
AUTOMATED THEORY FORMATION IN MATHEMATICS1 

Douglas B. Lenat 
Computer Science Department 

Carnegie-Mel lon Univers i ty 
Pi t tsburgh, Pa. 15213 

Abstract 

A program cal led " A M " is descr ibed which cai r ies on simple 
mathemat ics research : defining, and studying new concepts 
under the guidance of a large body of heuiist ic rules. The 
250 h e u r K t u s communicate via an agenda mechanism, a 
g loba l p r i o r i t y queue of small bisk', for the program to 
pei f o i m and teasons why each task is plausible (e.g., "Find 
PENCRAHZTION. of ' p r n e s ' , because turued out to be 
so useful a Conccpi"). Fach concept is an active, s t ruc tured 
know ledge module. One bund led vei y incomplete modules 
are in i t ia l ly supp l ied, each one corresponding to an 
e l emen ta r y set theoret ic concept (e.g., union). This 
p r o v i d e s a de f in i te but immense space which AM begins to 
e x p l o r e . In one boor, AM rediscovers hundreds of common 
concep ts ( inc luding s ingleton sets, natural numbers, 
a r i thmet i c ) and theorems (e.g., unique factor izat ion). 

of fu l ly automatic theo ry format ion in some scientif ic f ield. 
"1 his inc ludes t w o act iv i t ies: (i) discovering relat ionships 
among k n o w n concepts (e.g., by formal manipulations, or by 
no t i c ing regu la r i t ies in empir ical data), and (ii) def ining new 
concep ts for invest igat ion. Meta-Dendral [Buchanan 75 ] 
p e r f o r m s on ly the f i rst of these; most domain- independent 
concept learn ing programs (Winston 70] per form only the 
la t ter of these: whi le they do create new concepts, the 
in i t i a t i ve is not the i rs but rather is that of a human 
" t e a c h e r " who al ready has the concepts in mind. 

What we are descr ib ing is a computet program which 
de f ines new concepts, investigates them, notices 
regu la r i t i es in the data about them, and conjectures 
re la t i onsh ips b e t w e e n them. This new informat ion is used 
by the p rog ram to evaluate the newly -de f ined concepts, 
concen t ra te upon the most in terest ing ones, and i terate the 
e n t i r e process. This paper describes such a program: AM. 

1. INTRODUCTION 1.2. CHOICE OF DOMAIN 

1.1. HISTORICAL MOTIVATION 

Scient is ts o f t en face the dif f icult task of formulat ing 
non t r i v i a l research problems which are soluble. In most 
b r a n d i e s of science, it is usually easier to tackle a specific 
g i v e n p rob lem than to propose interest ing yet managable 
new ques t ions to invest igate. For example, contrast 
solving the Missionaries and Cannibals problem wi th the 
more i l l - de f i ned reasoning which led to inventing! it. The 
f i r s t t y p e of ac t iv i ty is formal izable and admits a deduct ive 
so lu t i on ; the second is induct ive and judgmental. As 
ano ther example , contrast proving a given theorem versus 
proposing it in the f i rs t place. 

A w e a l t h of AI research has been focussed upon the 
f o r m e r t y p e of ac t iv i ty : deduct ive problem solving (see, 
e.g., [B ledsoe 7 1 ] , [Nilsson 71 ] , [Newell & Simon 72]). 
A p p r o a c h e s to inductive inference have also been made. 
Some resea rche rs have t r ied to attack the problem in a 
comp le te l y domain- independent way (see, e.g., [Winston 
70 ] ) . Other AI researchers bel ieve that "exper t 
k n o w l e d g e " must be present if induct ive reasoning is to be 
done at the level which humans are capable of. Indeed, a 
f e w recen t AI p rograms have incorporated such knowledge 
( in the f o r m of judgmental rules gleaned f rom human 
e x p e r t s ) and successful ly carr ied out quite complex 
i nduc t i ve tasks: medical diagnosis [Shor t l i f fe 74 ] , mass 
s p e c t r a ident i f i ca t ion [Feigenbaum 71] , clinical dialogue 
[Dav is 7 6 ] , d i scovery of new mass spect roscopy rules 
[Buchanan 75 ] . 

Research in dist inct f ields of science and mathematics o f ten 
p roceeds s l ight ly d i f fe ren t l y . Not only are the concepts 
d i f f e r e n t , so are most of the power fu l heurist ics. So it was 
reasonab le that this f i rs t attempt should be l imited to one 
n a r r o w domain. Elementary mathematics was chosen, 
beeausc?: 

1. t h e r e are no uncerta int ies in the raw data (e.g., 
ar is ing f rom e r r o r f u l measuring devices). 

2. Reliance on expo r t s ' in t rospect ion is a power fu l 
techn ique for cod i fy ing the judgmental rules needed 
to w o r k e f fec t i ve ly in a f ield. By choosing a familiar 
f i e ld , i t was possible for the author to rely pr imar i ly 
on persona l in t rospect ion for such heurist ics. 

3. The more formal a science is, the easier it is to 
automate (e.g., the less one needs to use natural 
language to communicate information). 

4. A mathemat ic ian has the freedom to explore -- or to 
g ive up on -- whatever he wants to. There is no 
speci f ic p rob lem to solve, no f ixed "goal". 

5. Unlike some f ields (e.g., proposit ional logic), 
e l emen ta ry math research has an abundance (many 
hundreds ) of power fu l heuristic rules available. 

The l imi ta t ions of math as a domain are closely in te r tw ined 
w i t h its advantages. Having no ties to real wor ld data can 
be v i e w e d as a l iab i l i ty , as can having no clear " r igh t " or 
" w r o n g " behav ior . Since math has been worked on for 
mi l lcn ia by some of each cul ture 's greatest minds, it is 
un l i ke ly that a small e f fo r t like AM would make many 
s t a r t l i n g new discover ies. Nevertheless, i t was decided 
that the advantages ou twe ighed the limitations. 

The "next s t e p " in this progress ion o f tasks would be that 1 .3 I N I T I A L A S S U M P T I O N S A N D HYPOTHESES 

T hie work was supported in part by the Defense Advanced Research 
Projects Agency ( M 1 6 2 0 - 7 3 - C - 0 0 7 4 ) and monitored by the Air rorce 
Off ice of Scientific Research 

The AM p r o g r a m "got off the g round" only because a 
number of sweep ing assumptions were made about how 
math resea rch could be per fo rmed by a computer p rogram: 

1. V e r y l i t t le natura l language processing capabil i t ies are 
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r equ i r ed . As it runs, AM is monitored by a human 
"user". AM Keeps the user informed by instant iat ing 
Engl ish sentence templates. 1 he user's input is rare 
and can be successful ly s tereotyped. 

2 Formal reasoning (including proof) is not indispensable 
w h e n doing theory formation in elementary 
mathemat ics. In the same spir i t , we need not w o r r y in 
advance about the occurence of contradictions. 

3. Each mathematical concept can be represented as a 
list of facets (aspects, slots, parts, p roper t y / va lue 
pairs) . Tor each new piece of Knowledge gained, 
t he re wi l l be no t rouble in f inding which facet of 
wh ich concept it should he stored in. 

4. The basic act iv i ty is to choose some facet of some 
concept , and then t ry to fill in new entr ies to store 
t he re ; this wi l l occasionally cause new concepts to be 
de f ined . The h igh- level decision about which facet of 
wh ich concept to worK on next can be: handled by 
mainta in ing an "ordered agenda" of such tasKs. The 
techniques for actually car ry ing out a tasK are 
conta ined w i th in a large collection of heuristics. 

b. Each heur ist ic has a well d e f i n e d domain of 
app l icab i l i t y , which coincides perfect ly wi th one of 
AM's concepts. We say the heuristic "belongs to " that 
concept 

6. Heur ist ics super impose; they never interact s t rongly 
w i t h each other. If one concept CI is a special ization 
of concept C?, then C l ' s heurist ics are more power fu l 
and should he t r ied f i rst . 

7. The reasons suppor t ing a tasK (on the agenda of 
face t / concep t tasKs to be carr ied out) superimpose 
p e i f e c t l y . "they never change wi th time, and it maKes 
no d i f fe rence in what order they were noticed. It 
suf f ices to have a single, posit ive number which 
charac ter izes tire value of the reason. 

8. t h e tasKs on the agenda are completely independent. 
No tasK "waKes up" another. Only the general posit ion 
(near the top , near the bottom) is of any significance. 

9. The set of heur ist ics need not grow, as new concepts 
are d iscovered. All common-sense knowledge 
r e q u i r e d is assumed to be already present wi th in the 
i n i t i a l l y -g i ven body of heuristic rules. 

It is w o r t h repea t ing that all the above points are merely 
conven ien t falsehoods. Their combined presence made AM 
doab le (by one person , in one year). 

One point of agreeement between Wei/enbaum and 
l e d e r b e i g [ I e d e r b e r g 76] is that AI can succeed in 
au tomat ing only those activit ies for which there exists a 
" s t r o n g t h e o r y " of how that act ivi ty is done by people. 
Point #4 above is a claim that such a clean, simple model 
ex is ts for math research : a search process governed by a 
la rge co l lec t ion of houristic rules. Here is a simpli f ied 
summary of that model: 

1. the o rder in which a math textbook presents a 
t heo ry is almost the exact opposite of the order in 
wheh it war. actually developed. In a text , 
de f in i t ions and lemmata are given wi th no 
mot iva t ion , and they tu rn out to be just the ones 
requ i red for the next big theorem, whose proof 
magical ly fo l lows. But in real l i fe, a mathematician 
wou ld begin by examining some already-Known 
concepts , t r y i n g to f ind some regular i ty involving 
them, formulat ing those as conjectures to 
invest igate fu r the r , and using them to motivate 
some s impl i fy ing new def ini t ions. 

2. Each s tep the researcher taKes (see #1) involves 
choosing f rom a huge set of al ternat ives -- that is, 
search ing. He uses judgmental cr i ter ia (heurist ics) 
to choose the "bes t " al ternat ive. This saves his 
search f rom the combinator ial explosion. 

3. Non- fo rmal c r i te r ia (aesthetic interest ingness, 

empir ica l induct ion, analogy, ut i l i ty estimates) are 
much more important than formal methods. 

4. All such heurist ics can be v iewed as 
s i tua t ion /ac t ion ( IF / IHLN) rules. There is a common 
core of (a few hundred) heurist ics, basic to all 
f ie lds of math at all levels. In addit ion to these, 
each f ie ld has several specif ic, power fu l rules. 

5. Nature is metaphysical ly pleasant: It is fair, uni form, 
regu lar . Stat ist ical considerat ions are valid and 
valuable when t r y ing to f ind regular i ty in math 
data. Simpl ic i ty and synergy and symmetry abound. 

2. DESIGN OF THE 'AM' PROGRAM 
A pu re p roduc t ion system may be considered to consist of 
t h t e e components : data memory, a set of rules, and an 
i n t e r p r e t e r . Since AM is more or less a ru le-based system, 
it too can be considered as having three main design 
componen ts : how it represents math knowledge (its f rame-
l ike concep t / f ace ts scheme), how it enlarges its knowledge 
base (i ts col lect ion of heuristic rules), and how it controls 
the f i r i ng of these rules (via the agenda mechanism). These 
f o r m the sub jec ts of the fol lowing three subsections. 

2 .1 . REPRESENTATION OF CONCEPTS 

The task of the AM program is to define plausible new 
mathemat ica l concepts, and investigate them, Each concept 
is r e p r e s e n t e d internal ly as a bundle of slots or " facets". 
Each facet cor responds to some aspect of a concept, to 
some ques t ion we might want to ask about the concept. 
Since each concept is a mathematical ent i ty , the kinds of 
ques t ions One might ask are fair ly constant from concept to 
concept . A set of 2b facets was therefore f ixed once and 
for all. Below is that list of facets which a concept C may 
have. For each facet, we give a typical quest ion about C 
whic h it answers. 

Name: What shall wo call C when talking wi th the user? 
Genera l iza t ions: Which other concepts have less 

res t r i c t i ve (i.e., weaker) definit ions than C? 
Specia l isat ions: Which concepts satisfy C's def in i t ion plus 

some addit ional constraints? 
Examples; What things that satisfy C's definit ion? 
Isa's: Which concepts ' def ini t ions does C itself satisfy? 
l n -doma in of: Which operat ions can operate on C's? 
I n - range of: Which operat ions result in C's. when run? 
V iews : How can we view some X as if it were a C? 
In tu i t ions : What abstract, analogic representat ions are 

Known for C? 
Analog ies: Are there any similar concepts? 
Conjec's,: What are some potential theorems involv ing C? 
Def in i t ions : How can we tell if x is an example of C? 
A lgo r i t hms : What exact ly do we do if we want to 

execute the operat ion C on a given argument? 
Domain/Range: What kinds of arguments can operat ion C 

be executed on? What kinds of values wil l it return? 
W o r t h : How valuable is C? (overal l , aesthetic, u t i l i ty , etc.) 
In te res t ingness : What special features can make a C 

especia l ly interest ing? Especially bor ing 9 

In add i t ion , each facet F of concept C can possess a few 
l i t t le subfacets which contain heurist ics for dealing w i th 
that facet of C's: 

F.Fil l in: What are some methods for f i l l ing in new entr ies 
for facet F of a concept which is a C? 

F.ChecK: How do we ve r i f y / debug potent ial entr ies? 
F.Suggest: If AM bogs clown, what are some new tasKs 

( re la ted to facet F of concept C) to consider doing? 
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To dec ipher the Defini t ions facet, there are a few things 
y o u must know. Facet F of concept C wil l occasionally be 
a b b r e v i a t e d as C.F. In those cases where F is "executable", 
the no ta t ion C.F wil l re fer to applying the corresponding 
func t ion . Go the f i rst en t ry in the Definit ions facet is 
r ecu r s i ve because it contains an embedded call on the 
func t i on Set.Def in i t ion. Since there are three separate but 
equ iva len t def in i t ions, AM may choose whichever one it 
wan ts w h e n it recurs. AM can choose one via a random 
se lec t ion scheme, or always t ry to recur into the same 
de f i n i t i on as it was just in, or perhaps suit its choice to the 
f o r m of the argument at the moment. All concepts possess 
execu tab le def in i t ions ( l i sp predicates), though not 
necessar i l y e f fec t i ve ones. When given an argument x, 
Set .de f in i t ion wi l l r e tu rn True, False, or wil l eventual ly be 
i n t e r r u p t e d by a timer ( indicating that no conclusion was 
reached about whether or not x is a set). 

The V iews, Intu i t ions, and Analogies facets must be 
d is t i ngu ished f rom each other. Views is concerned w i th 
t r ans fo rma t i ons be tween two specific concepts (e.g., how 
to v i ew any pred icate as a set, and vice versa). An en t ry 
on the Analogies facet is a mapping from a set of concepts 
to a sef of concepts (e.g., be tween {bags, hag-union, bag -
intersect ion, . . . } and {numbers, addit ion, minimum,...!; or 
b e t w e e n {pr imes, fac tor ing, numbers...} and {simple groups, 
f a c t o r i n g in to subgroups, groups...}). Intuit ions deals w i th 
t rans fo rma t ions be tween a bunch of concepts and one of a 
f e w la rge , s tandard scenarios (e.g., intuit the relat ion "> " as 
p l ay i ng on a see-saw; intuit a set by drawing a Venn 
d iagram). In tu i t ions are character ized by being (i) opaque 
( A M cannot in t rospect on them, delve into their code), (ii) 
occas ional ly fa l l ib le, (ii i) ve ry quick, and (iv) carefu l ly 
handc ra f t ed in advance (since AM can not pick up new 
in tu i t i ons via metaphors to the real wor ld , as we can). 

Since "Se ts " is a static concept, it had no Algori thms facet 
(as d id , e.g., "Set -un ion") . The Algori thms facet of a concept 

Snecialized 

conta ins a list of ent r ies , a list of equivalent algori thms. 
Each a lgor i thm must have three separate parts: 

1. Desc r ip to rs : Recursive, Linear, or I terat ive? Quick or 
Slow? Opaque or Transparent? Destruct ive? 

2. Relators : Is, this just a special case of some other 
concept 's algor i thm? Which others does this one call 
o n 7 is this similar to any other algorithms? 

3. Program: A small, executable piece of Lisp code. It 
may be used for actually " runn ing" the algori thm; it 
may also be inspected, copied, reasoned about, etc. 

There arc mult ip le algori thms because di f ferent ones have 
d i f f e ren t p rope r t i es : some are very quick in some cases, 
some are always slow but are very cleanly wr i t t en and 
hence easier to reason about, etc. 

Another facet possessed only by active concepts is 
Domain / range . It is a list of entr ies, each of the form 
•D1 D2... Di --> R>, which means that the concept takes a list 
of a rguments , the f irst one being an example of concept 
D1, the second of D2,..., the last argument being an example 
of concept Di, and if the algouthm (any en t ry on the 
A lgor i thms facet) is run on this argument list, then the 
va lue it r e tu rns wil l be an example of concept R. We may 
say that the Domain of the concept is the Cartesian 
p roduc t D1 xD2x...xDi, and that the Range of the concept is 
R. f o r example, the Domain/ iange of Set-union is 
* Sets Sets -* Sets~>; Set-union takes a pair of sets as its 
argument l ist , and re tu rns a set as its value. 

Once the rep resen ta t ion of Knowledge is set t led, there 
remains the actual choice of what knowledge to put into 
the p rog ram ini t ia l ly. One hundred elementary concepts 
w o r e se lec ted , cor respond ing roughly to what Piaget might 
have cal led "prenumer ica l knowledge". Figure J presents a 
g r a p h of these concepts, showing their interre lat ionships 
of G e n o r a l i z a t i o n / S p e c i a l i a t i o n and Fxamples/Isa's. There 
is much static; s t ruc tura l knowledge (sets, t ru th-va lues , 
conjectures. . . ) and much knowledge about simple activit ies 
(boo lean re la t ions, composit ion of relat ions, set 
operat ions,. . . ) . Notice that there is no notion of proof, of 
fo rma l reason ing, or of numbers or arithmetic. 

2.2. TOP-LEVEL CONTROL: THE AGENDA 

AM's basic ac t iv i ty is to f ind new entr ies for some facet of 
some concept . But which part icular one should it choose to 
d e v e l o p next? Ini t ia l ly, there are over one hundred 
concep ts , each w i th about twenty blank facets; thus the 
" space " f rom which to choose is of size two thousand. As 
more concepts get def ined, this number increases. IPs 
w o r t h hav ing AM spend some time deciding which basic 
task to w o r k on next , for two reasons: most of the tasks 
wi l l never get exp lo red , and only a few of the tasKs wil l 
appear ( to the human user) rational things to work on at 
the moment. 

Much in formal expe r t Knowledge is requi red to constra in 
the search , to quick ly zero in on one of these few ve ry 
good tasks to tackle next. This is done in two stages: 

1. A list of plausible facet /concept pairs is maintained. 
No task can get onto this "agenda" unless there is 
some reason why work ing on that facet of that 
concept wou ld be wor thwh i le . 

2. Fach task on this agenda is assigned a p r io r i t y ra t ing, 
based on the number (and strengths) of reasons 
s u p p o r t i n g it. This allows the ent i re agenda to be 
kept o r d e r e d by plausibi l i ty. 

The f i rs t of these constrainings is much like replacing a 
legal move genera to r w i th a plausible move generator , in a 
heur is t i c search program, The second kind of constraint is 
akin to using a heur ist ic evaluat ion funct ion to select the 
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The actual t op - l eve l (on t ro l policy is to plucK the top task 
(h ighest p r i o r i t y rat ing) f rom the agenda, and then execute 
it. Whi le a task executes, some new bisks may he proposed 
(and merged into the agenda), some new concept', may get 
c r e a t e d , and (hopefu l ly ) some entr ies for the specif ied 
facet of the spec i f ied concept wil l he found and f i l led in. 
Once a task ir. chosen, the p r io r i t y rat ing of that task now 
se rves a new funct ion : it is taken as an estimate of how 
much computat iona l resource to devote to work ing on this 
task. 1 he task above, in the box, might he al lotted 35 cpu 
seconds and 350 list cells, because its rat ing was 350. 
When e i ther resource is exhausted, work on the task halts. 
The task is removed f rom the agenda, and the cycle begins 
anew ( A M star ts work ing on whichever task is now at the 
t op of the agenda). 

2.3. LOW-LEVEL CONTROL: THE HEURISTICS 

A f t e r a task is selected from the agenda, how is it 
" execu ted "? A concise answer would be: AM selects 
re levan t heur is t ics and executes them; they satisfy the 
task via s ide-e f fec ts . This really just splits our or iginal 
ques t i on in to two new ones: How are relevant heurist ics 
located? What does it mean for a heuristic to be executed 
and to achieve something? 

2.3.1 How Relevant Heuristics are Located 

Each heur is t ic is represen ted as a condi t ion/act ion rule. 
The cond i t i on or le f t -hand-s ide of a rule tests to see 
w h e t h e r the ru le is applicable to the task on hand. The 
ac t ion or r i gh t -hand -s ide of the rule consists of a list of 
act ions to p e r f o r m if the rule is applicable. Eg., 

IF the c u n e n t task is to check examples of a concept X, 
and (Forsome Y) Y is a generahzation of X, 
and Y has al least 10 known examples 
and all examples of Y are also examples of X, 

T H K N conjecture: X is really no more speciali/.ed than Y, 
and add that conjecture as a new entry on the 

Kxamples facet of the ConJOCK concept, 
and add the fol lowing task to the agenda: 

"Check examples of Y" 
for this reason: Y may analogously tu rn out to be 

equal to one of its supposed genetalizations. 

It is the heur is t ics" r ight hand sides which actually 
accompl ish the selected task; that process wil l be 
desc r ibed in the next subsect ion. The left sides are the 
re levancy checkers , and wi l l be focussed on now: 

Syntac t ica l l y , the left side must be a predicate, a Lisp 
func t i on which always re tu rns True or False. It must be a 
con junc t i on P 1 A P 2 A P 3 A „ . of smaller predicates Pi, each of 
wh i ch must be quick and must have no side ef fects. Here 
are some typ ica l conjucts which might appear inside a left 
hand s ide: 

S p o c l a l i z e d 

Over half of the current task's tunc allotment, is used up; 
There are some known examples of Structures; 
Some known generalization of the current concept (the 

concept mentioned as part o| the current task) has 
a completely empty Kxamplcs facet; 

A task recently worked on had the form "Fi l l in facet F 
of C", for any F, where C, is the current concept; 

The user has used this program at least once he fore; 

It t u r n e d out that the laxi ty of constraints on the form of 
the heur ist ic rules p roved excessive: it made it ve r y 
d i f f i cu l t for AM to analyze and modify its own heurist ics. 

f rom a "pu re product ion sys tem" v iewpoint , we have 
a n s w e r e d the quest ion of locating relevant heurist ics. 
Namely, we evaluate the left sides of all the rules, and see 
wh ich ones respond "True" . But AM contains hundreds of 
heur i s t i cs , and repeated ly evaluat ing each one's condi t ion 
w o u l d use up t remendous amounts of time. AM is able to 
qu ick ly select a set of potentially relevant rules, rules 
whose left sides are then evaluated to test for true 
re levance . The secret is that each rule is s tored 
somewhe re a p ropos to its "domain of appl icabi l i ty". The 
p r o p e r place to s tore the rule is determined by the f i rs t 
con junc t on its left hand side. Consider this heur ist ic: 

IF the riitTr.nl ta^k \* to find examples of act iv i ty F, 
and a fast a lgor i thm for computing F is known, 

T H E N one.way to get examples of F is to run F on 
landomly chosen examples of the Domain of F. 

The v e r y f i rs t conjunct of a rule's left side is always 
spec ia l . It speci f ics the domain of appl icabi l i ty (potent ia l 
r e levance ) of the heur ist ic , by naming a part icular facet of 
a par t i cu la r concept to which this rule is relevant (in the 
above ru le , the domain of relevance is there fo re the 
Examples facet of the Act iv i ty concept). AM uses such f i rs t 
con junc ts as p re -p recond i l i ons : A potentially re levant rule 
can be located by its f irst conjunct alone. Then, its left 
hand side is fu l ly evaluated, to indicate whether it 's truly 
re levan t . Here are a few typical expressions which could 
be f i rs t con junc ts : 

The current task (the one just selected from the agenda) 
is of the form " (duck the Domain/range facet of 
concept X", where X is some surjectivc funct ion; 

The current task matches "Fi l l in boundary examples of 
X", where X is an operation on pairs of sets; 

The current task is "F i l l in examples of Primes"; 

The key obse rva t i on is that a heuristic typical ly applies to 
all examples of a particular concept C. The rule above has 
C = Ac t i v i t y ; i t 's re levant to each individual act iv i ty. 

When a task is chosen, it specif ies a concept C and a facet 
F to be w o r k e d on. AM then "r ipples upward " to gather 
po ten t i a l l y re levant ru les: it looks on facet F of concept C 
to see if any ru les are tacked on there, it looks on facet F 
of each genera l izat ion of C, on each of their 
genera l i sa t ions , etc. If the current task were "Check the 
Doma in / range of Union-o-Union , then AM would r ipp le 
u p w a r d f r om Union-o-Union, along the General ization facet 
e n t r i e s , ga ther ing heur ist ics as it went. The program 
w o u l d ascer ta in which concepts claim Union-o-Union as one 
of the i r examples. These concepts include Compose-w i th -
sel f , Compose, Operat ion, Act ive, Any-concept , Anyth ing. 
AM w o u l d col lect heurist ics that tell how to check the 
Doma in / range of any composit ion, how to deal w i th 
Doma in / range facets of any concept, etc. Of course, the 

This ope ra t i on is the result of composing set -un ion w i t h 
i tse l f . It pe r f o rms X (x,y,z) xu(yuz). 

S y s t e m s - 4 : L e n a t 
8 3 6 



further out it ripples, the more general (and hence weaker) 
the heuristics tend to be. Here is one heuristic, tacked 
onto the Domain/range facet of Operation, which would be 
garnered if the selected task were "Check Domain/range of 
Union o-Union": 

IF the n i n n u t task is "Check the Domain/range of F", 
and an entry on that facet has the form <D D...1) -> H>, 
and concept R is a generalization of rnncrp l I) , 

T H K N it is wor th spending time checking whether or not 
the range of F rnight he simply I), instcad of R. 

Suppose one entry on Union-o -Union's Domain/range facet 
was "<Nonempty-sets Nonempty-sets Nonempty-sets -+ 
Sets>". Then the above heuristic would be truly relevant 
(all three conjuncts on its left hand side would be 
satisfied), and it would pose the question: Is the union of 
three nonempty sets always nonempty? Empirical evidence 
would eventually confirm this, and the Domain/range facet 
of Union-o-Union would then contain that fact, 

Merc is another way to look at the heuristic-gathering 
process. All the concepts known to AM are arranged in a 
big hierarchy, via subsetof links (Specializations) and 
element-of links (Isa). Since each heuristic is associated 
with one individual concept (its domain of applicability), 
there is a hierarchy induced upon the set of heuristics. 
Heritability properties hold: a heuristic tacked onto concept 
C is applicable to working on all "lower" concepts. This 
allows us to efficiently analogically access the relevant 
heuristics simply by chasing upward links in the hierarchy. 
Note that the task selected from the agenda provides an 
explicit pointer to the "lowest" -- most specific concept; 
AM ripples upward from it. Thus concepts are gathered in 
order of increasing generality; hence so are the heuristics. 

Below are summarized the three main points that comprise 
AM's scheme for finding relevant heuristics in a "natural" 
way and then using them: 

1. Fach heuristic is tacked onto the most general 
concept for which it applies: it is given as large a 

. domain of applicability as possible. This will maximize 
its generality, while leaving its power untouched. 

2. When the current task deals with concept C, AM 
ripples upward from C, tracing along Generalization 
and Isa links, to quickly find all concepts which claim C 
as one of their examples. Heuristics attached to all 
such concepts are potentially relevant. 

3. All heuristics are represented as condition/action 
rules. Once the potentially relevant rules are located 
(in step 2), AM evaluates eacIVs left hand side, in 
order of increasing generality. The rippling process 
automatically gathers the heuristics in this order. 
Whenever a rule's left side returns True, the rule is 
known to be truly relevant, and its right side is 
immediately executed. 

2.3.2 What Happens When Heuristics Are Executed 

When a rule is recognized as relevant, its right side is 
executed. How does this accomplish the chosen task? 

The right side, by contrast to the left, may take a great 
deal of time, have many side, effects, and the value it 
returns is always ignored. The right side of a rule is a 
series of little Lisp functions, each of which is called an 
action. Semantically, each action performs some 
processing which is appropriate in some way to the kinds 
of situations in which the rule's left side would have been 
satisfied (returned True). The only constraint which each 
action must satisfy is that it have one of the following 
three kinds of side-effects, and no other kinds: 

1. It suggests a new task to add to the agenda. 

2. It dictates how some new concept is to be defined. 
3. It adds some entry to some facet of some concept. 

Dear in mind that the right side of a single rule is a List of 
such actions. Let's now treat these three kinds of actions: 

73.7A Heur ist ics Suggest New Tasks 

The left side of a rule triggers. Scattered among the list of 
"things to do" on its right side are some suggestions for 
future tasks. These new tasks are then simply added to 
the agenda. The suggestion for the task includes enough 
information about the task to make it easy for AM to 
assemble its parts, to find reasons for it, to numerically 
evaluate those reasons, etc. For example, here is a typical 
rule which proposes a new task. It says to generalize a 
predicate if it appears to be returning True very rarely: 

IF the current task was "Fi l l in examples of X", 
and concept X is a Predicate, 
and over 100 items are known in the domain of X, 
and at least 10 cpu sees, have been spent so far, 
and X has returned T rue at least once, 
and X returned False over 20 times as often as True, 

T H K N add the fol lowing task to the agenda: 
"F i l l in gcnera l ta t ions of X" 
for the fo l lowing reason: 
"X is rarely satisf ied; a sl ight ly Iess restr ict ive 

concept might he much more ml cresting" 
Th is reason has a rat ing which is the False/True rat io 

Let's see one instance where this rule was used. AM 
worked on the task "Fill in examples of List-Equality". One 
heuristic (displayed in Sec. 2.3.1, and again in detail in Sec. 
2.3.2.3) said to randomly pick elements from that 
predicate's domain and simply run the predicate. Thus AM 
repeatedly plucked random pairs of lists, and tested 
whether or not they were equal. Needless to say, not a 
high percentage returned True (in practice, 2 out of 242). 
This rule's left side was satisfied, and it executed. Its right 
side caused a new task to be formulated: "Fill in 
generalizations of List-Equality". The reason was as stated 
above in the rule, and that reason got a numeric rating of 
240/2 = 120. That task was then assigned an overall 
rating (in this case, just 120) and merged into the agenda. 
It sandwiched in between a task with a rating of 128 and 
one with a 104 priority rating. Incidentally, when this task 
was finally selected, it led to the creation of several 
interesting concepts, including the predicate which we 
might call "Same-length". 

73.7,2 Heur is t ics Create New Concepts 

One of the three kinds of allowable actions on the right 
side of a heuristic rule is to create a specific new concept. 
For each such creation, the heuristic must specify how the 
new concept is to be constructed. The heuristic states the 
Definition facet entries for the new concept, plus usually a 
few other facets' contents. After this action terminates, 
the new concept will "exist". A few of its facets will be 
filled in, and many others will be blank. Some new tasks 
may exist on the agenda, tasks which indicate that AM 
ought to spend some time filling in some of those facets in 
the near future. Here is a heuristic rule which results in a 
new concept being created: 

IF the current task was "Fi l l in examples of F" 
and F is an operation, f rom domain A into range B, 
and more than 100 items are known examples of A, 
and more than 10 range items (examples of B) were 

found by applying F to these domain elements, 
and at least one of these range items 'b' is a d is t in ­

guished member (especially, an extremum) of B, 
T H K N for each such 'b'B, create the fol lowing concept: 
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and the reason for this neat ion is: "lt's worth 
invest igat ing A's whieh havr unusual F-values" 

and add f ive new tasks to the anemia, 
of the form "Ki l l in faeet x of F - inve is r -o i -h " 
where x is Coinertures, Generlions, 

Specia l izat ion, Kxamples, and Isa's; 
for the fol lowing reason: 

"Th is conecpt was newly synthesized; it is e r u -
r ia l lo find where it 'fits in ' to the hierarehy" 

T h r reason's rating is just Wor lh(F inverse-o f -b) . 

One use of this heurist ic was when th r current task was 
"F ill in examples of Divisors~of". The heur is t ics left side 
was sa t i s f ied because: Divisors of is an operat ion ( f rom 
Numbers to Sets of numbers), and far more than the 
r e q u i r e d 100 d i f ferent numbers are known, and more than 
10 d i f f e r e n t sets of factors were located al together, and 
some of them w e r e in fact dist inguished by being extreme 
k inds of sets (e.g., s ingletons, empty sels, doubletons, 
t r ip letons, . . . ) . A f te r its left side t r iggered, the right side of 
t he ru le was executed, f ou r new concepts were created 
immedia te ly . Here is one of them: 

This is a concept represent ing a certain class of numbers, 
in fact the numbers we call "primes". The heurist ic rule is 
of course appl icable to any kind of operat ion, not just 
numer ic ones. As another instance of its use, consider what 
h a p p e n e d w h e n the current task was 'Ti l l in examples of 
S e t - i n t e r s e c t " . This rule caused AM to notice that some 
pa i rs of sets w e r e mapping over into the most extreme of 
all se ts : the emp ty set. The rule then had AM define the 
new concept we would call "disjointness": pairs of sets 
hav ing e m p t y in tersect ion. 

T h e r e is just a t iny bit of " theory " behind how these 
c o n c e p t - c r e a t i n g rules were designed. A facet of a new 
concept is f i l led in immediately iff both (i) it 's t r iv ia l to f i l l 
in at c rea t i on - t ime , and (ii) it would be very di f f icul t to f i l l 
in la ter on. The fo l lowing facets are typical ly f i l led in r ight 
away : Def in i t ions, Algor i thms, Domain/range, Worth. Each 
o the r facet is e i ther left unmentionod by the rule, or else 
is exp l i c i t l y made the subject of a new task which gets 
added to the agenda. For instance, the heuristic rule 
above wou ld p ropose many new tasks at the moment that 
Pr imes w e r e c rea ted , including "Fill in conjectures about 
Pr imes" , "Fill in special izat ions of Primes", etc. 

2 3 . 2 3 Heurist ics Fill in Entries for a Specific Facet 

If the task p lucked f rom the agenda were "Fill in examples 
of Se t -un ion " , i t wou ld not be too much to hope for that by 
the t ime all the heurist ic rules had f inished execut ing, some 
examples of that opera t ion would indeed exist on the 
Examples facet of the Set-union concept. Let's see how 
th is can happen. 

AM s ta r t s by r ipp l ing upward f rom Set-union, looking for 
heur is t i cs wh ich are relevant to f inding examples of Set -

un ion ( the re are no such rules), relevant to f inding 
examples of Se t -opera t ions , of Operat ions, of any Ac t iv i t y , 
of any Concept , of Anyth ing . Here is one rule applicable to 
any Ac t i v i t y : 

IF the curreut task is to f i l l in examples of F, 
and F is an operation, say with domain I), 
and there is a fast known algor i thm for F, 

T H K N one way to get examples of F is lo run F'S 
a lgor i thm on randomly chosen examples of I). 

Of course , in the l i s p implementat ion, this s i tuat ion-act ion 
ru le is not coded qui te so neatly. It would be more 
fa i t h fu l l y t rans la ted as fo l lows: 

IF CURR-TASK malehes (FILLIN EXAMPLES F*-anything), 
and F isa Aet iv i l y , 
and l.he Algor i thms farel of F is not blank, 

T H K N carry out the fol lowing proredure: 
1. Find the domain of F, and rai l it D; 
2. Find examples of D, and rai l them K; 
3. Find a fast a lgor i thm to compute F; call it A; 
4. Repeatedly: 

4a. Choose any member of E, and call it K l . 
4b. Run A on E1, and call the result X. 
4e. Check whether <E1,X> satisfies the def ini t ion 

of F. 
4d. If so, then add ' I ' l l -> X> to the Kxarnples 

facet of F. 
4e. If not, then add <'K1 -> X> to the Non-

examples facet of F. 

Let 's see exact ly how this rule found examples of Set-
un ion. Step (1) says to locate the domain of Set-union. 
The facet label led Domain/range, on the Set-union concept, 
conta ins the e n t r y (SET SFT -> SLT), which indicates that 
the domain is a pair of sets. That is, Set-union is an 
o p e r a t i o n wh ich accepts (as its arguments) two sets. 

Since the domain elements are sets, step (?) says to locate 
examples of sets. The facet labelled Examples, on the Sets 
concep t , po in ts to a list of about 30 d i f ferent sets. This 
inc ludes {7} , {A,B,C,D,F), {}, {A,{ fB}} , . . . 

S tep (3) invo lves nothing more than accessing some en t r y 
tagged w i t h the descr ip tor "Quick" on the Algori thms facet 
of Se t -un ion . One such en t ry is a recursive l i s p funct ion of 
t w o a rguments , which halts when the f i rst argument is the 
e m p t y set , and o therw ise pulls an element out of that set, 
Se t - i nse r t s i t into the second argument, and then recurs on 
the new values of the two sets. For convenience, we' l l 
r e f e r to this a lgor i thm as UNION. 

We then enter the loop of Step (4). Step (4a) has us 
choose one pair of our examples of sets, say the f i rst two 
(7} and (A,B,C,D,E). Step (4b) has us run UNION on these 
t w o sets. The result is {A,B,C,D,F,7}. Step (4c) has us grab 
an e n t r y f r om the Defini t ions facet of Set-union, and run it. 
A t yp i ca l de f in i t i on is this formal one: 

(X (S1 S2 S3) 
( A N D 

(For all x in S I , x is in S3) 
(For all x in S2, x is in S3) 
(For all x in S3, x is in S1 or x is in S2)))) 

I t is r u n on the th ree arguments S1={Z}, S2={A,B,C,D,E}, 
S3~{A,B,C,D,E,Z}. Since it re turns "True" , we proceed to 
Step <4d). The const ruct <{Z}, {A,B,C,D,E} -> {A,B,C,D,E,Z}> 
is added to the Examples facet of Set-union. 

At th is s tage, cont ro l re tu rns to the beginning of the Step 
(4) loop. A new pair of sets is chosen, and so on. The 
loop ends w h e n e i ther the time or space al lot ted to this 
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rule is exhaus ted . AM would then break away at a "c lean" 
point ( just af ter f in ishing a cycle of the Step (4) loop) and 
wou ld move on to a new heuristic rule for f i l l ing in 
examples of Se t -un ion . 

3. RESULTS 

3.1. EXCERPT OF THE 'AM' PROGRAM RUNNING 

Repeated ly , the top task is plucked from the agenda, and 
heur is t i cs are executed in an attempt to satisfy it. AM has 
a modest fac i l i ty that pr ints out a descr ipt ion of these 
ac t iv i t ies as they occur. Here is a t iny excerpt : 

+* Task: ** Fill in Examples of the concept "Divisors-of" . 
3 Reasons: 

(1) No known examples of Divisors-of yet. 
(2) Times ( re la ted to Div isors-of) is now v. int. 
(3) Focus of a t tent ion: AM just def ined Divisors-of. 

26 examples found, in 9 secs, e.g., Divisors- of(6)={ 1,2,3,6}. 

** Task i ** Consider nos. having small sets of Divisors-of. 
2 Reasons: 

(1) Wor thwh i le to look for extreme cases. 
(2) Focus: AM just worked on Divisors-of. 

Fi l ing in examples of numbers w i th 0 divisors. 
0 examples found, in 4.0 seconds. 
C o n j e c t u r e : no numbers have precisely 0 divisors. 

Fi l l ing in examples of numbers wi th 1 divisors. 
J examples found, in 4 sees, e.g., Divisors o f ( l ) = {1J. 
C o n j e c t u r e : 1 is the only number w i th exactly 1 divisor. 

Fi l l ing in examples of numbers w i th 2 divisors. 
24 examples found, in 4 sees. Divisors- of (13)={ 1,13}. 
No obv ious con jec ture . May merit more study. 
C rea t ing a new concept : "Numbers-w i th -2 -d iv isors " . 

Fi l l ing in examples of numbers wi th 3 divisors. 
1 1 examples found, in 4 secs. Div isors-of(49)={ 1,7,49}. 
All nos. w i t h 3 d iv isors are also Squares. Unexpected!. 
C rea t i ng a new concept: "Numbers-w i th -3-d iv isors" . 

** Task: ** Consider square- roo ts of Nos-w i th -3-d iv isors . 
2 Reasons: 

(1) Numbers -w i t h -3 divisors unexpectedly tu rned 
out to all be Perfect Squares as wel l . 

(?) Focus: AM just def ined Nos-w i th -3 -d iv isors . 
All s q u a r e - r o o t s of Numbers -w i th -3 -divisors seem to be 

Numbers -w i th -2 -d i v i so rs . 
E.g., Div isors(169) = Divisors(13) = {1,13}. 

Even the converse of this seems empir ical ly to be t rue. 
The chance of coincidence is below acceptable limits. 

Boos t ing the Wor th rat ing of both concepts. 

** T a s K : * * Consider the squares of Nos-wi t lv-3-d iv isors. 
3 Reasons: 

(1) Squares of Nos-wi th-2~div isors were v. int. 
(2) Square- roo ts of Nos-w i th -3 -d iv isors were int. 
(3) Focus: AM just worked on Nos-w i th -3 -d iv isors . 

3.2. OVERALL PERFORMANCE 

Now that we ' ve seen how AM works , and we've been 
e x p o s e d to a bit of " local" resul ts, let 's take a moment to 
d iscuss the to ta l i t y of the mathematics which AM carr ied 
out . AM began its invest igat ions wi th scanty knowledge of 
a hund red e lementary concepts of f in i te set theory (see 
Fig. 1). Most of the obvious set - theoret ic concepts and 
re la t i onsh ips w e r e quickly found (e.g., de Morgan's laws; 
s ing le tons) , but no sophist icated set theory was ever done 

(e.g., d iagonal izat ion). Rather, AM discovered natural 
numbers and went off explor ing elementary number 
t h e o r y . Ar i thmet ic operat ions were soon found (as analogs 
to s e t - t h e o r e t i c operat ions) , and AM made rapid progress 
in d iv i s ib i l i t y t heo ry . See Fig. 2. Prime pairs, Diophantine 
equa t ions , the unique factor izat ion of numbers into pr imes, 
Goldbach's. con jec tu re -- these were some of the nice 
d iscover ies by AM. Many concepts which we know to be 
cruc ia l w e r e never uncovered, however : remainder, gcd, 
g r e a t e r - t h a n , in f in i ty , proof , etc. These "omissions", could 
have been d iscovered by the exist ing heurist ic rules in AM. 
1 he paths which would have resul ted in their def in i t ion 
w e r e s imply never ra ted high enough to explore. 

Al l the d iscover ies mentioned (including those in Fig. 2) 
w e r e made in a run lasting one cpu hour ( Inter l isp + 100k, 
Sumex POP-10 Kl). Two hundred jobs in toto were selected 
f r o m the agenda and executed. On the average, a job was 
g r a n t e d 30 cpu seconds, but actually used only 18 seconds. 
f or a typ ica l job , about 35 rules were located as 
po ten t i a l l y re levant , and about a dozen actually f i red. AM 
began w i t h 115 concepts and ended up wi th three times 
that many. Of the synthesized concepts, half were 
techn ica l l y te rmed " losers" (both by the author and by 
AM), and half the remaining Ones were only marginal. 

A l t hough AM fared wel l according to several d i f ferent 
measures of per formance (see Section 3.4), of great 
s ign i f icance are its Limitations. As AM ran longer and 
longer , the concepts i t def ined were fur ther and fu r ther 
f r om the pr imi t ives i t began wi th . E.g., "p r ime-pa i rs " were 
de f i ned using "p r imes" and "addi t ion", the former of which 
was de f ined f rom "d iv isors-of " , which in turn came f rom 
"mu l t ip l i ca t ion" , which arose from "addit ion", which was 
de f i ned as a res t r i c t ion of "union", which (f inally!) was a 
p r im i t i ve concept that we had suppl ied (wi th heurist ics) to 
AM in i t ia l ly . When AM subsequent ly needed help w i th 
p r ime pa i rs , i t was fo rced to rely on rules of thumb 
supp l i ed or ig ina l ly about uniomng. Al though the her i tab i l i ty 
p r o p e r t y of heur ist ics did ensure that those rules were 
st i l l va l id , the t roub le was that they were too general , too 
weak to deal e f fec t i ve ly w i th the specialized notions of 
p r imes and ar i thmet ic. 

f or ins tance, one general rule indicated that AuB would be 
i n t e r e s t i n g if it possessed proper t ies absent both from A 
and f rom 0. This t ranslated into the pr ime-pair case as "If 
p+q=r, and p,q.r are primes. Then r is interesting if it has 
properties not possessed by p or by q." The search for 
ca tegor ies of such in terest ing primes r was of course 
b a r r e n . It showed a fundamental lack of understanding 
about numbers , addi t ion, odd/even-ness , and primes. 

The key def ic iency was the lack of adequate mera-ru les 
['Davis 7 6 ] : heur is t ics which reason about heurist ics: keep 
t rack of the i r per fo rmance, modify them, create new ones, 
etc. 

As ide f rom the preceding major l imitation, most of the 
o the r p rob lems per ta in to missing knowledge: Many 
concep ts one might consider basic to discovery in math are 
absent f r om AM; analogies were under-ut i l ized; physical 
i n tu i t i on was hand-c ra f ted only; the interface to the user 
was far f rom ideal; etc. A large ef for t is underway this 
year at Carneg ie-Mel lon Univers i ty, comprised of Greg 
Har r i s , Doug Lenat, Elaine Rich, Jim Saxe, and Herber t 
Simon, to overcome these l imitations. 
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3.3. EXPERIMENTS_WJTHJAM' 3.3.5 Can AM Work in the New Domain of Plane Geometry? 

One va luab le aspect of AM is that it is amenable to many 
k inds of exper iments . Al though AM is too ad hoc for 
numer ic resu l ts to have much signif icance, the qual i tat ive 
resu l t s of such exper iment ' , may have some val id 
impl ica t ions for math research, for automating math 
r e s e a r c h , and for designing "scientist assistant" programs. 

3.3.1 Must the WORTH numbers be finely tuned? 

Each of the 115 init ial concepts had, supplied by the 
au tho r , a ra t ing number (0 -1000) signifying its overal l 
w o r t h . The w o r t h rat ings affect the overal l p r io r i ty values 
of tasks on the agenda. Just how sensitive is AM*s 
behav io r to the init ial sett ings of the Worth numbers? 

To test th is , a simple exper iment was per formed. All the 
c o n c e p t s ' W o r t h facets were set to 200 init ial ly. By and 
l a rge , the same discover ies were made as before. But 
t h e r e w e r e now long periods of blind wanderings 
(espec ia l l y near the beginning of the run). Once AM 
h o o k e d in to a l ine of product ive developments, it advanced 
at the o ld ra te . During such chains of discoveries, AM was 
gu ided by massive quant i t ies of symbolic reasons for the 
tasks it chose, not by nuances in numeric rat ings. As these 
s p u r t s of deve lopment died out , AM would wander around 
again unt i l the next one star ted. 

3.3.2 How Finely Tuned is the Agenda? 

The t op few candidates on the agenda almost always 
appear to be reasonable things to do at the time. But 
wha t if, ins tead of picking the top - ra ted task, AM selected 
one randomly f rom the top 20 tasks on the agenda? In 
tha t case, AM's ra te of d iscovery is slowed only by about a 
fac to r of 3. But the apparent "rat ional i ty " of the program 
(as p e r c e i v e d by a human onlooker) disintegrates. 

3.3.3 How Valuable is the Presence of Symbolic 'Reasons'? 

Only one e f fec t of note was observed: When a task is 
p r o p o s e d wh ich already exists on the agenda, then i t 
ma t te r s v e r y much whether the task is being suggested for 
a new reason or not. If the reason is an old, a l ready-
k n o w n one , then the p r io r i t y of the task on the agenda 
shou ldn ' t r ise v e r y much. But if it is a brand new reason, 
t h e n the task 's ra t ing should be boosted t remendously. 
The impor tance of this effect argues strongly in favor of 
hav ing symbolic justification of the rank of each task in a 
p r i o r i t y queue, not just "summarizing" each task's set of 
reasons by a single number. 

3.3.4 What if Cer ta in Concepts are Excised? 

As e x p e c t e d , e l iminat ing certa in concepts did seal off whole 
sets of d iscover ies to the system. For example, excising 
[ q u a l i t y p r e v e n t e d AM f rom discovering Cardinal i ty. One 
su rp r i s i ng resul t was that many common concepts get 
d i scove red in severa l ways. For instance, mult ipl icat ion 
arose in no f ewe r than four separate chains of discoveries. 

One demons t ra t ion of AM's general i ty (e.g., that its 
" A c t i v i t y " heur is t ics real ly do apply to any act iv i ty) would 
be to choose some new mathematical f ie ld, add some 
concep ts f r om that domain, and then let AM loose to 
d i scover new things. Only one experiment of this t ype was 
actua l ly ca r r i ed out on the AM program. 

t w e n t y concepts f rom elementary plane geometry were 
de f i ned for AM (including Point, Line, Angle, Tr iangle, 
[ q u a l i t y of po in ts / l ines /ang les / t r iang les) . No new 
heur is t i cs w e r e added to AM. 

AM was able to f ind examples of all the suppl ied concepts, 
*md to use the character of such empirical data to 
de te rm ine reasonable direct ions to proceed in its research. 
AM d e r i v e d the concepts of congruence and similar i ty of 
t r i ang les , plus many other we l l - known concepts. An 
unusual resul t was the repeated der ivat ion of the concept 
of " t imbe r l i ne " : this is a predicate on two tr iangles, which 
is t r ue iff they share a common ver tex and angle, and if 
their oppos i te sides are paral lel . AM also came up w i th a 
cu te geomet r ic i n te rp re ta t i on of Goldbach's con jec ture : 
Any angle (0 - 180° ) can be approximated to wi th in 1° as 
the sum of t w o angles each of a prime number of degrees. 

3.4. EVALUATING THE 'AM' PROGRAM 

We may w ish to evaluate AM using various cr i ter ia. Some 
obv ious ones, w i t h capsule resul ts, appear below: 

1. By AM's ul t imate achievements. Besides discover ing 
many w e l l - k n o w n useful concepts, AM discovered some 
w h i c h aren ' t w ide ly known: maximally-divisible numbers, 
numbers wh ich can be uniquely represented as the sum of 
t w o p r imes , t imber l ine. 

?. By the character of the di f ferences between initial and 
f inal s ta tes. AM moved all the way f rom f in i te set theory 
to d i v i s ib i l i t y t heo ry , f rom sets to numbers to in terest ing 
k inds of numbers , f rom skeletal concepts (none of which 
had any Examples f i l led in) to completed concepts. 

'3, By the qual i ty of the route AM took to accomplish this 
mass of resu l ts . Only about half of AMY forays were 
dead -ends , and most of those looked promising init ial ly. 

4. By the character of the human — machine interact ions. 
AM was never pushed far along this dimension. 

5. By i ts in formal reasoning abil it ies. AM was able to 
qu ick ly "guess" the t r u th value of conjectures, to est imate 
the overa l l w o r t h of each new concept, to zero in on 
p laus ib le th ings to do each cycle, and to notice glar ing 
analogies (sometimes). 

6. By the resul ts of exper iments -- and the fact that 
expe r imen ts could be per fo rmed at all on AM. 

7. By f u t u r e impl icat ions of this project . Only time wil l tel l 
w h e t h e r this k ind of work wil l impact on how mathematics 
is taught (e.g., expl ic i t teaching of heuristics?), on how 
empi r i ca l research is car r ied out by scientists, on our 
unde rs tand ing of such phenomena as d iscovery, learning, 
and c r e a t i v i t y , etc. 

8. By compar isons to o ther , similar systems. Some of the 
techn iques AM uses were p ioneered ear l ier : e.g, 
p r o t o t y p i c a l models [Gelernter 63 ] , and analogy [Evans 
6 8 ] , [Kl ing 71 ] . There have been many attempts to 

Special ized Systems-4: Lenat 
840 



i n co rpo ra te heurist ic knowledge? into a theorem prover 
[Wang 6 0 ] , [Guard 69 ] , [Bledsoe 71] , [Brolz,-74] , [Boyor & 
Moore 7b). Most of the apparent differences, be tween 
them and AM vanish upon close examination: The goa l -
d t i v e n con t ro l s t ruc tu re of these systems is a compiled 
fo rm of AM's; rud imentary "focus of a t tent ion" mechanism. 
"I he fact that their overa l l act iv i ty is typical ly labelled as 
deduc t i ve is a misnomer (since construct ing a diff icult proof 
is usual ly in pract ice quite inductive). Even the character 
of the in fe rence processes are analogous: The provers 
t yp ica l l y conta in a couple binary inference rules, like 
Modus Ponens, wh ich are re lat ive ly isky to apply but can 
y ie ld hip resu l ts ; AM's few "b inary" operators have the 
same charac te r i s t i cs : Compose, Canonize, Logical ly-combine 
(d is jo in and conjoin) . The deep dist inctions between AM 
and the "heurs t ic theorem p rovers " are these: the 
u n d e r l y i n g mot ivat ions (heuristic modelling vs. bui lding 
tools for p rob lem solving), the richness of the knowledge 
base (hundreds of heurist ics vs. only a few), and the 
amount of emphasis on formal methods. 

T h e o r y fo rmat ion systems in any f ield have been few. 
Me ta -Dendra l [Buchanan 7b] represents pethaps the best 
of these. Rut even this system is given a f ixed set of 
temp la tes for ru les which it wishes to f ind, and a f ixed 
vocabu la r y of mass spectra l concepts to plug into those 
hypo thes i s templates; whereas AM select ively enlarges its 
vocabu la r y of math concepts. Also, AM must gather its 
o w n data, but this is much easier in math than in organic 
c hem. 

There has been ve r y l i t t le publ ished thought about 
" d i s c o v e r y " f rom an algorithmic point of v iew; even clear 
t h i nke rs l ike Polya and Poincate' treat mathematical abi l i ty 
as a sac red , almost mystic qual i ty , t ied to the unconscious. 
The w r i t i ngs of phi losophers and psychologists invar iably 
a t tempt to examine human performance and belief, which 
are far more managable than creat iv i ty in t3ro. Amarel 
[J 9 6 7 ] notes it may be possible to learn from " theorem 
f i n d i n g " p rograms how to tackle the general task of 
au tomat ing scient i f ic research. AM has been one of the 
f i r s t a t tempts to construct such a program. 

3.5. FINAL CONCLUSIONS 

-> AM is a demonst ra t ion that a few hundred general 
heur ist ic ru les suff ice to guide an automated math 
researcher as it explores and expands a large but 
incomple te knowledge base of math concepts. AM 
demons t ra tes that some aspects of creat ive research can 
be e f f ec t i ve l y modelled as heuristic search. 

-> This w o r k has also in t roduced a control s t ructure based 
upon an o r d e r e d agenda of small research tasks, each 
w i t h a list of suppor t ing reasons attached. 

-> The main l imi tat ion of AM was its inabi l i ty to synthesize 
p o w e r f u l new heur ist ics for the new concepts i t def ined. 

-> The main successes were the few novel ideas it came up 
w i t h , the ease w i t h which a new task domain was fed to 
the sys tem, and — most important ly — the overal l 
ra t iona l sequences of behavior AM exhibi ted. 
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FIGURE 1: Concepts Initially Given to AM FIGURE 2: Concepis Discovcvci by AM 
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