes lo Times, lo Divisors-of, 

and to other closely related operations 
W O R T H : 800 

The representation of a concept is as a collection of 
facets, each of which can have some associated value. 
For example, the value of the Worth facet of the Primes 
concept is 800. Another sample concept, "Sets", is 
presented earlier in these proceedings, in Section 2.1 of 
[Tcnat 1977], 

3.3.3 Flow of Control 

AM is init ial ly given a collection of 115 core concepts, 
wi th only a few facets (i.e., slots) filled in for each. AM 
repeatedly chooses some facet of some concept, and tries 
to fill in some entries for that particular slot. Thus a 
" job" for AM is simply to engage in a mini-research 
project, to commit a simple act of discovery. Its overall 
task — to discover interesting concepts and conjectures — 
is accomplished as a composition of hundreds of these 
repeated attempts at little discoveries. To decide which 
small job to work on next, AM maintains an agenda of 
jobs, a global queue ordered by priority. A typical job 
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is "Fill4n examples of Primes". The agenda may 
contain hundreds of such entries. AM repeatedly selects 
the top job from the agenda and tries to carry it out. 
Th i s is the whole control structure! Of course, we must 
still explain how AM creates plausible new jobs to place 
on the agenda, how AM decides which job will be the 
best one to execute next, and how it carries out a job. . 

A heuristic rule is relevant to a job if and only if 
executing that rule brings AM closer to satisfying that 
job. Potential relevance is determined a priori by where 
the rule is stored. A rule tacked onto the Domain/range 
facet of the Compose concept would be presumed 
potentially relevant to the job "Fill in the Domain of 
Sort olnseit". The left hand side (IF- part) of each 
potentially relevant rule is evaluated to determine 
whether the rule is truly relevant. 

Once a job is chosen from the agenda, AM gathers 
together all the potentially relevant heuristic, rules - the 
ones which might accomplish that job. The truly 
relevant ones are executed (followed), and then AM 
picks a new job. While a rule is executing, three kinds 
of actions or effects can occur: 

(i) Facets of some concepts can get filled in (e.g., 
examples of primes may actually be found and 
tacked onto the "Example*" facet of the "Primes" 
concept). 

(ii) New concepts may be created (e.g., the concept 
"primes which arc uniquely representable as the sum 
of two other primes" may be somehow be deemed 
worth studying). 

(iii) New jobs may be added to the agenda (e.g., the 
current activity may suggest that the following-job is 
worth considering: "Generalize the concept of prime 
numbers"). 

T h e concept of an agenda is certainly not new: 
schedulers have been around for a long time. But one 
important feature of AM's agenda scheme is a new idea: 
attaching - and using -- a list of quasi-symbolic reasons 
to each job which explain why the job is worth 
considering, why it's plausible It is the responsibility of 
the heuristic rules to include reasons for any jobs they 
propose. 

AM uses each job's list of reasons in three ways: 
I. When a job already on the agenda is re-suggested, 

the supporting reasons are examined: If the job is 
being proposed for a new reason, then its priority 
(and hence its position on the agenda) will be 
raised; but if the job is being proposed for an 
already-recorded reason, then it's priority rating 
won't change. 

2 Once a job has been selected, the quality of the 
reasons is used to decide how much time and 

space the job will be permitted to absorb, before 
AM quits and moves on to a new job. 

3. To explain to the human observer precisely why 
the chosen (current) job is a plausible thing for 
AM to concentrate upon 

Each of AM's 250 heuristic rules is attached to the most, 
general (o» abstract) concept C for which it is deemed 
appropriate. The relevance of heuristic rules is assumed 
to be inherited by all C's specialisations. For example, a 
heuristic method which is capable of inverting any 
relation wil l be attached to the concept "Relation"; but it 
is certainly also capable of inverting any permutation. If 
there are no known methods specific to the latter job, 
then AM wil l follow the Generalisation links upward 
f rom Permutation to rejection to Function to Relation..., 
seeking methods for inversion. Of course the more 
general concepts' methods tend to be weaker than those 
of the specific concepts 

In other words, the aggregate of the 
Generalization/Specialisation relationships among the 
concepts induces a similar graph structure upon the set 
of heuristic rules. This "inheritability property" permits 
potentially relevant rules to be located efficiently. 

3.3.4 Behavior of this Rule System 

AM began its investigations with scanty knowledge of a 
hundred elementary concepts of finite set theory. Most 
of the obvious set-theoretic concepts and relationships 
were quickly found (e.g., de Morgan's laws; singletons), 
but no sophisticated set theory was ever done (e.g., 
cliagnnalizatinn). Rather, AM discovered natural 
numbers and went off exploring elementary number 
theory. Arithmetic operations were soon found (as 
analogs to set-theoretic operations), and AM defined 
such concepts as prime pairs, Diophantine equations, the 
unique factorization of numbers into primes, and 
Goldbach's conjecture. Many concepts which we know 
to be crucial were never15 uncovered, however: 
remainder, gcd, greatcr-than, infinity, proof, etc. 

15 AM did not run forever (despite what anybody at 
SUMEX tells you). All the discoveries mentioned were 
made in a run lasting one rpu hour (Intorlisp+100k, 
SUMEX PDP-10 KI). Two hundred jobs in toto were 
selected from the agenda and executed. On the average, a 
job was granted 30 cpu seconds, but actually used only 
18 seconds. For a typical job, about 35 rules were 
located as potentially relevant, and about a dozen actually 
fired. AM began with 115 concepts and ended up with 
three times that many. Half of the synthesized concepts 
were technically termed "losers" (both by the author and 
by AM). 
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Although AM fared well according to several different 
measures of performance (see Section 7.1 in [Lenat 
1976]), it had some difficulties. As AM ran longer and 
longer, the concepts it denned were furthei and further 
f rom the primitives it began with; while the general set-
theoretic heuristics were technically valid for dealing 
with primes and arithmetic, they weie simply too 
general, too weak to guide effectively. The key 
deficiency was the lack of adequate mcla rules [Davis 
1977]: heuristics which cause the creation and 
modification of new heuristics. We are attempting to 
remedy this in EUR IS KG (see Section 3.4). 

AM did demonstrate that scientific theory formation (the 
defining and exploring of new concepts and 
relationships) could be mechanized, could be modelled as 
heuristic rule guided search, using a few hundred 
heuristics for guidance. This is a significant verification 
of the theory of intelligence presented in Section 2.1. 

3.-4. Other Heuristic Rule Guided...ExportJProfirams 

There are several programs like AM in existence, 
knowledge based expert programs which perform under 
the guidance of a large collection of heuristic rules. 

> The M Y C I N program [Aikms 1977] [Shortliffe 1974] 
contains a couple hundred judgmental rules which 
were extracted from physicians, and it uses them to 
make diagnoses of various blood and meningitis 
infections 

> TF.IRES1AS [Davis 1977] uses "meta-lcvcf knowledge 
rules to aid a human expert in transferring his 
knowledge to a program. Its initial task has been to 
assist physicians in adding new rules to MYCIN. 

> M O L G E N [Mart in et .al 1977] attacks the molecular 
genetics experiment-planning problem discussed 
earlier (in Section 22.3) 

> M E T A - D E N D R A L [Buchanan and Mitchell 1977] is 
a theory formation program which looks over mass 
spectra and then correct identifications, and then 
abstracts that data into new fragmentation rules, new 
pieces of mass spectroscopy theory. These rules are 
then usable by the Dendral program, as if they had 
been extracted from a human expert. 

> T h e PECOS program [Barstow 1977] contains rules 
about computer programming, and is a key 
component in an automatic programming system. 

> U T - I T P [Bledsoe and Tyson 1975] is a natural 
deduction system, guided by a collection of 
judgmental rules useful when constructing formal 
proofs. 

> The PROSPECTOR program [Duda et al 1977] 
performs geological analysis of aerial photographs, 
aiding a human expert in the evaluation of the 
mineral potential of exploration sites. Tts rules were 
gleaned from geologists, much as MYCIN'S were from 
physicians. 

> The M-Method program [Zaripov 1975] for 
improvising variations on a given melody is based 
around a body of musicology rules. 

> PUFF is a medical expert program, much like 
M Y C I N in design, whose field of expertise is 
pulmonary disorders. "Everything PUFF knows 
about pulmonary function diagnosis is contained in 
(currently) 55 rules of the IF..THEN... form." 
[Feigenbaum 1977] 

> The E U R I S K O program [Lenat et al 1977] is 
perhaps the most ambitious effort yet along this line, 
attempting to discover new heuristic rules in the 
domains it investigates. It is "ambitious" because 
even professional scientists are very poor at 
formulat ing - or even recognizing - new 
heuristics.16 EURISKO's method for discovering and 
developing heuristics is simply to not distinguish 
between concepts and heuristics; i.e., each heuristic is 
represented internally as a full-fledged concept. So, 
e.g., any heuristic which can advise when it's time to 
generalize or forget any concept, can also 
automatically tell when it's time to generalize or forget 
any heuristic. Any method for creating a new concept 
out of old ones can be used to create new heuristics 
out of old ones. Evaluating the new heuristics is 
done just like evaluating any new concepts: by 
observing them in action, by gathering empirical data 
about them. 

Often, discovering a single powerful heuristic can 
trigger a scientific revolution [Kuhn 1970] (e.g., Einstein's 
discovery of the heuristic "counterintuitive mathematical 
systems might have physical reality" led to a relatively 
important new paradigm in physics not too long ago. 
"Counterintuitive mathematical systems may be consistent 
and interesting" led to a parallel revolution in geometry 
f i f ty years earlier. 
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