
LESS THAN GENERAL
PRODUCTION SYSTEM ARCHITECTURES1

Douglas B. Lenat and John McDermott
Carnegie-Mel lon University

Pi t tsburgh, PA 15213

Abstract

Many of the recent expert rule-based systems
[Dendra l , Mycin, AM, Pecos] have architectures that
d i f fe r s igni f icant ly f rom the simple domain-
independent archi tectures of "pure" product ion
systems. The purpose of this paper is to explore,
somewhat more systematically than has been done
be fo re , the various ways in which the simplicity
const ra in ts can be relaxed, and the benefits of doing
so. The most significant benefits arise from three
sources: (i) the grain size of a typical rule can be
increased unti l it captures a unit of advice which is
meaningful in that system's task domain, (ii) the
i n te rp re te r can become accessible to the rules and
thus become dynamically modifiable, and (iii)
meaningful permanent Knowledge can be stored in
data memories, not just wi th in productions. Although
the re are costs associated wi th relaxing the
s impl ic i ty constraints, for many task domains the
benef i t s ou twe igh the costs.

1. Introduction

Most AI programs employ "search" in some form. Our
ear l ies t exper iences [t ranslat ion; chess] taught us the
f u t i l i t y of unconstra ined searching. Since that time, AI
resea rche rs have exper imented wi th various methodologies
fo r l imi t ing search. Some of these [Nilsson, 1971] have
been externally imposed procedures: small programs that
he lp to d i rec t an otherwise-unconstra ined search (e.g.,
heur is t ic eva luat ion functions that guide the expansion of
nodes in a search t ree ; alpha/beta cutoff detectors in an
and /o r game t ree) . Another approach has been to scrap
the search t ree paradigm ent i re ly and to program in such a
way that search is inherently constrained. One such
technique is to use a ne twork of semantically related nodes
(e.g., Woods' ATN). Another is to encode the program as a
p roduc t ion sys tem (PS).

One of the ear l iest uses of product ion systems in AI was
by Newell [1 9 7 3] . The archi tecture that he proposed and
that has since been emulated by several researchers has

This work was supported in parl by tht Defense Advanced Research
Projects Agency (F44620-73-C-0074) end monitored by tht Air Force
Office of Scientific Research

the fo l low ing familiar components: (i) a single product ion
memory containing an indef ini tely large number of
p roduc t ions (condi t ion/act ion rules) in which all of the
sys tem's permanent knowledge is encoded; (ii) a single
data memory (called work ing memory) containing assertions
that are in the process of being assimilated or modified by
the sys tem; and (iii) an in terpre ter that repeatedly
matches the condit ions in each product ion against the
asser t ions in data memory, selects f rom the set of sat isf ied
p roduc t ions one product ion to f i re , and then executes the
act ions spec i f ied in that product ion.

The basic appeal of product ion systems is that they
cons t ra in search in a context-dependent (one might say
"na tu ra l ") way. A product ion's conditions are satisf ied if
and on ly if its actions are likely to be relevant to the
cu r ren t s tate of the wor ld (as represented in data
memory) . The in te rp re te r , in order to select a product ion
to f i r e , has only to search among pieces of knowledge that
are poss ib ly re levant at that moment. This is what we
meant ear l ier when we indicated that PSs do not fol low the
"exp lo r ing a search space" paradigm; rather, they car ry out
myr iad small paral lel searches, f i rst for relevant pieces of
know ledge , then for the most promising one of these to
use.

Var ious const ra in ts on the product ion system archi tecture
(impl ic i t in the descr ipt ion above) were imposed by
expe r imen te rs in order to insure that it would be
su f f i c ien t l y general to enable a PS to able to behave in a
reasonab le fashion in any domain. Much of the current
w o r k in AI is focused on the development of large,
know ledge -based systems which are expert in one ve ry
soph is t i ca ted -- but also very specialized — task (e.g.,
iden t i f i ca t ion of mass spectrograms, anti-microbial therapy
se lec t ion , speech understanding, etc.). One way of
encod ing knowledge in such systems is as a col lection of
p a t t e r n - i n v o k e d ru les, and thus the product ion system
a rch i t ec tu re appears to be a viable candidate for
s u p p o r t i n g such systems. But is the domain-independent
arch i tec tu re descr ibed above the best product ion system
a rch i tec tu re to use for such systems?

It has become obvious wi th in the last few years, we think,
that it is not. Empirical just i f icat ion for this conclusion is
p r o v i d e d by the recent development of what have been

Histor ica l ly , the constraints were imposed so that a
p roduc t i on sys tem would be able to simulate the cognit ive
behav io r of humans — who, at least purpor ted ly , are able
to behave in a reasonable fashion in all domains.

Languages & Systems-2: Lenat
928

cal led ru le -based inference systems [Feigenbaum, 1971 ;
Buchanan, 1974; Short l i f fe , 1974; Davis, 1976; Lenat, 1976;
McCracken, 1977; Barstow, 1977; Duda, 1977]. Most of
these systems are closely related to production systems:
they d iv ide the wor ld into data and condit ion/act ion rules,
and make use of an in terpreter that repeatedly matches
ru les against data and then executes the actions of one or
more of the rules whose conditions are satisfied. But
because each of these systems was designed for a single,
w e l l - d e f i n e d task, it was unnecessary for their designers
to impose all of the constraints on the form of data
memory , p roduct ion memory, and the interpreter that are
found in most domain-independent systems. The purpose
of th is paper is to explore, somewhat more systematically
than has been done before, the ways in which these
domain- independent constraints can be relaxed, and the
impl icat ions of doing so4.

2. Data Memories

Domain- independent architectures, though they limit the
number of elements in data memory (DM), allow those
e lements to be arb i t rar i ly complex. Consequently, the
amount of knowledge that can be stored in DM is
theore t i ca l l y unl imited. However, other constraints placed
on these archi tectures make it very diff icult to use DM as
any th ing but an intermediate memory containing rather
s imple assert ions. The memory is forced to be
in te rmed ia te (ephemeral , temporary, "working") because no
data element can be linked direct ly to any other data
e lement ; their only relat ionship is that they have been
depos i ted in DM by productions sensitive to the current
con tex t . The data elements are forced to be simple
asser t ions because no operations on data sub-elements are
p e r m i t t e d unless those sub-elements have been matched
by the condi t ion part of a product ion and because all of
the opera t ions per fo rmed on these structures must be
ind icated expl ic i t ly in productions (except for a few
opera t ions that are per formed indiscriminately by the
i n t e r p r e t e r on all elements).

These res t r ic t ions can be weakened by (i) permitt ing many
separa te DMs to exist, each defined by a distinct set of
p r im i t i ve operat ions that can access and modify it, and (a)
a l lowing some DMs to contain statically interrelated
e lements . Thus DMs could be of two types. Some could
ho ld permanent knowledge and thus would have a
s igni f icance similar to product ion memory (the set of
p roduc t ions) , but their s t ructure as well as their content
cou ld convey informat ion. Other DMs could be working
(in te rmed ia te) memories; that is, they would serve the same
focus ing func t ion that the lone DM serves in domain-
independent archi tectures.

3 For a discussion of how the nature of the "mathematical
d i s c o v e r y " task inf luenced the design of AM, see [Lenat &
Harr is 1977] .

For a discussion of the various dimensions along which
ex is t ing p roduc t ion systems di f fer, see [Davis & King
1975] .

The mot ivat ion for mult iple DMs is that certain tasks can be
v i e w e d most natural ly as developing and enlarging a body
of dec lara t ive knowledge. Consider a PS that is to discover
new mathematics, or one that is to do research in organic
chemis t ry . Such a system might have two DMs, one
conta in ing highly in ter - re la ted domain-dependent facts
(rep resen t ing the exist ing theory) , the other containing an
eve r -chang ing set of goals for augmenting the permanent
knowledge s tored in the first DM. There are at least two
gains in using mult iple DMs. First, since each DM has its
o w n set of p roper operat ions, modifications to the data
base can be speci f ied at a higher, more natural level (and
in some cases need not be specif ied at all). Secondly,
because the relat ionships among pieces of knowledge in
DMs cor respond to relationships in the task domain, the
sys tem's DMs are statical ly intell igible.

There are, of course, some negative consequences that
resul t f rom not s tor ing all permanent knowledge wi th in the
p roduc t ion rules. In part icular, knowledge wi th in
p roduc t ions is d i rect ly pat tern- invokable, while knowledge
w i t h i n a DM is not. Hence, some processes will take longer,
wi l l invo lve inferencing, search, etc. In fact, there may be
cases where relevant knowledge buried within the DM will
s imply not be successful ly re t r ieved, due to the enormity
of the search needed to f ind it. Thus there are restr ict ions
on when DMs may appropr iate ly be used to hold
permanent knowledge. For tasks in which speed is crucial,
or for tasks in which knowledge cannot be st ructured in a
way that faci l i tates search, such a use will be
inappropr ia te . As a final note, it should be pointed out
that weakening the constraints on DM will affect the rules
and i n te rp re te r design as well . Additional rules may be
needed just to manipulate knowledge in the DMs,
reorgan i?e it, reason about it, etc.

3. Production Memories

3 .1 . Multiple Production Memories

The reason that only a single product ion memory (PM) is
a l lowed in domain- independent architectures is, as wi th DM,
to insure that all relevant knowledge is always immediately
accessible. But again, for some domains, fhis goal can be
ach ieved even though the constraint is relaxed. Mult iple
p roduc t i on memories could be used in two ways. Each
p roduc t i on memory could be paired with its own data
memory. Or product ion memories could be hierarchical ly
o r d e r e d so that although all rules would be matched
against the same data, not all rules would be matched on
e v e r y cyc le; ra ther , a subset of productions could be
spec i f ied (e.g., by an action) to be the ones to be matched
against on the next cycle.

The on ly just i f icat ion for the use of multiple PMs is that it
a l lows the same set of conditions to be associated w i t h
severa l d i f fe ren t sets of actions. For the most par t , this is
s imply a programming convenience: if enough is known to
d i s t r i bu te product ions among many memories, then enough
is known to add condit ions to the productions so that on ly
those product ions that are actually appropr iate wil l f i re .

Languages & Systems-2: Lenat
929

This "convenience" may, nevertheless, be of considerable
he lp since the amount of ef fort required to provide
su f f i c ien t l y discr iminat ing conditions might be immense. In
some cases, moreover , it may be impossible to provide the
necessary condit ions unless productions that attend to
d i f f e ren t aspects of the environment can never be satisf ied
on the same cycle.

Analogues of the dangers of multiple DMs are present
w h e n mul t ip le PMs are allowed. Relevant knowledge might
not be r e t r i e v e d (because it happens to be in a product ion
inside a PM which is not current ly active). Thus there are
res t r i c t i ons on when multiple PMs may appropr iately be
used. They are appropr iate when enough is Known about
the task domain to make it clear when particular sets of
p roduc t ions can be safely "deactivated".

3.2. Productions Treated as Data

If DMs are a l lowed to hold permanent knowledge, then the
d is t inc t ion be tween PM and DM becomes less sharply
de f ined . The demarcation can be further b lur red by
re lax ing the restr ic t ion (imposed on the domain-
independent archi tectures) that PM cannot be read

pr

d i rec t l y . The reason for this restr ict ion is somewhat
d i f f icu l t to infer. It appears to be due to a view of
p roduc t ions which holds that they are not themselves part
of a system's knowledge, but only the vehicle of such
knowledge. The obvious way to relax this restr ic t ion is
s imply to t reat PMs as full- f ledged DMs.

The ab i l i ty to read PM would be part icularly useful in tasks
that call for reasoning about the knowledge being
emp loyed to do the task. Some math and natural science
tasks are of this character. Also, any PS which is designed
to nont r i v ia l l y team can make use of this abil i ty. It could
have a set of product ions whose specialty is dealing wi th
o the r product ions; thus the system could inspect, modify,
augment, cor re la te , compare, and delete productions in the
course of adding new productions to its PM.

3.3. Complex Rules

Many const ra in ts are placed on the form of the condit ion
and act ion sides of productions by the domain-independent
a rch i tec tu res . Again, these restr ict ions are imposed to
insure that all relevant knowledge will always be available
to the sys tem. The main restr ict ion that is placed on the
cond i t ion side of product ions is that condition elements be
forms (templates) , and that the match be nothing but a

5 Most domain- independent PS architectures have some
fo rm of this constra int , although many do allow rules to
access other rules under certain conditions (e.g., to access
the ru le f i r ed on the previous cycle.)

6 The requi rement makes sense for cognitive simulation:
humans do not appear to have direct access to all of the
ru les that they have.

simple membership test on a working memory of l imited
size. This res t r i c t ion allows the match to be very eff icient
and thus insures that changes to working memory that
indicate that some piece of knowledge has become relevant
wi l l be quick ly not iced. Alternat ives to simple tests of set
membersh ip abound. The match can be performed against
the data elements in several di f ferent data memories (some
of wh ich might have an extremely complex structure). The
membersh ip match can be extended to "almost member";
that is, par t ia l matching may be allowed. Or the test ing
funct ions may be extended to include arb i t rar i ly complex
tests on DMs, and may even involve calling on a product ion
subsys tem to determine if a current ly unsatisf ied
p roduc t i on can be sat isf ied [e.g., see Barstow, 1977].

The main res t r i c t ion that is placed on the action side of
p roduc t ions is the restr ic t ion that action elements be
uncondi t ional . The requirement of uncondi t iona l ly
guarantees that only a few actions are performed on each
cycle (since complex actions require tests) and thus that all
decisions made by the system are made in a global context
(i.e., in the context of all possibly relevant information). If
c o n d i t i o n a l l y is al lowed on the action part of a rule, then
complex actions can be performed (including evoking
p roduc t i on sub-systems).

The basic ef fect of these condit ion-side and action-side
re laxat ions would be to increase the "grain size" of each
p roduc t ion . Instead of a quickly locatable and quickly
executab le st imulus/response coupling, a product ion could
rep resen t a sophist icated, relat ively self-suff ic ient chunk
of domain-dependent knowledge, suitable for guiding an
actor in a part icular domain. Consider, for example, one of
AM's 253 ru les:

IF the cur rent task is to f ind examples of concept X,
and X is a predicate,
and >100 items are known to be in Domam(X),
and over 10 cpu sees, have been spent on this task,
and there are no more relevant rules to f i re ,
and X has re tu rned "True" at least once,
and X has re tu rned "True" under 5% of the time,

THEN consider the fol lowing as a future task:
Def in ing new predicates, similar to X,
wh ich are general izat ions of X,
because X is rare ly satisf ied,
hence a sl ight ly less restr ic t ive concept may be

more interest ing than X.

This rule embodies the piece of advice that a predicate
should be general ized (weakened) if it returns "False" too
o f ten . AM used this rule, for example, after "Equal i ty-of-
se ts " was found to be rarely satisf ied, and one of the
resu l t ing general izat ions was the valuable concept "Same-
length" .

Many of us can understand and appreciate this rule, in its
e n t i r e t y , immediately upon seeing it. If it were split into a
dozen t iny ru les, heavily intercoupled, i t would become
much less understandable. For systems whose rules are to
be fo rmu la ted by exper ts from the task domain (e.g.,
physic ians formulat ing MYCIN rules [see Short l i f fe, 1974]),
a coarse level of granular i ty wil l be helpful. Each

Languages & Systems-2: Lenat
930

p r o d u c t i o n wi l l be a meaningful unit and will be easy for
o t he r expe r t s in that domain to understand . For some
task domains, this heightened intel l igibi l i ty wil l more than
pay for any costs that the larger grain size introduces.

One of these costs is the large amount of change that could
occur "all at once" in the DMs during a single
u n i n t e r r u p t a b l e cycle. This cost is surely unacceptable to
a sys tem that has to respond to changes in an environment
that is not fu l ly under its control . For a system that is in
c o n t r o l , however , the problem becomes manageable. Either
cyc le t ime is never a concern or it is of concern at
par t i cu la r (isolatable) times. In this latter case, the PS can
be p r o v i d e d w i t h suff ic ient knowledge to control the length
of the cyc le. This knowledge can be encoded direct ly in
the p roduc t ions (by making each appropr iate ly complex) or
it can be supp l ied by a DM.

4. Interpreters

In domain- independent architectures the interpreter is a
single p rogram that sits above (out of reach of) the
p roduc t ions . It has its own memory (IM) which cannot be
read or w r i t t e n into by productions and in which it stores
s ta le in format ion. Its three functions are (i) to search for
sa t is f ied product ions by applying a pre-speci f ied set of
con tex tua l l y independent matching rules, (i i) to select one
p roduc t i on to f i re on the basis of a pre-speci f ied set of
conf l ic t reso lu t ion rules that make use of the state
information8 , and (Ui) to execute the actions of the

p roduc t i on selected.

These constra in ts on the in terpreter can be relaxed by (i)
t r ea t i ng its memory as a DM that can be examined and
modi f ied by the system's productions, and (i i) t reat ing the
i n t e r p r e t e r itself as a DM that can be examined and
modi f ied by the system's productions. By treat ing IM as a
DM, the select ion of the set of productions to f i re on a
g iven cycle could be made more intel l igently; that is, all of
the system's knowledge could he used9. Making the
i n t e r p r e t e r itself dynamically modifiable would allow its
behav ior to be governed by the current state of the wor ld .
D i f fe ren t sets of matching rules could be used in di f ferent
con tex ts : simple tests of class membership where that
wou ld be appropr ia te , or part ial matching, or arb i t rar i ly

7 "Unders tand" has three components in this case: the
domain exper t should f ind it easier to wr i te such a la rge-
g ra ined ru le , easier to comprehend it if shown it statical ly,
and be t te r able to fol low the rule dynamically when the PS
actual ly selects and executes it.

8 For a discussion of the problems of conflict resolut ion
in domain- independent systems, see [McDermott & Forgy,
1977].

9 E.g., AM's "agenda" job- l ist is the IM, the work ing
memory for that program's scheduler. Yet the agenda is
mainta ined and replenished direct ly by the rules of that
p rog ram.

complex tests on data memories (including itself). Di f ferent
sets of confl ict resolut ion rules could also he used: The
i n t e r p r e t e r could use rules appropriate to its current
s i tua t ion ; its rules could be more or less selective: al lowing
one, severa l , or all satisf ied productions to fire on a given
cyc le .

This sort of re laxat ion of constraints is clearly in line w i th
our avowed reason for using PSs: to constrain search in
he lp fu l ways. By having the interpreter policies vary, the
PS wi l l spend more or less time constraining search, as it is
or is not cr i t ical at that moment. There is also a certain
symmet ry which is open to us now: the interpreter can be
v i e w e d as containing domain-dependent wisdom at one
level higher than (meta to) the knowledge contained in PM.
Tor example, a theorem-prov ing PS might have rules like
"(A and B) - -> A", and might rely upon sophisticated rules
in the in te rp re te r to keep the execution from blowing up
combinator ia l ly .

Of course the pr ice paid for this sophistication is the cost
of dynamical ly reprogramming the in terpreter at
app rop r i a te times. However, for a system whose task
places only a l imited number of di f ferent processing
demands on its in te rp re te r , the time spent in modifying the
i n t e r p r e t e r would be more than offset by the gain in
f lex ib i l i t y which would allow di f ferent parts of the task to
be accomplished as ef fect ive ly as possible.

5. Concluding Remarks

Since produc t ion systems constrain search in a context
dependent way, they may prove to be a very valuable tool.
We have a t tempted to show some of the alternatives open
to a p roduc t ion system designer who wants to tailor the
sys tem he is designing to the requirements of the
par t icu lar task domain wi th in which his system wil l
func t ion . These al ternat ives consist primari ly in relaxing
const ra in ts (imposed by the domain-independent PS
des igners) on the form of data memory, product ion
memory , and the in te rpre ter . If it is the case that di f ferent
tasks make d i f ferent kinds of representational demands,
t hen it seems clear that such relaxations can have
benef ic ia l e f fects. Of the benefits that we suggested
above , th ree seem to us to be of particular note: those
ar is ing f rom giv ing product ions a larger grain size; those
ar is ing f rom al lowing productions to modify the in terpre ter ;
and those arising f rom allowing permanent knowledge to
be s to red in memories other than PM.

Systems whose task is to be (or become) expert in some
par t icu lar domain so that they can be used in place of
human exper ts (or so that a model of the knowledge
necessary in some domain can be explored) can be
cons t ruc ted most easily if the grain size of the knowledge
they s to re is the optimal grain size for that domain.
Presumably the most desirable grain size is d isplayed by
human exper ts when they communicate wi th one another.
But when exper ts in domains such as chemistry, medicine,
or mathematics communicate, the rules that they formulate
are v e r y much more complex than the rules that can be
encoded as single productions in domain-independent
sys tems.

Languages & Systems-2: Lpnat
931

The second benef i t arises from the "dynamically modifiable
i n t e r p r e t e r " idea. By v iewing the interpreter as a data
s t r uc tu re that can be read and wr i t ten into by productions
(and by v iew ing PM in the same way), opportuni t ies are
opened up for changing the performance of the system on
the basis of the Kind of subtask in which it is engaged. In
any task domain, there are certain situations in which
h igh ly const ra ined search is appropriate and certain
s i tuat ions in which all relevant knowledge must be
examined be fo re any action can be taken. By making the
i n t e r p r e t e r dynamical ly modifiable, the search behavior
cou ld be ta i lored to the subtask. MYCIN provides
someth ing analogous to this by making meta-rules
avai lab le, rules that can be used to select a subset of the
set of sat is f ied productions to f ire. However, a more
genera l capabi l i ty would provide more strength. Since the
capab i l i t y of modifying the interpreter would give the
sys tem cont ro l over the amount of processing done on
each cyc le , for task domains in which short cycle time is
somet imes important and sometimes not, the system could
ta i lor i ts cycle time to the subtask.

The th i rd benef i t arises from the fact that in some task
domains, e i ther cycle time is not an important concern or it
can be cont ro l led by vary ing the complexity of productions
or by making the in terpreter dynamically modifiable. In
such cases, there may be a better way to store some
knowledge than by means of autonomous rules. In some
domains, a great deal is known about the st ructure
(in terconnectedness) of many of the concepts relevant to
that domain. The availabil i ty of multiple data memories
wou ld allow this knowledge of the structure to be stored
impl ic i t ly . Note that there is no constraint that DM entr ies
be dec lara t ive ; (e.g., a scientific theory may be best
r e p r e s e n t e d wi th in a DM, even though much of it may be
procedura l .)

Our f inal conclusion is that these benefits of ten far
o u t w e i g h the costs. When nothing is known about the
domain for which a PS is designed, one may opt for the
domain- independent architecture. But when much is known
about the domain, it is cost-ef fect ive to build some of this
know ledge into the architecture. In the limit, when we are
des ign ing a system wi th one specific task in mind, relaxing
the o ld s impl ic i ty constraints is clearly indicated.

Acknowledgments

This research builds upon earlier work by the authors,
some of it in conjunct ion wi th C. Forgy and G. Harris at
CMU. To bo th of them go our sincere appreciation. We also
w ish to thank D. Barstow, who contr ibuted several
excel lent suggest ions dur ing the planning of this paper.

References

Bars tow, D., Automatic construct ion of algorithms and data
s t ruc tu res using a knowledge base of programming
ru les, Ph.D. Dissertat ion, Art i f icial Intell igence
Labora to ry , Stanford Universi ty, 1977.

Buchanan, B., Scientific theory formation by computer,
NATO Advanced Study Inst i tute on Computer Oriented
Learning Processes, Bonas, France, 1974.

Davis, P., Appl icat ions of meta level knowledge to the
cons t ruc t ion , maintenance, and use of large knowledge
bases, Ph.D. d issertat ion, SAIL A1M-271, Art i f ic ial
Inte l l igence Laboratory , Stanford Universi ty, July, 1976.

Davis, R., and King, J., An overv iew of product ion systems,
Report STAN-CS-75-524, SAIL Memo A I M - 2 7 1 ,
S tan fo rd U. CS Department, 1975.

Duda, R., Hart, P., Nillson, N., Sutherland, G., Semantic
n e t w o r k representat ions in rule-based inference
systems, in Waterman and Hayes-Roth (eds.), Pattern-
Directed Inference Systems, Academic Press, 1977.

Feigenbaum, E., Buchanan, B., and Lederberg, J., On
genera l i t y and problem solving: a case study using the
dendra l program, in' Meltzer and Michie (eds.), Machine
Intelligence 6, 1971 , pp. 165-190.

Lenat, D., AM: an art i f icial intell igence approach to
d iscovery in mathematics as heuristic search, Ph.D.
d isser ta t ion , SAIL AIM--286, Art i f icial Intell igence
Labora to ry , Stanford Universi ty, July, 1976. Jointly
issued as Computer Science Dept. Report No. STAN-CS-
7 6 - 5 7 0 .

Lenat, D. and Harris, G., Designing a rule system that
searches for scientif ic discoveries, in Waterman and
Hayes-Roth (eds.), Pattern-Directed Inference Systems,
Academic Press, 1977.

McCracken, D., A parallel product ion system archi tecture
for speech understanding, CMU CS Dept. Ph.D. Thesis,
1977.

McDermot t , J. and Forgy, C, Production system conflict
reso lu t ion st rategies, in Waterman and Hayes-Roth
(eds.), Pattern-Directed Inference Systems, Academic
Press, 1977.

Newel l , A., Product ion Systems: Models of Control
S t ruc tu res , May, 1973 CMU Report, also published in
(W.G. Chase, ed.) Visual Information Processing, NY:
Academic Press, Chapter 10, pp. 463-526.

Ni lsson, N., Problem Solving Methods in Artificial
Intelligence, McGraw Hill, N.Y., 1971.

Shor t l i f f e , E., MYCIN -- A rule-based computer program for
advis ing physicians regarding antimicrobial therapy
se lect ion, Ph.D. Dissertat ion, SAIL A I M - 2 5 1 , Art i f ic ial
Inte l l igence Laboratory , Stanford Universi ty, October,
1974.

Languages A Systems-2: Lenat
932

