IN DEFENCE OF LOGIC

P.J.

Hayes

Essex University

Colchester,

Introduction

Modern formal logic is the most successful
precise language ever developed to express human
thought and inference. Measured across any reason-
ably broad spectrum, including philosophy,
linguistics, computer science, mathematics and
artificial intelligence, no other formalism has
been anything like so successful. And yet recent
writers in the Al field have been almost unanimous
in their condemnation of logic as a representation-
al language, and other formalisms are in a state of
rapid development.

I will argue that most of this criticism
misses the point, and that the real contribution of
logic is not its usual rather sparse syntax, but
the semantic theory which it provides. Al is as
much in need now of good semantic theories with
which to compare formalisms as it always has been.
I will also re-examine the procedural/declarative
controversy and show how regarding representational
languages as programming languages has, ironically,
made procedural ideas as vulnerable to the old
proceduralists' criticisms as the classical
theorem-proving paradigm was. | will argue that
the contrast between assertional and procedural
languages is false: we have rather two kinds of
subject-matter than two kinds of language.

This paper is deliberately polemical in tone.
Much has been written from the proceduralist point

of view. It's time the other arguments were put.
Logic is not a programming system
It will, and has been, said that to defend

logic is to adopt a reactionary position. Logic
has been tried (in the late sixties) and found
wanting; now it has been superceded by better
systems, in particular, procedural languages such
as UPLANNER [17] , CONNIVER fI8] and more recently
KRL [2].

But logic is not a system in this sense. |It's
not a style of programming. It entails no commit-
ment to the use of any particular process organis-
ation or technique of coding. To think that it
does is to make a category error.

Logic is a collection of ideas on how to
express a certain kind of knowledge about a cer-
tain kind of world. The moetatheory of logic is a
collection of mathematical tools for analysing re-
presentational languages of this class. What these
tools analyse is not the behaviour of an inter-
preter, or the structure of processes in some run-
ning system, but rather, the extensional meaning
of expressions of a language, when these are taken
to be making claims about some external world.

These two distinct topics - the meaning of a
language and the behaviour of an interpreter for
it - are related in various ways. They meet in
particular, in the notion of inference. Logical
meaning justifies inferences. A running system

Theorem Prov
55

U.K.

performs inferences: some of its processes are the
making of inferences.

But two different systems may be based on the
same notion of inference and the same representa-
tional language. The inference structure of the
language used by a system does not depend on the
process structure. In particular, a system may
have a logical inference structure - may be making
deductively valid inferences - without being a
classical uniform theorem-prover which just "grinds
lists of clauses together".

What logic is: the extensional analysis of meaning

One of the first tasks which faces a theory of
representation is to give some account of what a
representation or representational language means.
Without such an account, comparisons betweer repre-
sentations or languages can only be very super-
ficial. Logical model theory provides such an
analysis.

Suppose

@
—

CAUSE

it is claimed that:

IS=-A:FISH

,G)/
e

"DIRECTION=TOWARDS(MARY)
(% L >any)
S/ ha

means that Bill hit Mary with a fish (to take a
representative example), or that:

((DO(*AGENT)"BADTHING))CAUSE(*AGENT)DISPLAY
(tNEGATIVEEMOTION)))

means that people often seem upset when bad things
happen (to take another). How could one judge
whether they really do mean those things? What
would count as a specification of their meanings?
Several answers can be suggested.

The first might be called "pretend-it's-
English". Here, one takes the primitive symbols
to stand for their ordinary English meaning, and
gives a way of translating the grammar of the
representation into English surface syntax (this
is often left implicit but fairly obvious). The
first example above then is to be read as something
like "Bill moved some object - which was a fish -
in the direction of Mary, thus causing the object
to make an impact upon Mary". One now has to judge
whether this English sentence has the same meaning
as the original English sentence ("Bill hit Mary
with a fish"). The English rendering of tl.e
second example is even more obvious.

This way of analysing meaning has the virtue
of simplicity, and it also requires very little
technical expertise. It is widely used in modern

InK-3:

PTRANS

~

TMPACT

Hayes

linguistics, where it often goes hand in hand with
the assumption there is some finite collection of
basic words in terms of which the meanings of all
sentences can be explained.

But there are many problems with this simple
idea. For a start, it's perilously vague. It's
always hard to judge whether two English sentences
have the same meaning. It depends what you mean by
"meaning" - with a very tight sense of'meaning”,
the sentences "John hit Mary" and "Mary was hit by

John" are different in meaning. Second, it's an
essentially linguistic view of meaning. While this

doesn't bother many workers in the natural language
area, it should bother anyone who believes that at
least some knowledge representations need to be
independent of any particular sensory bias. (We
can all look at a scene and describe what we see.
How is information transferred from the visual
recognition process to the linguistic representa-
tion?) Much of what a vision program needs to
represent may not be readily expressible in English
(e.g., 2-dimensionalpatterns of light and shade).
Third, it provides no useful guidelines for how a
system might use the representation. Given that
the network of the first example is supposed to
mean the same as its anglicisation, does anything
follow concerning what inferences can or should be
made from the network?

This last point is really a symptom of the
most basic problem, which is that on this account
we could just as well use the English sentences
themselves as their own representations. The
symbols in the formalism might as well be English
words. (Wilks [20] states this explicitly.) Until
some independent account of the formalism is
provided, no actual analysis of meaning is forth-
coming.

The model-theoretic approach to meaning inter-
prets an expression of a formalism as making a
claim about the way the world is. Suppose we give
some criteria by which we can judge whether a
suggested possible world satisfies the expression,
or whether on the contrary it is a counterexample
to the claim made by the expression. Then these
criteria can be used as an account of meaning. An
expression means what it claims about a possible
world. Two expressions which are satisfied by the
same possible worlds are identical in meaning. A
natural notion of inference follows also. If every
counterexample to E1_is also a counterexample to
E2, then we can infer Ex from E,: for then all the
possible worlds which are consistent with the claim
we make when E, is asserted also satisfy Ei.

Notice that on this account an expression can
usually not be said to definitely correspond to
anything in tire actual world. Its meaning is fixed
only with respect to a possible world. In order to
pin down its meaning (we should say 'referent')
more precisely in the actual world, we must add
more assertions so as to cut down the set of
possible example worlds. Take for example the
expression "MARY", which is intended to denote a
particular lady in the real world. In order to
achieve this identification, we would have to asser
assert enough axioms containing the expression
"MARY" to ensure that in any possible world satis-
fying them, the denotation of "MARY" corresponded
to the particular lady in question in the actual

Theorem Proving-3:
560

world. These axioms will contain other names and
relations symbols, and we cannot in general say
conclusively that any of these is defined in terms
of some particular subset of the others. The
entire web of logically connected assertions is
presumably tied down to the actual world by some

of them having an interpretation as observations,
in the case of an actual robot with these beliefs
in its head. On this account, perception is a form
of inference: inference which involves observation-
al assertions. (This is not to say that we can
deductively derive beliefs from observations, which
is of course not time in general. The required
relationship is consistency: beliefs must be kept
consistent with observations.)

This model-theoretic account of meaning
corresponds exactly to Bobrow and Winograd's | 2]
view that "a description cannot be broken down
into a single set of primitives, but must be ex-
pressed through multiple views" and "... there
would be no simple sense in which the system con-
tains a 'definition' of the object, or a complete
description in terms of its structure". Their
subsequent remarks suggest, however, a confusion
between the logical notion of meaning and the
pretend-it's-English notion using "primitives".

The problem with this approach to meaning is,
of course, to specify what we mean by a possible
world in such a way that we can state the meaning
criteria - the truth-conditions as they are usually
and somewhat misleadingly called. First-order
logic makes only very elementary assumptions. A
logically-possible world is a set of individuals
(each name denotes some individual) and a set of
relations between them (each relation symbol de-
notes some relation). The rules for deciding which
worlds are examples for an expression and which are
counterexamples, are well known, yielding the usual
notion of deductive inference.

Model theory, unlike pretend-it's-English,
gives an account of extensional meaning relative to
an exact notion of possible world. One might ob-
ject that this notion is mistaken. Perhaps the
real world isn't like that, does not consist of
individuals with relations between them. Certainly
this notion of world seems too simple. Are liquids
individuals, for example? Either answer (yes or
no) gives rise to certain problems. There is much
scope for ingenuity in giving precise descriptions
of more interesting classes of possible worlds.

It would be interesting to see a class of worlds

in which there was a fixed notion of causality,

for example [8] , Notice how such an enterprise
would differ from the 'analysis' of CAUSE provided
by pretend-it's-English. The latter yields no
account of what a causally possible world would be
like, nor does it explain what constitutes causally
valid inference.

An important property of the model-theoretic
account is that it enables one to judge a proposed
representation by imagining the circumstances which
would render it true. Of course this is only a
heuristic remark, but | find that it is an impor-
tant feature. One way to test a proposed repre-
sentation is to run it, if possible on a computer,
but perhaps only in a pencil and paper sense, i.e.,
write down some formal consequences of it using
whatever inference structure comes with the

Hayes

representational language. But this does not
always generate insight into errors or inadequacies
of the representation, because a characteristic
symptom of such a situation is that nonsense
becomes derivable, or alternatively that nothing
useful is derivable at all, neither of which is
very much help. Another way to test it however is
to attempt to understand it as a description of a
world, and to imagine what the world would have to
be like to make it false. | find the latter the
most useful.

For example, suppose one is trying to formal
ise knowledge about liquids, and one writes some-
thing like

INUIQUID, CONTAINER) &MOVES(CONTAINER)
=>IN(LIQUID.CONTAINER)

Is this a reasonable assertion? In order to answer
that question, one would at least have to say

whether it were usually true. What would the world
have to be like to render it false; what would be a

counterexample? Well, what does it mean? |It's not
clear, since we have no model theory. Presumably
IN is a relation, but is MOVES then a relation?

The intention behind this semiformal axiom can be
crudely expressed thus:

INUIQUID,CONTAINER,STATE)
=>IN(LIQUID,CONTAINER,MOVE(STATE))

where MOVE is a function from states to states.
Now the ontology is clear, anyone who has picked
up an overfull cup of coffee can easily imagine a
counterexample. Without a model theory - albeit
perhaps an informal one - we would not be able to
so connect expressions of the formalism to possible
configurations of a world that it would even be
possible to imagine such counterexamples. A
formalism without a model theory can hardly be said
to constitute a representational language at all.

None of these basic semantic ideas say any-
thing about the syntax of the expressions used to
encode facts. The same meanings can be expressed
in a wide variety of syntactic forms. There is
thus an a priori possibility that some already
existing language may be best interpreted as another
syntax for predicate (or even propositional) calcu-
lus. "Semantic networks" are a good example, as
several recent writers have observed (see for
example Woods [2] and Schubert [I5]). If someone
argues for the superiority of semantic networks
over logic, he must be referring to some other
property of the former than their meaning (for
example, their usefulness for retrieving relevant
facts from a database - an aspect of a possible
process structure - or their attractive appearance
on a printed page). A more recent example is KRL.
Virtually the whole of KRL-0 can be regarded as-
merely a new syntax for first-order predicate logic.

Now it must be admitted that sometimes
semantic networks (for example) are used in ways
which do not reflect their obvious logical meaning.
For example, there is often a sort of implicit
uniqueness condition which prevents two nodes from
denoting the same entity in any interpretation.
Without such a condition, for example, the
'pedestal' network of fig. 1 would be merely an
instance of the 'arch' network, got by identifying
B2 and B3 (much as P(x, x) is an instance of

Theorem Prov!nR-3:
561

P(x, y) in the usual syntax).

Similarly, frames are a syntax which have been
used to convey a variety of meanings. They can be
understood as a strange syntax for logic in at
least 2 distinct ways (either frames are objects
and slots 2-place relations, or frames are n-place
relations), they are used in GUS |Il to represent
conversational sequencing, in EVIL \H] to represent
perceptual hypotheses. One syntax, four different
meanings.

Representation and control

Almost every idea on representation in Al has
eventually appeared in the guise of a programming
language. This is in part the legacy of the pro-
cedural/assertional debate, which was won fairly
conclusively by the proceduralists. It is worth,
however, going back over the old history of this
dispute rather carefully, as the ground of the
argument has shifted subtely but significantly over
the years.

Classical theorem-proving operated in the
general problem-solver paradigm. This takes the
form of a competitive game between he who designs
the theorem-prover and he who provides the axioms
on which they are tested. The aim of the game is
to write theorem-provers which can solve really
hard problems, and which are general. To cunningly
adapt the axioms so that the theorem-prover is able
to prove the theorem is cheating and is frowned
upon, like cheating at cards. Moreover, the
theorem-prover, being general purpose, has no bias
to any particular domain. The result is that
classical theorem-provers know very little about
what to do, and are incapable of being told it.

This was the position the proceduralists
attacked, and their argument was, | think, conclu-
sive. It has to be possible to tell a system what
° $2/ what inferences to make and when to make
them (and not to make them), as well as what is
true. In a word, a system has to be programmable.

Contrast the problem-solver methodology with
the programming language designer's methodology.
The latter does his best to make the workings of the
language interpreter available, or at least visible,
to the user, even to the extent in some cases of
writing a manual (the ultimate anathema for problem-
solvers: a handbook for cheats). The difference is
ultimately one of where the responsibility for a
system's behaviour lies: the problem solving system
designer retains it, the programming language de-
signer gives it to the user, to the person who
composes the knowledge representations. What more
natural, then, than to regard a representation
language as a programming language?

It is important to emphasise this contrast of
methodologies because it is the only significant
difference between the proceduralist position, as
it was argued in the early seventies, and the trad-
itional theorem-proving view. In particular, the
procedural languages, offered in this period as
replacements for logic, have very similar inference
structures to predicate calculus. The procedura-
list's own remarks about how to represent facts
reiterate the basic semantic intuitions of formal
logic (see Winograd [j22] for example). The infer-
ence structure of UPLANNER is a subset of predicate

Hayes

calculus, augmented with THNOT. Even the newer
languages, such as KRL, based on different and
apparently rival intuitions (see Minsky's broadside
in [12]) display some remarkably logical features.

Nor is there any important difference in
underlying mechanisms of implementation. The
basic, and quite old, mechanism of an and/or tree
with variable-sharing across and nodes, implemented
using invocation records with separate access and
control links and local environment bindings,
underlies theorem-proving programs, Al programming
interpreters, production systems and ACTORS \9j .

But this methodological difference runs very
deep, and does have technical consequences. A
procedural language to represent knowledge has two
distinct tasks to perform. It must encode facts
and inferences about external domains (and hence
have some kind of inference structure which we
might try to analyse using logical tools); and it
must also express strategies of behaviour for its
interpreter to obey, some of which will presumably
be strategies of inference. It will have both an
inference structure and a process structure, both
usable by the programmer. This is a tall order,
and nobody has managed to build a satisfactory such
language yet. There have been essentially three
ideas on how to do it.

The first idea is to specify control by the
way in which one states the facts. Supposing that
there are a few predefined strategies which the
interpreter can use to process an assertion: then
one provides the user with just enough syntactic
variants for stating facts to enable him to
implicitly tell the interpreter which strategy to
use. This is the uPLANNER idea (THCONSE and
THASSERT), also underlies Kowalski's more recent
proposal to treat predicate logic as a programming

language [Il], and has been used by some "natural
deduction" theorem-provers_which find it much
easier to prove AoB than AVB. But this idea is

far too inflexible: one rapidly finds that one
wants to specify behaviours which cannot be encoded
as some simple combination of the predefined
strategies.

The natural reaction to this situation is to
build systems which provide the necessary machinery
but make few commitments as to how it should be
used. To build systems, that is, in which special-
ist interpreters can be implemented. This is the
second idea. CONNIVER has just this relationship
to pPLANNER, for example. CONNIVER was a toolkit
for implementing PLANNER-like systems and, more
usefully, for experimenting with coroutine control
structures. The KRL authors similarly insist that
a representation language "must provide a flexible
set of underlying tools, rather than embody
specific commitments about either processing stra-
tegies or the representation of specific areas of
knowledge", [2], page 4.

But what then happens to the inference
structure of the representational language? We
have now moved to a lower conceptual level, the
level of the interpreter rather than the level at
which substantive claims about some domain are
made. What we now have is purely a programming
language, and not a descriptive language. The
objects which, in a descriptive language, would be
meaningful assertions or descriptions or names -
meaningful if the exact sense that their relation-

Theorem Provinr-3:
562

ship to a possible external world was defined by
the meaning of the language - these objects appear
merely as data"structures im an interpreter-
implementing language. And of course it is part
of the philosophy of programming language design
that the interpretation of what a data structure
mean8 must be left to the programmer.

Going down a level thus renders vacuous the
original claims of the proceduralists with regard
to representation. To argue that CONNIVER is

better than predicate calculus is to compare incom-

parables. CONNIVER is about processes and their
behaviour: logic is about assertions and their
meaning. CONNIVER is one of the programming

languages one might use to implement a system with

a logical inference structure (or indeed any other
structure).

There is still a procedural problem, in any
case. The interpreter-defining language has to be
based on some control regime. CONNVER and
INTERLISP use coroutineing, for example. But what-
ever control regime is used, at this level it is

deterministic code - a sequence of instructions -
which actually runs.

A widespread dissatisfaction with purely
procedural languages stems from the feeling that
procedural code is too rigid a language to express
interesting behaviours (see [2], page 36, for

example). One can use "pattern-directed invoca-
tion" (i.e., resolution*), or "procedural attach-
ment", or whatever, to make a more sensitive choice

of which procedure to run: but when that choice has
been made, deterministic code is found in its body.
It all gets down to LISP in the end. Using the
CONNIVER (GEDANKEN, PAL ...) idea of frozen
process states allows a certain amount of freedom:
but still we have the feeling that control is like
a baton being passed from hand to hand. If one
process doesn't know who to hand it to, every-
thing comes unstuck. All runnable code, while
running, has total responsibility for keeping the
whole system alive.

While this does make some ingenious programm-
ing possible, especially when combined with a
database of assertions used to 'simulate' a world
(see Fahlman [17] for a beautiful example), it still
lacks the flexibility and opportunism which we
need.

We need to have several coexisting processes,
each acting for itself without needing to be
explicitly called from some other process. The
obvious idea then is some form of multiprocessing,
where the interpreter maintains a queue of
processes and runs them all from time to time,
according to some strategy. This is the third
idea. Calling a process is putting it on the queue.
This makes apparently hard code, like: beginF();
G(); H() end; into something much softer, since
exactly what will happen depends on what other
processes there are around. When F is called, that
doesn't mean that it's actually called, only that
it's put on the agenda.*™ Maybe some other process

inference rule, not a

"method".

* Resolution is an
"strategy" or a
agenda = queue. A lot of impressive renaming
goes on in this business. For example, good
old environments appear in KRL under the titles
'procedure directory' and 'signal path'.

Hayes

will run first and flush F before it has a chance
to run, for example.

This very old (c.f., Elcock and Foster [6])
idea is currently popular. But we have now come
full circle, to a classical problem-solving situa-
tion. How can the interpreter decide what order
to run the processes in? It doesn't know anything
about any particular domain, so it can't decide.
So we have to be able to tell it. But how?

This is exactly the situation with which we
began, the situation the proceduralists attacked.
In removing the decision to actually run from the
code and placing in in the interpreter, advocates
of multiprocessing systems have re-created the
uniform black-box problem-solver.

The next step then is to design a language in
which the programmer can control the agenda. The
simplest such idea is to use numbers: the agenda
has levels numbered from zero, and process calls
specify their level. This is used by KRL-0 and the
Graph Traverser [Y]. A somewhat more sophisticated
idea is to allow descriptors for subqueues and
allow processes to access these descriptors, as in

POPEYE [I6] . But none of these ideas seem very
convincing. And we have now moved down another
level, to the interpreter of the interpreter-

writing language of the representational language.
The only way out of this descending spiral is
upwards. We need to be able to describe processing
strategies in a language at least as rich as that
in which we describe the external domains: and for
good engineering, it should be the same language.
The aspects of procedural languages - THNOT of
UPLANNER, passing context frames as parameters in
CONNIVER, defaults in KRL - which resist simple
syntactic mappings into logic, are all places where
the languages refer to their own interpreter's
behaviour. THNOT means not provable (from current
resources): passing a context frame is proving

something about another proof; a default value is
one which is taken unless there is a proof that its
value is different. It is this reflexive nature of

these languages which gives them their 'non-IogicaI1
features.

But this is a question of what knowledge is
represented, not of what language it is represented
in. These reflexive assertions, referring to the

system's own internal states, can also be expressed
in logic, with the same gains in ontological clarity
as are realised in other areas. This distinction
between logic and procedures is then seen as a
distinction between kinds of domain rather than
kinds of language: the proceduralist position leads
one to envisage a system which can describe its own
inferential processes and thus make inferences about
its own behaviour.

In order to design the interpreter for such a
system, one needs a framework in which these
behaviours can be adequately described. Logic
provides - in the notion of proof - a richer such
framework than any of the usual procedural ideas.
isn't

What logic

It's worth spending a little time laying to
some misunderstandings I've met about logic.
Logic isn't a programming system.
Logic isn't a particular syntax.

rest

(2)

Theorem Prov?
563

(3) Logic does not assume that the world is made
up of concrete physical individuals without "ab-
stract" individuals such as properties, events,
nations or feelings. This view is nominalism, and
leads to a quite different sort of semantic intui-
tion, in which, for example, red denotes not a
property of physical individuals, but the (rather
disconnected) individual consisting of all pieces
of red stuff in the world.

Other similar confusions are also made. For
example, logic is no worse (and no better) than
Conceptual Dependency at representing warm, human
facts about people hitting each other,

(4) Logic doesn't give "the ultimate in decompos-
ition of knowledge". Winograd, in his widely cited
discussion [23] of the assertional/procedural con-
troversy, draws a distinction between logic's atom-
istic view of knowledge, in which a representation
is seen as a set of separate disconnected facts,
and the proceduralist's holistic view in which
interactions between procedures have prominence.
But this is exactly the opposite of the truth. The
interactions sanctioned by logic between assertions
are far richer and more complicated than the inter-
actions between procedures in a procedural language
(any procedural language). Thus, explicit recur-
sive procedure calls (LISP) are more restricted
than explicit coroutine calls (SIMULA), these more
restricted than pattern-directed coroutineing
(CONNIVER), these more restricted than resolution
(which allows both caller and callee to have
variables bound during the matching process) and
finally resolution itself is a special case of
general logic inference rules of instantiation and
cut. In each case, one pattern of interactions is
a special case of, and can be imitated by, the
next. In each case, the more general interaction
pattern allows more interactions and hence yields
a more complex search space, and a more difficult
search problem. It is precisely the restrictions
on interactions in procedural languages which make
them so useful.

Again, Winograd claims that procedures, unlike
assertions, mean very little in isolation but
acquire meaning from their interactions with other

procedures; and again has got it exactly the wrong
way round. A procedure may well mean a lot in
isolation. RANDOM(), for example, or PRINT(X):

any procedure whose body contains code but no calls
of other procedures. Whereas the function and

predicate symbols in a logical axiomatisation, like
the tokens at nodes of a semantic net, literally

mean nothing unless their meaning is specified by
axioms. The model-theoretic account of meaning
makes this absolutely precise; as one conjoins
assertions, so the set of interpretations possible
for the symbols occurring in them is restricted,
and the set of possible inferences from them is en-
larged. Their meaning is progressively tightened,
as more facts involving them become inferrable.

(5) The tendency to replace representational
languages by purely procedural languages goes hand
in hand with a tendency to judge representational
issues in computational terms. Thus Minsky 12) in
attacking what he sees as the malevolent influence
of logic, dimisses predicate calculus by observing
that the machinery of P.C. inference instantiation
and tree-growing, basically - is available as a

riP:-3: Mav

simple byproduct of the more sophisticated symbol-
manipulation operations needed for analogical

reasoning. But this, while perhaps true, misses
the point: it is the meaning of those operations,

interpreted as inferences, of which logic provides
an analysis.

Again, Winograd [23] identifies the procedural
/assertional distinction with the program/data-
structure distinction, a completely false analogy.
The latter distinction is to do with two different
relationships a piece of data can have to an inter-
preter (including, ultimately, the hardware CPU):
the former with the meanings of those structures.
An assertion can be treated as a datastructure or
interpreted as a program, just as a procedure can.
The distinctions are orthogonal.

Last word

| have argued the case for taking logic's
notion of meaning seriously. | do not, however,
wish to argue that this is the only important
issue in considering representational languages.
Process control is important, of course: questions
of ease of retrieval, of focussing of attention,
of relevance, are also of great significance.
Neither is syntactic convenience completely unim-
portant. These issues are however all receiving
considerable attention already. Semantics -
questions of meaning - tend to be discussed less.

Acknowledgements

| have had helpful conversations and
correspondence with Bruce Anderson, Richard Bornat,
Eugene Charniak, Jack Lang, Bob Wielinga and
Yorick Wilks. Alan Bundy, Aaron Sloman and Terry
Winograd made useful comments on the first draft
of the paper. This work was supported in part by
the Science Research Council.

References
1. Bobrow, et al (1976), GUS, a frame-driven

dialog system, Xerox Palo Alto Research
Center.

2. Bobrow and Winograd (1976), An overview of KRL,

A Knowledge Representation Language,
Xerox Palo Research Center.

3. Brady and Wielinga (1977), "Reading the writ-
ing on the wall", Proc. Workshop on

Computer Vision, Amherst, Mass.

4. Brooks and Rowbury (1976), An EVIL primer,
Memo CSM-14, Essex University.

5. Doran and Michie (1966), "Experiments with the
Graph Traverser program", Proc. Royal
Society (A) 294, pp. 235-59.

6. Elcock and Foster (1969), "ABYSY 1: an incre-
mental compiler for assertionsi an
introduction", Machine Intelligence 4.,
Edinburgh University Press.

10.

12.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Fahlman (1974), "A planning system for Robot
Construction Tasks", A.l.J. 5, pp. 1-49.
Hayes (1971), "A logic of actions", Machine

Intelligence 6, Edinburgh University
Press.

Hewitt, Bishop and Steiger (1973), "A univer-
sal modular ACTOR formalism for
artificial intelligence", Proc. 3rd
I.J.C.A.l., Stanford.

Huet (1972), Constrained Resolution, report
1117, Case Western University.

Kowalski (1975), "Predicate calculus as a

programming language", Proc. [.F.I.P. 75.

"A framework for representing
Lab.

Minsky (1974),
knowledge", Memo, M.I.T. A.Il.
(unexpurgated version).

Pietrykowski and Jensen (1973), "Mechanising
w-order type theory through unification",
Report CS-73-16, University of Waterloo.

Schank (ed.) (1975), Conceptual Information
Processing, North-Holland.

Extending the Expressive
University

Schubert (1975),
Power of Semantic Networks,
of Alberta.

Sloman (1976), (personal communication).
Micro-planner reference

Memo 203.

et al (1970),
M.ILT. A.l.

Sussman,
manual,

Sussman and McDermott (1972), "From PLANNER
to CONNIVER-- A genetic approach”,
A.F.1.P.S. Fall Joint Computer Conference.

Anderson, et al (1972), After Leibnitz, A.l.
Memo, Stanford University.

Wilks (1975), "Primitives and Words", Proceed-
ings of the Conference on Theoretical
Issues in Natural Language Processing,
Association for Computational Linguistics

Wilks (1973), "An artificial intelligence
approach to machine translation",
Computer Models of Thought and Language,
W.H. Freeman.

Winograd (1972), Understanding Natural
Language, Academic Press.

Winograd (1975), "Frames and the declarative-

procedural controversy", Representation
and Understanding, Academic Press.

Woods (1975), "What's in a link", Representa-
tion and Understanding, Academic Press.

Theorem Proving-3: Hayes

614

Padestal:

block,
ig-a is-a
aupported by
Bl }< B2
has-attitude ham-attitude
lying tandin
—
Bl

B2

Arch.
< supported by
supported by
has-attitude has-attitude
7
Bl . Bl
B2 B3 B2 = B3

riw 1
A pedestal is an arch

Theorem Proving=3:
565

Hayes

