LESS THAN GENERAL
PRODUCTION SYSTEM ARCHITECTURES'

Douglas B. Lenat

and John McDermott

Carnegie-Mellon University
Pittsburgh, PA 15213

Abstract

Many of the recent expert rule-based systems
[Dendral, Mycin, AM, Pecos] have architectures that

differ significantly from the simple domain-
independent architectures of "pure" production
systems. The purpose of this paper is to explore,

somewhat more systematically than has been done
before, the various ways in which the simplicity
constraints can be relaxed, and the benefits of doing
so. The most significant benefits arise from three
sources: (i) the grain size of a typical rule can be
increased until it captures a unit of advice which is
meaningful in that system's task domain, (i) the
interpreter can become accessible to the rules and
thus become dynamically modifiable, and (i)
meaningful permanent Knowledge can be stored in
data memories, not just within productions. Although
there are costs associated with relaxing the
simplicity constraints, for many task domains the
benefits outweigh the costs.

1. Introduction

Most Al programs employ "search" in some form. Our
earliest experiences [translation; chess] taught us the
futility of wunconstrained searching. Since that time, Al
researchers have experimented with various methodologies
for limiting search. Some of these [Nilsson, 1971] have
been externally imposed procedures: small programs that
help to direct an otherwise-unconstrained search (e.g.,
heuristic evaluation functions that guide the expansion of
nodes in a search tree; alpha/beta cutoff detectors in an
and/or game tree). Another approach has been to scrap
the search tree paradigm entirely and to program in such a
way that search is inherently constrained. One such
technique is to use a network of semantically related nodes
(e.g., Woods' ATN). Another is to encode the program as a
production system (PS).

One of the earliest uses of production systems in Al was
by Newell [1973]. The architecture that he proposed and
that has since been emulated by several researchers has

This work was supported in parl by tht Defense Advanced Research
Projects Agency (F44620-73-C-0074) end monitored by tht Air Force
Office of Scientific Research

the following familiar components: (i) a single production
memory containing an indefinitely large number of
productions (condition/action rules) in which all of the
system's permanent knowledge is encoded; (i) a single
data memory (called working memory) containing assertions
that are in the process of being assimilated or modified by
the system; and (i) an interpreter that repeatedly
matches the conditions in each production against the
assertions in data memory, selects from the set of satisfied
productions one production to fire, and then executes the
actions specified in that production.

The basic appeal of production systems is that they
constrain search in a context-dependent (one might say
"natural”) way. A production's conditions are satisfied if
and only if its actions are likely to be relevant to the
current state of the world (as represented in data
memory). The interpreter, in order to select a production
to fire, has only to search among pieces of knowledge that
are possibly relevant at that moment. This is what we
meant earlier when we indicated that PSs do not follow the
"exploring a search space" paradigm; rather, they carry out
myriad small parallel searches, first for relevant pieces of
knowledge, then for the most promising one of these to
use.

Various constraints on the production system architecture
(implicit in the description above) were imposed by
experimenters in order to insure that it would be
sufficiently general to enable a PS to able to behave in a
reasonable fashion in any domain. Much of the current
work in Al is focused on the development of Ilarge,
knowledge-based systems which are expert in one very
sophisticated -- but also very specialized — task (e.g.,
identification of mass spectrograms, anti-microbial therapy
selection, speech understanding, etc.). One way of
encoding knowledge in such systems is as a collection of
pattern-invoked rules, and thus the production system
architecture appears to be a viable candidate for
supporting such systems. But is the domain-independent
architecture described above the best production system
architecture to use for such systems?

It has become obvious within the last few years, we think,
that it is not. Empirical justification for this conclusion is
provided by the recent development of what have been

Historically, the constraints were imposed so that a
production system would be able to simulate the cognitive
behavior of humans — who, at least purportedly, are able
to behave in a reasonable fashion in all domains.

Languages & Systems-2: Lenat

called rule-based inference systems [Feigenbaum, 1971;
Buchanan, 1974; Shortliffe, 1974; Davis, 1976; Lenat, 1976;
McCracken, 1977; Barstow, 1977; Duda, 1977]. Most of

these systems are closely related to production systems:
they divide the world into data and condition/action rules,
and make use of an interpreter that repeatedly matches
rules against data and then executes the actions of one or
more of the rules whose conditions are satisfied. But
because each of these systems was designed for a single,
well-defined task, it was unnecessary for their designers
to impose all of the constraints on the form of data
memory, production memory, and the interpreter that are
found in most domain-independent systems. The purpose
of this paper is to explore, somewhat more systematically

than has been done before, the ways in which these
domain-independent constraints can be relaxed, and the
implications of doing so*.

2. Data Memories

Domain-independent architectures, though they Ilimit the
number of elements in data memory (DM), allow those
elements to be arbitrarily complex. Consequently, the
amount of knowledge that can be stored in DM is

theoretically unlimited. However, other constraints placed
on these architectures make it very difficult to use DM as
anything but an intermediate memory containing rather
simple assertions. The memory is forced to be
intermediate (ephemeral, temporary, "working") because no
data element can be linked directly to any other data
element; their only relationship is that they have been
deposited in DM by productions sensitive to the current
context. The data elements are forced to be simple
assertions because no operations on data sub-elements are
permitted unless those sub-elements have been matched
by the condition part of a production and because all of

the operations performed on these structures must be
indicated explicitly in productions (except for a few
operations that are performed indiscriminately by the

interpreter on all elements).

These restrictions can be weakened by (i) permitting many
separate DMs to exist, each defined by a distinct set of
primitive operations that can access and modify it, and (a)

allowing some DMs to contain statically interrelated
elements. Thus DMs could be of two types. Some could
hold permanent knowledge and thus would have a
significance similar to production memory (the set of
productions), but their structure as well as their content
could convey information. Other DMs could be working

(intermediate) memories; that is, they would serve the same
focusing function that the lone DM serves in domain-
independent architectures.

% For a discussion of how the nature of the "mathematical
discovery" task influenced the design of AM, see [Lenat &
Harris 1977].

For a discussion of the various dimensions along which
existing production systems differ, see [Davis & King
1975].

The motivation for multiple DMs is that certain tasks can be
viewed most naturally as developing and enlarging a body
of declarative knowledge. Consider a PS that is to discover
new mathematics, or one that is to do research in organic
chemistry. Such a system might have two DMs, one
containing highly inter-related domain-dependent facts
(representing the existing theory), the other containing an
ever-changing set of goals for augmenting the permanent
knowledge stored in the first DM. There are at least two
gains in using multiple DMs. First, since each DM has its
own set of proper operations, modifications to the data
base can be specified at a higher, more natural level (and
in some cases need not be specified at all). Secondly,
because the relationships among pieces of knowledge in
DMs correspond to relationships in the task domain, the
system's DMs are statically intelligible.

There are, of course, some negative consequences that
result from not storing all permanent knowledge within the
production rules. In particular, knowledge within
productions is directly pattern-invokable, while knowledge
within a DM is not. Hence, some processes will take longer,
will involve inferencing, search, etc. In fact, there may be
cases where relevant knowledge buried within the DM will
simply not be successfully retrieved, due to the enormity
of the search needed to find it. Thus there are restrictions
on when DMs may appropriately be wused to hold
permanent knowledge. For tasks in which speed is crucial,
or for tasks in which knowledge cannot be structured in a
way that facilitates search, such a use will be
inappropriate. As a final note, it should be pointed out
that weakening the constraints on DM will affect the rules
and interpreter design as well. Additional rules may be
needed just to manipulate knowledge in the DMs,
reorgani?e it, reason about it, etc.

3. Production Memories
3.1. Multiple Production Memories
The reason that only a single production memory (PM) is

allowed in domain-independent architectures is, as with DM,
to insure that all relevant knowledge is always immediately
accessible. But again, for some domains, fhis goal can be
achieved even though the constraint is relaxed. Multiple
production memories could be used in two ways. Each
production memory could be paired with its own data
memory. Or production memories could be hierarchically
ordered so that although all rules would be matched
against the same data, not all rules would be matched on
every cycle; rather, a subset of productions could be
specified (e.g., by an action) to be the ones to be matched
against on the next cycle.

The only justification for the use of multiple PMs is that it
allows the same set of conditions to be associated with
several different sets of actions. For the most part, this is
simply a programming convenience: if enough is known to
distribute productions among many memories, then enough
is known to add conditions to the productions so that only
those productions that are actually appropriate will fire.

Languages & Systems-2: Lenat

929

nevertheless, be of considerable
of effort required to provide
sufficiently discriminating conditions might be immense. In
some cases, moreover, it may be impossible to provide the
necessary conditions unless productions that attend to
different aspects of the environment can never be satisfied
on the same cycle.

This "convenience" may,
help since the amount

Analogues of the dangers of multiple DMs are present
when multiple PMs are allowed. Relevant knowledge might
not be retrieved (because it happens to be in a production
inside a PM which is not currently active). Thus there are
restrictions on when multiple PMs may appropriately be
used. They are appropriate when enough is Known about
the task domain to make it clear when particular sets of
productions can be safely "deactivated".

3.2. Productions Treated as Data

If DMs are allowed to hold permanent knowledge, then the
distinction between PM and DM becomes less sharply
defined. The demarcation can be further blurred by
relaxing the restriction (imposed on the domain-
independent architectures) that PM cannot be read

pr

directly. The reason for this restriction is somewhat
difficult to infer. It appears to be due to a view of
productions which holds that they are not themselves part
of a system's knowledge, but only the vehicle of such
knowledge. The obvious way to relax this restriction is
simply to treat PMs as full- fledged DMs.

The ability to read PM would be particularly useful in tasks
that call for reasoning about the knowledge being
employed to do the task. Some math and natural science
tasks are of this character. Also, any PS which is designed
to nontrivially team can make use of this ability. It could
have a set of productions whose specialty is dealing with
other productions; thus the system could inspect, modify,
augment, correlate, compare, and delete productions in the
course of adding new productions to its PM.

3.3. Complex Rules

Many constraints are placed on the form of the condition
and action sides of productions by the domain-independent
architectures. Again, these restrictions are imposed to
insure that all relevant knowledge will always be available
to the system. The main restriction that is placed on the
condition side of productions is that condition elements be
forms (templates), and that the match be nothing but a

5 Most domain-independent PS architectures have some
form of this constraint, although many do allow rules to
access other rules under certain conditions (e.g., to access
the rule fired on the previous cycle.)

6 The requirement makes sense for cognitive simulation:
humans do not appear to have direct access to all of the
rules that they have.

simple membership test on a working memory of limited
size. This restriction allows the match to be very efficient
and thus insures that changes to working memory that
indicate that some piece of knowledge has become relevant
will be quickly noticed. Alternatives to simple tests of set
membership abound. The match can be performed against
the data elements in several different data memories (some
of which might have an extremely complex structure). The
membership match can be extended to "almost member";
that is, partial matching may be allowed. Or the testing
functions may be extended to include arbitrarily complex
tests on DMs, and may even involve calling on a production
subsystem to determine if a currently unsatisfied
production can be satisfied [e.g., see Barstow, 1977].

The main restriction that is placed on the action side of
productions is the restriction that action elements be
unconditional. The requirement of unconditionally
guarantees that only a few actions are performed on each
cycle (since complex actions require tests) and thus that all
decisions made by the system are made in a global context
(i.e., in the context of all possibly relevant information). If
conditionally is allowed on the action part of a rule, then
complex actions can be performed (including evoking
production sub-systems).

The basic effect of these condition-side and action-side
relaxations would be to increase the "grain size" of each
production. Instead of a quickly locatable and quickly
executable stimulus/response coupling, a production could
represent a sophisticated, relatively self-sufficient chunk
of domain-dependent knowledge, suitable for guiding an
actor in a particular domain. Consider, for example, one of
AM's 253 rules:

IF the
and
and
and
and

current task is to find examples of concept
X is a predicate,
>100 items are known to be in Domam(X),
over 10 cpu sees, have been spent on this task,
there are no more relevant rules to fire,

and X has returned "True" at least once,

and X has returned "True" under 5% of the time,
THEN consider the following as a future task:

Defining new predicates, similar to X,

which are generalizations of X,

because X is rarely satisfied,

hence a slightly less restrictive concept may be
more interesting than X.

X,

This rule embodies the piece of advice that a predicate
should be generalized (weakened) if it returns "False" too
often. AM used this rule, for example, after "Equality-of-
sets" was found to be rarely satisfied, and one of the
resulting generalizations was the valuable concept "Same-
length".

Many of us can understand and appreciate this rule, in its
entirety, immediately upon seeing it. If it were split into a
dozen tiny rules, heavily intercoupled, it would become
much less understandable. For systems whose rules are to

be formulated by experts from the task domain (e.g.,
physicians formulating MYCIN rules [see Shortliffe, 1974]),
a coarse level of granularity will be helpful. Each

Languages & Systems-2: Lenat

930

production will be a meaningful unit and will be easy for
other experts in that domain to understand For some
task domains, this heightened intelligibility will more than
pay for any costs that the larger grain size introduces.

One of these costs is the large amount of change that could
occur "all at once" in the DMs during a single
uninterruptable cycle. This cost is surely unacceptable to
a system that has to respond to changes in an environment
that is not fully under its control. For a system that is in
control, however, the problem becomes manageable. Either
cycle time is never a concern or it is of concern at
particular (isolatable) times. In this latter case, the PS can
be provided with sufficient knowledge to control the length
of the cycle. This knowledge can be encoded directly in
the productions (by making each appropriately complex) or
it can be supplied by a DM.

4. Interpreters

In domain-independent architectures the interpreter is a
single program that sits above (out of reach of) the
productions. It has its own memory (IM) which cannot be
read or written into by productions and in which it stores
stale information. |Its three functions are (i) to search for
satisfied productions by applying a pre-specified set of
contextually independent matching rules, (ii) to select one
production to fire on the basis of a pre-specified set of
conflict ~resolution rules that make use of the state
information®, and (U) to execute the actions of the

production selected.

These constraints on the interpreter can be relaxed by (i)
treating its memory as a DM that can be examined and
modified by the system's productions, and (ii) treating the
interpreter itself as a DM that can be examined and
modified by the system's productions. By treating IM as a
DM, the selection of the set of productions to fire on a
given cycle could be made more intelligently; that is, all of
the system's knowledge could he used®. Making the
interpreter itself dynamically modifiable would allow its
behavior to be governed by the current state of the world.
Different sets of matching rules could be used in different
contexts: simple tests of class membership where that
would be appropriate, or partial matching, or arbitrarily

" "Understand" has three components in this case: the
domain expert should find it easier to write such a large-
grained rule, easier to comprehend it if shown it statically,
and better able to follow the rule dynamically when the PS
actually selects and executes it.

8 For a discussion of the problems of conflict resolution
in domain-independent systems, see [McDermott & Forgy,
1977].

o E.g., AM's "agenda" job-list is the IM, the working
memory for that program's scheduler. Yet the agenda is
maintained and replenished directly by the rules of that
program.

complex tests on data memories (including itself). Different
sets of conflict resolution rules could also he used: The
interpreter could use rules appropriate to its current
situation; its rules could be more or less selective: allowing
one, several, or all satisfied productions to fire on a given
cycle.

This sort of relaxation of constraints is clearly in line with
our avowed reason for using PSs: to constrain search in
helpful ways. By having the interpreter policies vary, the
PS will spend more or less time constraining search, as it is
or is not critical at that moment. There is also a certain
symmetry which is open to us now: the interpreter can be
viewed as containing domain-dependent wisdom at one
level higher than (meta to) the knowledge contained in PM.
Tor example, a theorem-proving PS might have rules like
"(A and B) --> A", and might rely upon sophisticated rules
in the interpreter to keep the execution from blowing up
combinatorially.

Of course the price paid for this sophistication is the cost
of dynamically reprogramming the interpreter at
appropriate times. However, for a system whose task
places only a limited number of different processing
demands on its interpreter, the time spent in modifying the
interpreter would be more than offset by the gain in
flexibility which would allow different parts of the task to
be accomplished as effectively as possible.

5. Concluding Remarks

Since production systems constrain search in a context
dependent way, they may prove to be a very valuable tool.
We have attempted to show some of the alternatives open
to a production system designer who wants to tailor the
system he is designing to the requirements of the
particular task domain within which his system will
function. These alternatives consist primarily in relaxing
constraints (imposed by the domain-independent PS
designers) on the form of data memory, production
memory, and the interpreter. If it is the case that different
tasks make different kinds of representational demands,
then it seems clear that such relaxations can have
beneficial effects. Of the benefits that we suggested
above, three seem to us to be of particular note: those
arising from giving productions a larger grain size; those
arising from allowing productions to modify the interpreter;
and those arising from allowing permanent knowledge to
be stored in memories other than PM.

Systems whose task is to be (or become) expert in some
particular domain so that they can be used in place of
human experts (or so that a model of the knowledge
necessary in some domain can be explored) can be
constructed most easily if the grain size of the knowledge
they store is the optimal grain size for that domain.
Presumably the most desirable grain size is displayed by
human experts when they communicate with one another.
But when experts in domains such as chemistry, medicine,
or mathematics communicate, the rules that they formulate
are very much more complex than the rules that can be
encoded as single productions in domain-independent
systems.

Languages & Systems-2: Lpnat
931

The second benefit arises from the "dynamically modifiable
interpreter" idea. By viewing the interpreter as a data
structure that can be read and written into by productions
(and by viewing PM in the same way), opportunities are
opened up for changing the performance of the system on
the basis of the Kind of subtask in which it is engaged. In
any task domain, there are certain situations in which
highly constrained search is appropriate and certain
situations in which all relevant knowledge must be
examined before any action can be taken. By making the
interpreter dynamically modifiable, the search behavior
could be tailored to the subtask. MYCIN provides
something analogous to this by making meta-rules
available, rules that can be used to select a subset of the
set of satisfied productions to fire. However, a more
general capability would provide more strength. Since the
capability of modifying the interpreter would give the
system control over the amount of processing done on
each cycle, for task domains in which short cycle time is
sometimes important and sometimes not, the system could
tailor its cycle time to the subtask.

The third benefit arises from the fact that in some task
domains, either cycle time is not an important concern or it
can be controlled by varying the complexity of productions

or by making the interpreter dynamically modifiable. In
such cases, there may be a better way to store some
knowledge than by means of autonomous rules. In some
domains, a great deal is known about the structure

(interconnectedness) of many of the concepts relevant to
that domain. The availability of multiple data memories
would allow this knowledge of the structure to be stored
implicitly. Note that there is no constraint that DM entries
be declarative; (e.g., a scientific theory may be best
represented within a DM, even though much of it may be
procedural.)

Our final conclusion is that these benefits often far
outweigh the costs. When nothing is known about the
domain for which a PS is designed, one may opt for the
domain-independent architecture. But when much is known
about the domain, it is cost-effective to build some of this
knowledge into the architecture. In the limit, when we are
designing a system with one specific task in mind, relaxing
the old simplicity constraints is clearly indicated.

Acknowledgments

This research builds upon earlier work by the authors,
some of it in conjunction with C. Forgy and G. Harris at
CMU. To both of them go our sincere appreciation. We also
wish to thank D. Barstow, who contributed several
excellent suggestions during the planning of this paper.

References

Barstow, D., Automatic construction of algorithms and data
structures using a knowledge base of programming
rules, Ph.D. Dissertation, Artificial Intelligence
Laboratory, Stanford University, 1977.

Buchanan, B., Scientific theory formation by computer,
NATO Advanced Study Institute on Computer Oriented
Learning Processes, Bonas, France, 1974.

Davis, P., Applications of meta level knowledge to the
construction, maintenance, and use of large knowledge
bases, Ph.D. dissertation, SAIL A1M-271, Artificial
Intelligence Laboratory, Stanford University, July, 1976.

Davis, R, and King, J., An overview of production systems,

Report STAN-CS-75-524, SAIL Memo AIM-271,
Stanford U. CS Department, 1975.

Duda, R., Hart, P., Nillson, N., Sutherland, G., Semantic
network representations in rule-based inference
systems, in Waterman and Hayes-Roth (eds.), Pattern-
Directed Inference Systems, Academic Press, 1977.

Feigenbaum, E. Buchanan, B., and Lederberg, J., On

generality and problem solving: a case study using the

dendral program, in' Meltzer and Michie (eds.), Machine
Intelligence 6, 1971, pp. 165-190.

Lenat, D., AM: an artificial intelligence approach to
discovery in mathematics as heuristic search, Ph.D.
dissertation, SAIL AIM--286, Artificial Intelligence
Laboratory, Stanford University, July, 1976. Jointly
issued as Computer Science Dept. Report No. STAN-CS-
76-570.

Lenat, D. and Harris, G. Designing a rule system that
searches for scientific discoveries, in Waterman and
Hayes-Roth (eds.), Pattern-Directed Inference Systems,
Academic Press, 1977.

McCracken, D., A parallel production system architecture
for speech understanding, CMU CS Dept. Ph.D. Thesis,
1977.

McDermott, J. and Forgy, C, Production system conflict

resolution strategies, in Waterman and Hayes-Roth
(eds.), Pattern-Directed Inference ~ Systems, Academic
Press, 1977.

Newell, A., Production Systems: Models of Control
Structures, May, 1973 CMU Report, also published in
(W.G. Chase, ed.) Visual Information Processing, NY:
Academic Press, Chapter 10, pp. 463-526.

Nilsson, N., Problem Solving Methods in Artificial
Intelligence, McGraw Hill, N.Y., 1971.

Shortliffe, E., MYCIN -- A rule-based computer program for
advising physicians regarding antimicrobial therapy
selection, Ph.D. Dissertation, SAIL AIM-251, Artificial
Intelligence Laboratory, Stanford University, October,
1974.

Languages A Systems-2: Lenat

932

