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Abstract

A program called "AM" is described which cairies on simple
mathematics research: defining, and studying new concepts
under the guidance of a large body of heuiistic rules. The
250 heurKtus communicate via an agenda mechanism, a
global priority queue of small bisk', for the program to
pei foim and teasons why each task is plausible (e.g., "Find
PENCRAHZTION. of 'prnes’, because turued out to be
so useful a Conccpi"). Fach concept is an active, structured
knowledge module. One bundled veiy incomplete modules
are initially supplied, each one corresponding to an
elementary set theoretic concept (e.g., union). This
provides a definite but immense space which AM begins to
explore. In one boor, AM rediscovers hundreds of common
concepts (including singleton sets, natural numbers,
arithmetic) and theorems (e.g., unique factorization).

1. INTRODUCTION

1.1. HISTORICAL MOTIVATION

Scientists often face the difficult task of formulating
nontrivial research problems which are soluble. In most
brandies of science, it is usually easier to tackle a specific
given problem than to propose interesting yet managable
new questions to investigate. For example, contrast
solving the Missionaries and Cannibals problem with the
more ill-defined reasoning which led to inventing! it. The
first type of activity is formalizable and admits a deductive
solution; the second is inductive and judgmental. As
another example, contrast proving a given theorem versus
proposing it in the first place.

A wealth of Al been focussed

research has upon the

former type of activity: deductive problem solving (see,
e.g., [Bledsoe 71], [Nilsson 71], [Newell & Simon 72]).
Approaches to inductive inference have also been made.

Some researchers have tried to attack the problem in a
completely domain-independent way (see, e.g., [Winston
70]). Other Al researchers believe that "expert
knowledge" must be present if inductive reasoning is to be
done at the level which humans are capable of. Indeed, a
few recent Al programs have incorporated such knowledge
(in the form of judgmental rules gleaned from human
experts) and successfully carried out quite complex
inductive tasks: medical diagnosis [Shortliffe 74], mass
spectra identification [Feigenbaum 71], clinical dialogue
[Davis 76], discovery of new mass spectroscopy rules
[Buchanan 75].

The "next step" in this progression of tasks would be that
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of fully automatic theory formation in some scientific field.
"1 his includes two activities: (i) discovering relationships
among known concepts (e.g., by formal manipulations, or by
noticing regularities in empirical data), and (ii) defining new
concepts for investigation. Meta-Dendral [Buchanan 75]
performs only the first of these; most domain-independent
concept learning programs (Winston 70] perform only the
latter of these: while they do create new concepts, the
initiative is not theirs but rather is that of a human
"teacher" who already has the concepts in mind.

What we are describing
defines new concepts,

is a computet program which

investigates them, notices
regularities in the data about them, and conjectures
relationships between them. This new information is used
by the program to evaluate the newly-defined concepts,
concentrate upon the most interesting ones, and iterate the
entire process. This paper describes such a program: AM.

1.2. CHOICE OF DOMAIN

Research in distinct fields of science and mathematics often
proceeds slightly differently. Not only are the concepts
different, so are most of the powerful heuristics. So it was
reasonable that this first attempt should be limited to one
narrow domain. Elementary mathematics was chosen,
beeausc?:

1. there are no uncertainties in the raw data (e.g.,
arising from errorful measuring devices).

2. Reliance on exports' introspection is a powerful
technique for codifying the judgmental rules needed
to work effectively in a field. By choosing a familiar
field, it was possible for the author to rely primarily
on personal introspection for such heuristics.

3. The more formal a science is, the easier it is to

automate (e.g., the less one needs to use natural
language to communicate information).

4. A mathematician has the freedom to explore -- or to
give up on -- whatever he wants to. There is no
specific problem to solve, no fixed "goal".

5. Unlike some fields (e.g., propositional logic),

elementary math research has an abundance (many
hundreds) of powerful heuristic rules available.

The limitations of math as a domain are closely intertwined
with its advantages. Having no ties to real world data can
be viewed as a liability, as can having no clear "right" or
"wrong" behavior. Since math has been worked on for
millcnia by some of each culture's greatest minds, it is
unlikely that a small effort like AM would make many
startling new discoveries. Nevertheless, it was decided
that the advantages outweighed the limitations.

1.3 INITIAL ASSUMPTIONS AND HYPOTHESES

The AM program "got off the ground" only because a
number of sweeping assumptions were made about how
math research could be performed by a computer program:

1. Very little natural language processing capabilities are
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required. As it runs, AM is monitored by a human
"user".  AM Keeps the user informed by instantiating
English sentence templates. 1 he user's input is rare
and can be successfully stereotyped.

2 Formal reasoning (including proof) is not indispensable
when doing theory formation in elementary
mathematics. In the same spirit, we need not worry in
advance about the occurence of contradictions.

3. Each mathematical concept can be represented as a
list of facets (aspects, slots, parts, property/value
pairs). Tor each new piece of Knowledge gained,
there will be no trouble in finding which facet of
which concept it should he stored in.

4. The basic activity is to choose some facet of some
concept, and then try to fill in new entries to store
there; this will occasionally cause new concepts to be
defined. The high-level decision about which facet of
which concept to worK on next can be: handled by
maintaining an ‘ordered agenda” of such tasKs. The
techniques for actually carrying out a tasK are
contained within a large collection of heuristics.

b. Each heuristic has a welldefined domain of
applicability, which coincides perfectly with one of
AM's concepts. We say the heuristic "belongs to" that
concept

6. Heuristics superimpose; they never interact strongly
with each other. If one concept Cl is a specialization
of concept C?, then Cl's heuristics are more powerful
and should he tried first.

7. The reasons supporting a tasK (on the agenda of
facet/concept tasKs to be carried out) superimpose
peifectly. "they never change with time, and it maKes
no difference in what order they were noticed. It
suffices to have a single, positive number which
characterizes tire value of the reason.

8. the tasKs on the agenda are completely independent.
No tasK "waKes up" another. Only the general position
(near the top, near the bottom) is of any significance.

9. The set of heuristics need not grow, as new concepts
are discovered. All common-sense knowledge
required is assumed to be already present within the
initially-given body of heuristic rules.

It is worth repeating that all the above points are merely
convenient falsehoods. Their combined presence made AM
doable (by one person, in one year).

One point of agreeement between Wei/enbaum and
lederbeig [lederberg 76] is that Al can succeed in
automating only those activities for which there exists a
"strong theory" of how that activity is done by people.
Point #4 above is a claim that such a clean, simple model
exists for math research: a search process governed by a
large collection of houristic rules. Here is a simplified
summary of that model:

1. the order in which a math textbook presents a
theory is almost the exact opposite of the order in
wheh it war. actually developed. In a text,
definitions and lemmata are given with no
motivation, and they turn out to be just the ones
required for the next big theorem, whose proof
magically follows. But in real life, a mathematician
would begin by examining some already-Known
concepts, trying to find some regularity involving
them, formulating those as  conjectures to
investigate further, and using them to motivate
some simplifying new definitions.

2. Each step the researcher taKes (see #1) involves
choosing from a huge set of alternatives -- that is,
searching. He uses judgmental criteria (heuristics)
to choose the "best" alternative. This saves his
search from the combinatorial explosion.

3. Non-formal criteria (aesthetic interestingness,
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empirical induction, analogy, utility estimates) are
much more important than formal methods.

4. All such heuristics can be viewed as
situation/action (IF/IHLN) rules. There is a common
core of (a few hundred) heuristics, basic to all
fields of math at all levels. In addition to these,
each field has several specific, powerful rules.

5. Nature is metaphysically pleasant: It is fair, uniform,
regular. Statistical considerations are valid and
valuable when trying to find regularity in math
data. Simplicity and synergy and symmetry abound.

2. DESIGN OF THE 'AM' PROGRAM

A pure production system may be considered to consist of
thtee components: data memory, a set of rules, and an
interpreter. Since AM is more or less a rule-based system,
it too can be considered as having three main design
components: how it represents math knowledge (its frame-
like concept/facets scheme), how it enlarges its knowledge
base (its collection of heuristic rules), and how it controls
the firing of these rules (via the agenda mechanism). These
form the subjects of the following three subsections.

2.1. REPRESENTATION OF CONCEPTS

The task of the AM program is to define plausible new
mathematical concepts, and investigate them, Each concept
is represented internally as a bundle of slots or "facets".
Each facet corresponds to some aspect of a concept, to
some question we might want to ask about the concept.
Since each concept is a mathematical entity, the kinds of
questions One might ask are fairly constant from concept to
concept. A set of 2b facets was therefore fixed once and
for all. Below is that list of facets which a concept C may
have. For each facet, we give a typical question about C
whic h it answers.

Name: What shall wo call C when talking with the user?

Generalizations:  Which  other concepts have |less
restrictive (i.e., weaker) definitions than C?

Specialisations: Which concepts satisfy C's definition plus
some additional constraints?

Examples; What things that satisfy C's definition?

Isa's: Which concepts' definitions does C itself satisfy?

In-domain of: Which operations can operate on C's?

In-range of: Which operations result in C's. when run?

Views: How can we view some X as if it were a C?

Intuitions: What abstract, analogic representations are
Known for C?

Analogies: Are there any similar concepts?

Conjec's,: What are some potential theorems involving C?

Definitions: How can we tell if x is an example of C?

Algorithms: What exactly do we do if we want to
execute the operation C on a given argument?

Domain/Range: What kinds of arguments can operation C
be executed on? What kinds of values will it return?

Worth: How valuable is C? (overall, aesthetic, utility, etc.)

Interestingness: What special features can make a C
especially interesting? Especially boringg

In addition, each facet F of concept C can possess a few
little subfacets which contain heuristics for dealing with
that facet of C's:

F.Fillin: What are some methods for filling in new entries
for facet F of a concept which is a C?

F.ChecK: How do we verify/debug potential entries?

F.Suggest: If AM bogs clown, what are some new tasKs
(related to facet F of concept C) to consider doing?
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In the Lisp implementation of AM, each (oncopt is
maintained as an atom with an attribute/value list
(property list). Each facet, and its list of entries is just a
property and its associated value. As an example, here is
a rendition of the Sets concept. It is meant to correspond

to the notion of a collection of elements.

Vamelsl: Set, Class, Collertinn
[ Yelimitions:
anrsrve: & (8)

[S4} or Ser Debhmbon (RemovelAny anemie r{SL81)]
Keeursave goick: 3 (8] [8=1] ar Sev.Delinivon (CDRIS)H]
Winek: 2 (8) [Mareh 8 with {1

Specmhizations: Finpty- set, Nonempty-ser, Smpleton
Generaliaatione: Unordered-Sinuctuie, Cobllertian,
Strveture-with-ne-imultiple clemente-allowed
Fatamples:
Typmreals {11, {AL {ABL (3]
Barvely: J1,0 {A, 141G, 1A, G, (3300, (B LA TN
Not-ruite: {AAL, (} I
Fenhie: <4,1,4,1+
Coangee™s: Al unorderved. sirmctnres are sets.
Ini witions: GCeatnetrie: Ve diageans
Aualapiest {sel, set nperations) = {hel, lisl aperalions}
i Wartli: 600 [on & geale ol O - 1000]
View;
Preedieate: 3 (P} {xe DomamiP) | Pl
Strueture: d (N}
i Fatase—m-hiaces{Sariiemove umltple adements{SH)
| Sugpest: 1P is anonleresting mealvale aver X,
Then eansuler §fxeX @ ')}
lll domain -nf: lTnmn, Jutereectwn, Sei-diTerenee, '\1|ht,{t
Memher, Cartesan-prad, Sel u|||.1h|v
|II vange-nf: 1lmon, |Iltllsm1 "-:I |I1||nmu, Sahislying

To decipher the Definitions facet, there are a few things
you must know. Facet F of concept C will occasionally be
abbreviated as C.F. In those cases where F is "executable",
the notation CF will refer to applying the corresponding
function. Go the first entry in the Definitions facet is
recursive because it contains an embedded call on the
function Set.Definition. Since there are three separate but
equivalent definitions, AM may choose whichever one it
wants when it recurs. AM can choose one via a random
selection scheme, or always try to recur into the same
definition as it was just in, or perhaps suit its choice to the
form of the argument at the moment. All concepts possess
executable definitions (lisp predicates), though not
necessarily effective ones. When given an argument x,
Set.definition will return True, False, or will eventually be
interrupted by a timer (indicating that no conclusion was
reached about whether or not x is a set).

facets must be
is concerned with

The Views, Intuitions, and Analogies
distinguished from each other. Views
transformations between two specific concepts (e.g., how
to view any predicate as a set, and vice versa). An entry
on the Analogies facet is a mapping from a set of concepts
to a sef of concepts (e.g., between {bags, hag-union, bag-
intersection,...} and {numbers, addition, minimum,...!; or
between {primes, factoring, numbers...} and {simple groups,
factoring into subgroups, groups...}). Intuitions deals with
transformations between a bunch of concepts and one of a
few large, standard scenarios (e.g., intuit the relation ">" as
playing on a see-saw; intuit a set by drawing a Venn
diagram). Intuitions are characterized by being (i) opaque
(AM cannot introspect on them, delve into their code), (ii)
occasionally fallible, (iii) very quick, and (iv) carefully
handcrafted in advance (since AM can not pick up new
intuitions via metaphors to the real world, as we can).

Since "Sets" is a static concept, it had no Algorithms facet
(as did, e.g., "Set-union"). The Algorithms facet of a concept
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contains a list of entries, a list of equivalent algorithms.
Each algorithm must have three separate parts:

1. Descriptors: Recursive, Linear, or Iterative? Quick or
Slow? Opaque or Transparent? Destructive?
Relators: Is, this just a special case of some other
concept's algorithm? Which others does this one call
on’ is this similar to any other algorithms?
Program: A small, executable piece of Lisp code.
may be used for actually "running" the algorithm;
may also be inspected, copied, reasoned about, etc.
There arc multiple algorithms because different ones have
different properties: some are very quick in some cases,
some are always slow but are very cleanly written and
hence easier to reason about, etc.

2.

It
it

Another facet possessed only by active concepts s
Domain/range. It is a list of entries, each of the form
D1 D2... Di-->R>, which means that the concept takes a list

of arguments, the first one being an example of concept

D1, the second of D2,..., the last argument being an example
of concept Di, and if the algouthm (any entry on the
Algorithms facet) is run on this argument list, then the

value it returns will be an example of concept R. We may

say that the Domain of the concept is the Cartesian
product D1 xD2x...xDi, and that the Range of the concept is
R. for example, the Domain/iange of Set-union s

* Sets Sets -* Sets~>; Set-union takes a pair of sets as its
argument list, and returns a set as its value.

Once the representation of Knowledge is settled, there
remains the actual choice of what knowledge to put into
the program initially. One hundred elementary concepts
wore selected, corresponding roughly to what Piaget might
have called "prenumerical knowledge". Figure J presents a
graph of these concepts, showing their interrelationships
of Genoralization/Specialiation and Fxamples/Isa's. There

is much static; structural knowledge (sets, truth-values,
conjectures...) and much knowledge about simple activities
(boolean relations, composition of relations, set

operations,...). Notice that there is no notion of proof, of
formal reasoning, or of numbers or arithmetic.

2.2. TOP-LEVEL CONTROL: THE AGENDA

AM's basic activity is to find new entries for some facet of
some concept. But which particular one should it choose to
develop next? Initially, there are over one hundred
concepts, each with about twenty blank facets; thus the
"space" from which to choose is of size two thousand. As
more concepts get defined, this number increases. |IPs
worth having AM spend some time deciding which basic
task to work on next, for two reasons: most of the tasks
will never get explored, and only a few of the tasKs will
appear (to the human user) rational things to work on at
the moment.

Much informal expert Knowledge is required to constrain
the search, to quickly zero in on one of these few very
good tasks to tackle next. This is done in two stages:

1. A list of plausible facet/concept pairs is maintained.
No task can get onto this "agenda” unless there is
some reason why working on that facet of that

concept would be worthwhile.

. Fach task on this agenda is assigned a priority rating,
based on the number (and strengths) of reasons
supporting it. This allows the entire agenda to be
kept ordered by plausibility.

The first of these constrainings is much like replacing a

legal move generator with a plausible move generator, in a
heuristic search program, The second kind of constraint is
akin to using a heuristic evaluation function to select the

Systems-4: Lenat
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hedt move from among the good enes.
ontry on the agenda, a {ak:

Here i a typical

s Activity: Fill in some entries '

1 Facet: for the GENERALIZATIONS facet '
Concept: of the PRIMES roncept

| Reasons: hecaune |

: (1) There is only | krnown gentl, of Primes, so far,
{?2) The worth rating of Primex in now very high, l
| {3) Focus of attention: AM just worked on Primes,
{1} Very few numbers are primes; a slightly more
plentiful contept may he more inleresting, ]
350 [pn a scale of 0 - 1000] |

1 Priqrity_:_ ) L

The actual top-level (ontrol policy is to plucK the top task
(highest priority rating) from the agenda, and then execute
it. While a task executes, some new bisks may he proposed

(and merged into the agenda), some new concept', may get
created, and (hopefully) some entries for the specified
facet of the specified concept will he found and filled in.

Once a task ir. chosen, the priority rating of that task now
serves a new function: it is taken as an estimate of how
much computational resource to devote to working on this
task. 1 he task above, in the box, might he allotted 35 cpu
seconds and 350 list cells, because its rating was 350.
When either resource is exhausted, work on the task halts.
The task is removed from the agenda, and the cycle begins
anew (AM starts working on whichever task is now at the
top of the agenda).

2.3. LOW-LEVEL CONTROL: THE HEURISTICS

After a task is selected from the agenda, how is it
"executed"? A concise answer would be: AM selects
relevant heuristics and executes them; they satisfy the
task via side-effects. This really just splits our original
question into two new ones: How are relevant heuristics
located? What does it mean for a heuristic to be executed

and to achieve something?

2.3.1 How Relevant Heuristics are Located

Each heuristic is represented as a condition/action rule.
The condition or left-hand-side of a rule tests to see
whether the rule is applicable to the task on hand. The
action or right-hand-side of the rule consists of a list of

actions to perform if the rule is applicable. Eg.,
IF the cunent task is to check examples of a concept X,
and (Forsome Y) Y is a generahzation of X,
and Y has al least 10 known examples
and all examples of Y are also examples of X,
THKN conjecture: X is really no more speciali/.ed than Y,
and add that conjecture as a new entry on the
Kxamples facet of the ConJOCK concept,
and add the following task to the agenda:
"Check examples of Y"
for this reason: Y may analogously turn out to be
equal to one of its supposed genetalizations.

It is the heuristics" right hand sides which actually
accomplish the selected task; that process will be
described in the next subsection. The left sides are the

relevancy checkers, and will be focussed on now:

Syntactically, the left side must be a predicate,
function which always returns True or False. It must be a
conjunction P1AP2AP3A,. of smaller predicates Pi, each of
which must be quick and must have no side effects. Here
are some typical conjucts which might appear inside a left
hand side:

a Lisp

Spoclali
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Over half of the current task's tunc allotment, is used up;

There are some known examples of Structures;

Some known generalization of the current concept (the
concept mentioned as part o| the current task) has
a completely empty Kxamplcs facet;

A task recently worked on had the form "Fill in facet F
of C", for any F, where C, is the current concept;

The user has used this program at least once he fore;

It turned out that the laxity of constraints on the form of
the heuristic rules proved excessive: it made it very
difficult for AM to analyze and modify its own heuristics.

from a "pure production system" viewpoint, we have
answered the question of Ilocating relevant heuristics.
Namely, we evaluate the left sides of all the rules, and see
which ones respond "True". But AM contains hundreds of
heuristics, and repeatedly evaluating each one's condition
would use up tremendous amounts of time. AM is able to
quickly select a set of potentially relevant rules, rules
whose left sides are then evaluated to test for ftrue
relevance. The secret is that each rule is stored
somewhere a propos to its "domain of applicability". The
proper place to store the rule is determined by the first
conjunct on its left hand side. Consider this heuristic:

IF the riitTr.nl ta*k \* to find examples of activity F,
and a fast algorithm for computing F is known,
THEN one.way to get examples of F is to run F on
landomly chosen examples of the Domain of F.
The very first conjunct of a rule's left side is always
special. It specifics the domain of applicability (potential
relevance) of the heuristic, by naming a particular facet of
a particular concept to which this rule is relevant (in the
above rule, the domain of relevance is therefore the

AM uses such first
A potentially relevant rule

Examples facet of the Activity concept).
conjuncts as pre-precondilions:
can be located by its first conjunct alone. Then, its left
hand side is fully evaluated, to indicate whether it's truly
relevant. Here are a few typical expressions which could
be first conjuncts:

The current task (the one just selected from the agenda)
is of the form "(duck the Domain/range facet of
concept X", where X is some surjectivc function;

The current task matches "Fill in boundary examples of
X", where X is an operation on pairs of sets;

The current task is "Fill in examples of Primes";

The key observation is that a heuristic typically applies to
all examples of a particular concept C. The rule above has
C Activity; it's relevant to each individual activity.

When a task is chosen, it specifies a concept C and a facet
F to be worked on. AM then "ripples upward" to gather
potentially relevant rules: it looks on facet F of concept C
to see if any rules are tacked on there, it looks on facet F

of each generalization of C, on each of their
generalisations, etc. If the current task were "Check the
Domain/range of Union-o-Union , then AM would ripple

upward from Union-o-Union, along the Generalization facet
entries, gathering heuristics as it went. The program
would ascertain which concepts claim Union-o-Union as one
of their examples. These concepts include Compose-with-
self, Compose, Operation, Active, Any-concept, Anything.
AM would collect heuristics that tell how to check the
Domain/range of any composition, how to deal with
Domain/range facets of any concept, etc. Of course, the

This operation is the result of composing set-union with
itself. It performs X (x,y,z) xu(yuz).
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further out it ripples, the more general (and hence weaker)
the heuristics tend to be. Here is one heuristic, tacked
onto the Domain/range facet of Operation, which would be
garnered if the selected task were "Check Domain/range of
Union o-Union":

IF the ninnut task is "Check the Domain/range of F",
and an entry on that facet has the form <D D...1) -> H>,
and concept R is a generalization of rnncrpl 1),

THKN it is worth spending time checking whether or not
the range of F rnight he simply 1), instcad of R.

Suppose one entry on Union-o -Union's Domain/range facet
was "<Nonempty-sets Nonempty-sets Nonempty-sets -+
Sets>". Then the above heuristic would be truly relevant
(all three conjuncts on its left hand side would be
satisfied), and it would pose the question: Is the union of
three nonempty sets always nonempty? Empirical evidence
would eventually confirm this, and the Domain/range facet
of Union-o-Union would then contain that fact,

Merc is another way to look at the heuristic-gathering
process. All the concepts known to AM are arranged in a
big hierarchy, via subsetof links (Specializations) and
element-of links (Isa). Since each heuristic is associated
with one individual concept (its domain of applicability),
there is a hierarchy induced upon the set of heuristics.
Heritability properties hold: a heuristic tacked onto concept
C is applicable to working on all "lower" concepts. This
allows us to efficiently analogically access the relevant
heuristics simply by chasing upward links in the hierarchy.
Note that the task selected from the agenda provides an
explicit pointer to the "lowest" -- most specific concept;
AM ripples upward from it. Thus concepts are gathered in
order of increasing generality; hence so are the heuristics.

Below are summarized the three main points that comprise
AM's scheme for finding relevant heuristics in a "natural”
way and then using them:

1. Fach heuristic is tacked onto the most general
concept for which it applies: it is given as large a
domain of applicability as possible. This will maximize
its generality, while leaving its power untouched.

2. When the current task deals with concept C, AM
ripples upward from C, tracing along Generalization
and lIsa links, to quickly find all concepts which claim C
as one of their examples. Heuristics attached to all
such concepts are potentially relevant.

3. All heuristics are represented as condition/action
rules. Once the potentially relevant rules are located
(in step 2), AM evaluates eaclVs left hand side, in
order of increasing generality. The rippling process
automatically gathers the heuristics in this order.
Whenever a rule's left side returns True, the rule is
known to be truly relevant, and its right side is
immediately executed.

2.3.2 What Happens When Heuristics Are Executed

When a rule is recognized as relevant, its right side is
executed. How does this accomplish the chosen task?

The right side, by contrast to the left, may take a great
deal of time, have many side, effects, and the value it
returns is always ignored. The right side of a rule is a
series of little Lisp functions, each of which is called an
action. Semantically, each action performs some
processing which is appropriate in some way to the kinds
of situations in which the rule's left side would have been
satisfied (returned True). The only constraint which each
action must satisfy is that it have one of the following
three kinds of side-effects, and no other kinds:
1. It suggests a new task to add to the agenda.

Specialized Systens-4:

2. It dictates how some new concept is to be defined.

3. It adds some entry to some facet of some concept.
Dear in mind that the right side of a single rule is a List of
such actions. Let's now treat these three kinds of actions:

73.7A Heuristics Suggest New Tasks

The left side of a rule triggers. Scattered among the list of
"things to do" on its right side are some suggestions for
future tasks. These new tasks are then simply added to
the agenda. The suggestion for the task includes enough
information about the task to make it easy for AM to
assemble its parts, to find reasons for it, to numerically
evaluate those reasons, etc. For example, here is a typical
rule which proposes a new task. It says to generalize a
predicate if it appears to be returning True very rarely:

IF the current task was "Fill in examples of X",

and concept X is a Predicate,

and over 100 items are known in the domain of X,

and at least 10 cpu sees, have been spent so far,

and X has returned True at least once,

and X returned False over 20 times as often as True,
THKN add the following task to the agenda:

"Fill in gcneraltations of X"

for the following reason:

"X is rarely satisfied; a slightly less restrictive

concept might he much more mlcresting”
This reason has a rating which is the False/True ratio

Let's see one instance where this rule was used. AM
worked on the task "Fill in examples of List-Equality". One
heuristic (displayed in Sec. 2.3.1, and again in detail in Sec.
2.3.2.3) said to randomly pick elements from that
predicate's domain and simply run the predicate. Thus AM
repeatedly plucked random pairs of lists, and tested
whether or not they were equal. Needless to say, not a
high percentage returned True (in practice, 2 out of 242).
This rule's left side was satisfied, and it executed. Its right
side caused a new task to be formulated: "Fill in
generalizations of List-Equality". The reason was as stated
above in the rule, and that reason got a numeric rating of
240/2 = 120. That task was then assigned an overall
rating (in this case, just 120) and merged into the agenda.
It sandwiched in between a task with a rating of 128 and
one with a 104 priority rating. Incidentally, when this task
was finally selected, it led to the creation of several
interesting concepts, including the predicate which we
might call "Same-length".

73.7,2 Heuristics Create New Concepts

One of the three kinds of allowable actions on the right
side of a heuristic rule is to create a specific new concept.
For each such creation, the heuristic must specify how the
new concept is to be constructed. The heuristic states the
Definition facet entries for the new concept, plus usually a
few other facets' contents. After this action terminates,
the new concept will "exist". A few of its facets will be
filled in, and many others will be blank. Some new tasks
may exist on the agenda, tasks which indicate that AM
ought to spend some time filling in some of those facets in
the near future. Here is a heuristic rule which results in a
new concept being created:

IF the current task was "Fill in examples of F"
and F is an operation, from domain A into range B,
and more than 100 items are known examples of A,
and more than 10 range items (examples of B) were
found by applying F to these domain elements,
and at least one of these range items 'b' is a distin-
guished member (especially, an extremum) of B,
THKN for each such 'b'B, create the following concept:
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DEFINFUEON: » {a) Fla) ix a W

GENFERALIZATVIONS: A

WORTH: AverapefWorthiA), Warth{®),
Worth(h), {Fxmmples{BI)

INTIKREST: Any ennsecliure mvalving bath

... Ahix eoneep_amd ewher K or_nvorsetf)

NAME: F-inverge-ofl-h . ‘

and the reason for this neation is: "lt's worth
investigating A's whieh havr unusual F-values"
and add five new tasks to the anemia,
of the form "Kill in faeet x of F-inveisr-oi-h"
where x is Coinertures, Generlions,
Specialization, Kxamples, and lIsa's;
for the following reason:
"This conecpt was newly synthesized; it is eru-
rial lo find where it 'fits in' to the hierarehy"
Thr reason's rating is just Worlh(Finverse-of-b).

One use of this heuristic was when thr current task was
"F ill in examples of Divisors~of'. The heuristics left side
was satisfied because: Divisors of is an operation (from
Numbers to Sets of numbers), and far more than the
required 100 different numbers are known, and more than
10 different sets of factors were located altogether, and
some of them were in fact distinguished by being extreme
kinds of sets (e.g., singletons, empty sels, doubletons,
tripletons,...). After its left side triggered, the right side of
the rule was executed, four new concepts were created
immediately. Here is one of them:

NAMK: Divisors-ol - InvrrseoK Ooubleton j
OKFINITION: X (a) Divisors of(a) is a Don Melon
GENKKAU/ATIONS:
WORTH: 100
INTKRKST: Any conjecture involving both
this eoneept and eilher Divisors-of or Times |

Numbers

This is a concept representing a certain class of numbers,
in fact the numbers we call "primes". The heuristic rule is
of course applicable to any kind of operation, not just
numeric ones. As another instance of its use, consider what
happened when the current task was 'Till in examples of
Set-intersect”". This rule caused AM to notice that some
pairs of sets were mapping over into the most extreme of
all sets: the empty set. The rule then had AM define the
new concept we would call "disjointness": pairs of sets
having empty intersection.

There is just a tiny bit of "theory" behind how these
concept-creating rules were designed. A facet of a new
concept is filled in immediately iff both (i) it's trivial to fill
in at creation-time, and (ii) it would be very difficult to fill
in later on. The following facets are typically filled in right
away: Definitions, Algorithms, Domain/range, Worth. Each
other facet is either left unmentionod by the rule, or else
is explicitly made the subject of a new task which gets
added to the agenda. For instance, the heuristic rule
above would propose many new tasks at the moment that
Primes were created, including "Fill in conjectures about
Primes", "Fill in specializations of Primes", etc.

23.23 Heuristics Fill in Entries for a Specific Facet

If the task plucked from the agenda were "Fill in examples
of Set-union", it would not be too much to hope for that by
the time all the heuristic rules had finished executing, some
examples of that operation would indeed exist on the
Examples facet of the Set-union concept. Let's see how
this can happen.

AM starts by rippling upward from Set-union, looking for
heuristics which are relevant to finding examples of Set-

Specialized Svstems-4:

union (there are no such rules), relevant to finding
examples of Set-operations, of Operations, of any Activity,
of any Concept, of Anything. Here is one rule applicable to
any Activity:

IF the curreut task is to fill in examples of F,
and F is an operation, say with domain I),
and there is a fast known algorithm for F,
THKN one way to get examples of F is lo run F'S
algorithm on randomly chosen examples of I).

Of course, in the lisp implementation, this situation-action
rule is not coded quite so neatly. It would be more
faithfully translated as follows:

IF CURR-TASK malehes (FILLIN EXAMPLES F*-anything),
and F isa Aetivily,
and lLhe Algorithms farel of F is not blank,
THKN carry out the following proredure:
Find the domain of F, and rail it D;
Find examples of D, and rail them K;
Find a fast algorithm to compute F; call it A;
Repeatedly:
4a. Choose any member of E, and call it KI.
4b. Run A on E1, and call the result X.
4e. Check whether <E1,X> satisfies the definition
of F.
4d. If so, then add 'I'll -> X> to the Kxarnples
facet of F.
4e. If not, then add <K1 -> X> to the Non-
examples facet of F.

ron o

Let's see exactly how this rule found examples of Set-
union. Step (1) says to locate the domain of Set-union.
The facet labelled Domain/range, on the Set-union concept,
contains the entry (SET SFT -> SLT), which indicates that
the domain is a pair of sets. That is, Set-union is an
operation which accepts (as its arguments) two sets.

Since the domain elements are sets, step (?) says to locate
examples of sets. The facet labelled Examples, on the Sets
concept, points to a list of about 30 different sets. This
includes {7}, {A,B,C,D,F), {}, {A,{fB}},...

Step (3) involves nothing more than accessing some entry
tagged with the descriptor "Quick" on the Algorithms facet
of Set-union. One such entry is a recursive lisp function of
two arguments, which halts when the first argument is the
empty set, and otherwise pulls an element out of that set,
Set-inserts it into the second argument, and then recurs on
the new values of the two sets. For convenience, we'll
refer to this algorithm as UNION.

We then enter the loop of Step (4). Step (4a) has us
choose one pair of our examples of sets, say the first two
(7} and (A,B,C,D,E). Step (4b) has us run UNION on these
two sets. The result is {A,B,C,D,F,7}. Step (4c) has us grab
an entry from the Definitions facet of Set-union, and run it.
A typical definition is this formal one:

(X (81 82 83)
(AND
(For all x in SI, x is in S3)
(For all x in S2, x is in S3)
(For all x in S3, x is in S1 or x is in S2))))

It is run on the three arguments S1={Z}, S2={A,B,C,D,E},
S3~{A,B,C,D,E,Z}. Since it returns "True", we proceed to
Step <4d). The construct <{Z}, {AB,C,D,E} -> {A,B,C,D,E,Z}>
is added to the Examples facet of Set-union.

At this stage, control returns to the beginning of the Step
(4) loop. A new pair of sets is chosen, and so on. The
loop ends when either the time or space allotted to this

Lenat



rule is exhausted. AM would then break away at a "clean"
point (just after finishing a cycle of the Step (4) loop) and
would move on to a new heuristic rule for filling in
examples of Set-union.

3. RESULTS

3.1. EXCERPT OF THE 'AM' PROGRAM RUNNING

Repeatedly, the top task is plucked from the agenda, and
heuristics are executed in an attempt to satisfy it. AM has
a modest facility that prints out a description of these
activities as they occur. Here is a tiny excerpt:

** Task: ** Fill in Examples of the concept "Divisors-of".
3 Reasons:
(1) No known examples of Divisors-of yet.
(2) Times (related to Divisors-of) is now v. int.
(3) Focus of attention: AM just defined Divisors-of.
26 examples found, in 9 secs, e.g., Divisors- of(6)={1,2,3,6}.

** Taski ** Consider nos. having small sets of Divisors-of.
2 Reasons:
(1) Worthwhile to look for extreme cases.
(2) Focus: AM just worked on Divisors-of.
Filing in examples of numbers with 0 divisors.
0 examples found, in 4.0 seconds.
Conjecture: no numbers have precisely 0 divisors.
Filling in examples of numbers with 1 divisors.
J examples found, in 4 sees, e.g., Divisors of(l) = {1J.
Conjecture: 1 is the only number with exactly 1 divisor.
Filling in examples of numbers with 2 divisors.
24 examples found, in 4 sees. Divisors- of (13)={1,13}.
No obvious conjecture. May merit more study.
Creating a new concept: "Numbers-with-2-divisors".
Filling in examples of numbers with 3 divisors.
11 examples found, in 4 secs. Divisors-of(49)={1,7,49}.
All nos. with 3 divisors are also Squares. Unexpected!.
Creating a new concept: "Numbers-with-3-divisors".
** Task: ** Consider square-roots of Nos-with-3-divisors.
2 Reasons:
(1) Numbers-with-3 divisors unexpectedly turned
out to all be Perfect Squares as well.
(?) Focus: AM just defined Nos-with-3-divisors.
All square-roots of Numbers-with-3 -divisors seem to be
Numbers-with-2-divisors.
E.g., Divisors(169) = Divisors(13) = {1,13}.
Even the converse of this seems empirically to be true.
The chance of coincidence is below acceptable limits.
Boosting the Worth rating of both concepts.
** TasK:** Consider the squares of Nos-witlv-3-divisors.
3 Reasons:
(1) Squares of Nos-with-2~divisors were v. int.
(2) Square-roots of Nos-with-3-divisors were int.
(3) Focus: AM just worked on Nos-with-3-divisors.

3.2. OVERALL PERFORMANCE

Now that we've seen how AM works, and we've been
exposed to a bit of "local" results, let's take a moment to
discuss the totality of the mathematics which AM carried
out. AM began its investigations with scanty knowledge of
a hundred elementary concepts of finite set theory (see
Fig. 1). Most of the obvious set-theoretic concepts and
relationships were quickly found (e.g., de Morgan's laws;
singletons), but no sophisticated set theory was ever done
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(e.g., diagonalization). Rather, AM discovered natural
numbers and went off exploring elementary number
theory. Arithmetic operations were soon found (as analogs

to set-theoretic operations), and AM made rapid progress
in divisibility theory. See Fig. 2. Prime pairs, Diophantine
equations, the unique factorization of numbers into primes,
Goldbach's. conjecture -- these were some of the nice
discoveries by AM. Many concepts which we know to be
crucial were never uncovered, however: remainder, gcd,
greater-than, infinity, proof, etc. These "omissions", could
have been discovered by the existing heuristic rules in AM.
1 he paths which would have resulted in their definition
were simply never rated high enough to explore.

All the discoveries mentioned (including those in Fig. 2)
were made in a run lasting one cpu hour (Interlisp+ 100k,
Sumex POP-10 KI). Two hundred jobs in toto were selected
from the agenda and executed. On the average, a job was
granted 30 cpu seconds, but actually used only 18 seconds.
for a typical job, about 35 rules were Ilocated as
potentially relevant, and about a dozen actually fired. AM
began with 115 concepts and ended up with three times
that many. Of the synthesized concepts, half were
technically termed "losers" (both by the author and by
AM), and half the remaining Ones were only marginal.

Although AM different
of great

fared well according to several
measures of performance (see Section 3.4),
significance are its Limitations. As AM ran longer and
longer, the concepts it defined were further and further
from the primitives it began with. E.g., "prime-pairs" were
defined using "primes" and "addition", the former of which
was defined from "divisors-of", which in turn came from
"multiplication", which arose from "addition", which was
defined as a restriction of "union", which (finally!) was a
primitive concept that we had supplied (with heuristics) to
AM initially. When AM subsequently needed help with
prime pairs, it was forced to rely on rules of thumb
supplied originally about uniomng. Although the heritability
property of heuristics did ensure that those rules were
still valid, the trouble was that they were too general, too
weak to deal effectively with the specialized notions of
primes and arithmetic.

f or instance, one general rule indicated that AuB would be
interesting if it possessed properties absent both from A
and from 0. This translated into the prime-pair case as "I
p+q=r, and p,q.r are primes. Then r is interesting if it has
properties not possessed by p or by q." The search for
categories of such interesting primes r was of course
barren. It showed a fundamental lack of understanding
about numbers, addition, odd/even-ness, and primes.

The key deficiency was the lack of adequate mera-rules
['Davis 76]: heuristics which reason about heuristics: keep
track of their performance, modify them, create new ones,
etc.

Aside from the preceding major limitation, most of the
other problems pertain to missing knowledge: Many
concepts one might consider basic to discovery in math are
absent from AM; analogies were under-utilized; physical
intuition was hand-crafted only; the interface to the user

was far from ideal; etc. A large effort is underway this
year at Carnegie-Mellon University, comprised of Greg
Harris, Doug Lenat, Elaine Rich, Jim Saxe, and Herbert

Simon, to overcome these limitations.
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3.3. EXPERIMENTS_WJTHJAM'

One valuable aspect of AM is that it is amenable to many
kinds of experiments. Although AM is too ad hoc for
numeric results to have much significance, the qualitative
results of such experiment', may have some Vvalid
implications for math research, for automating math
research, and for designing "scientist assistant" programs.

3.3.1 Must the WORTH numbers be finely tuned?

Each of
author,

the 115 initial concepts had, supplied by the
a rating number (0-1000) signifying its overall
worth. The worth ratings affect the overall priority values
of tasks on the agenda. Just how sensitive is AM*s
behavior to the initial settings of the Worth numbers?

To test this, a simple experiment was performed. All the
concepts' Worth facets were set to 200 initially. By and
large, the same discoveries were made as before. But
there were now long periods of blind wanderings
(especially near the beginning of the run). Once AM
hooked into a line of productive developments, it advanced
at the old rate. During such chains of discoveries, AM was
guided by massive quantities of symbolic reasons for the
tasks it chose, not by nuances in numeric ratings. As these
spurts of development died out, AM would wander around
again until the next one started.

3.3.2 How Finely Tuned is the Agenda?

The top few candidates on the agenda almost always
appear to be reasonable things to do at the time. But
what if, instead of picking the top-rated task, AM selected
one randomly from the top 20 tasks on the agenda? In
that case, AM's rate of discovery is slowed only by about a
factor of 3. But the apparent "rationality " of the program
(as perceived by a human onlooker) disintegrates.

3.3.3 How Valuable is the Presence of Symbolic 'Reasons'?

Only one effect of note was observed: When a task is
proposed which already exists on the agenda, then it
matters very much whether the task is being suggested for
a new reason or not. |If the reason is an old, already-
known one, then the priority of the task on the agenda
shouldn't rise very much. But if it is a brand new reason,

then the task's rating should be boosted tremendously.
The importance of this effect argues strongly in favor of
having symbolic justification of the rank of each task in a

priority queue, not just "summarizing" each task's set of
reasons by a single number.

3.3.4 What if Certain Concepts are Excised?

As expected, eliminating certain concepts did seal off whole
sets of discoveries to the system. For example, excising
[quality prevented AM from discovering Cardinality. One
surprising result was that many common concepts get
discovered in several ways. For instance, multiplication
arose in no fewer than four separate chains of discoveries.

3.3.5 Can AM Work in the New Domain of Plane Geometry?

One demonstration of AM's generality (e.g., that its
"Activity" heuristics really do apply to any activity) would
be to choose some new mathematical field, add some
concepts from that domain, and then let AM loose to
discover new things. Only one experiment of this type was
actually carried out on the AM program.

twenty concepts from elementary plane geometry were
defined for AM (including Point, Line, Angle, Triangle,
[quality of points/lines/angles/triangles). No new
heuristics were added to AM.

AM was able to find examples of all the supplied concepts,
*md to use the character of such empirical data to
determine reasonable directions to proceed in its research.
AM derived the concepts of congruence and similarity of
triangles, plus many other well-known concepts. An
unusual result was the repeated derivation of the concept
of "timberline": this is a predicate on two triangles, which
is true iff they share a common vertex and angle, and if
their opposite sides are parallel. AM also came up with a
cute geometric interpretation of Goldbach's conjecture:
Any angle (0 - 180°) can be approximated to within 1° as
the sum of two angles each of a prime number of degrees.

3.4. EVALUATING THE 'AM' PROGRAM

We may wish to evaluate AM using various criteria. Some

obvious ones, with capsule results, appear below:

1. By AM's ultimate achievements. Besides discovering
many well-known useful concepts, AM discovered some
which aren't widely known: maximally-divisible numbers,

numbers which can be uniquely represented as the sum of
two primes, timberline.

?. By the character of the differences between initial and
final states. AM moved all the way from finite set theory
to divisibility theory, from sets to numbers to interesting
kinds of numbers, from skeletal concepts (none of which
had any Examples filled in) to completed concepts.

'3, By the quality of the route AM took to accomplish this
mass of results. Only about half of AMY forays were
dead-ends, and most of those looked promising initially.

4. By the character of the human—machine interactions.
AM was never pushed far along this dimension.

5. By its informal reasoning abilities. AM was able to
quickly "guess" the truth value of conjectures, to estimate
the overall worth of each new concept, to zero in on
plausible things to do each cycle, and to notice glaring
analogies (sometimes).

6. By the results of experiments and the fact
experiments could be performed at all on AM.

that

7. By future implications of this project.
whether this kind of work will

Only time will tell
impact on how mathematics

is taught (e.g., explicit teaching of heuristics?), on how
empirical research is carried out by scientists, on our
understanding of such phenomena as discovery, learning,

and creativity, etc.

8. By comparisons to other, similar systems. Some of the

techniques AM uses were pioneered earlier: e.g,

prototypical models [Gelernter 63], and analogy [Evans

68], [Kling 71]. There have been many attempts to
Specialized Systems-4: Lenat
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incorporate heuristic knowledge? into a theorem prover
[Wang 60], [Guard 69], [Bledsoe 71], [Brolz,-74], [Boyor &
Moore 7b). Most of the apparent differences, between
them and AM vanish upon close examination: The goal-
dtiven control structure of these systems is a compiled
form of AM's; rudimentary "focus of attention" mechanism.
"I he fact that their overall activity is typically labelled as
deductive is a misnomer (since constructing a difficult proof
is usually in practice quite inductive). Even the character

of the inference processes are analogous: The provers
typically contain a couple binary inference rules, like
Modus Ponens, which are relatively isky to apply but can
yield hip results; AM's few "binary" operators have the

same characteristics: Compose, Canonize, Logically-combine
(disjoin and conjoin). The deep distinctions between AM
and the "heurstic theorem provers" are these: the
underlying motivations (heuristic modelling vs. building
tools for problem solving), the richness of the knowledge
base (hundreds of heuristics vs. only a few), and the
amount of emphasis on formal methods.

Theory formation systems in any field have been few.
Meta-Dendral [Buchanan 7b] represents pethaps the best
of these. Rut even this system is given a fixed set of

templates for rules which it wishes to find, and a fixed

vocabulary of mass spectral concepts to plug into those
hypothesis templates; whereas AM selectively enlarges its
vocabulary of math concepts. Also, AM must gather its

own data, but this is much easier

chem.

in math than in organic

There has been very little published thought about
"discovery" from an algorithmic point of view; even clear
thinkers like Polya and Poincate' treat mathematical ability
as a sacred, almost mystic quality, tied to the unconscious.
The writings of philosophers and psychologists invariably
attempt to examine human performance and belief, which
are far more managable than creativity in t3ro. Amarel
[J 967] notes it may be possible to learn from "theorem
finding" programs how to tackle the general task of
automating scientific research. AM has been one of the
first attempts to construct such a program.

3.5. FINAL CONCLUSIONS

-=> AM s
heuristic

a demonstration that a few hundred general

rules suffice to guide an automated math
researcher as it explores and expands a large but
incomplete knowledge base of math concepts. AM
demonstrates that some aspects of creative research can
be effectively modelled as heuristic search.

structure based
each

-> This work has also introduced a control
upon an ordered agenda of small research tasks,
with a list of supporting reasons attached.

The main limitation of AM was its inability to synthesize
powerful new heuristics for the new concepts it defined.

-> The main successes were the few novel ideas it came up
with, the ease with which a new task domain was fed to
the system, and most importantly the overall
rational sequences of behavior AM exhibited.

Specialized
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FIGURE 1: Concepts Initially Given to AM FIGURE 2: Concepis Discovcvci by AM
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