
IN DEFENCE OF LOGIC

P.J . Hayes
Essex Un i ve rs i t y
Colchester , U.K.

I n t r o d u c t i o n

Modern formal l o g i c is the most successfu l
p rec ise language ever developed to express human
thought and in fe rence . Measured across any reason­
ab ly broad spectrum, i n c l u d i n g ph i losophy,
l i n g u i s t i c s , computer sc ience , mathematics and
a r t i f i c i a l i n t e l l i g e n c e , no other formal ism has
been anyth ing l i k e so success fu l . And yet recent
w r i t e r s in the AI f i e l d have been almost unanimous
in t h e i r condemnation of l o g i c as a rep resen ta t i on ­
al language, and other formalisms are in a s ta te of
r ap id development.

I w i l l argue t h a t most o f t h i s c r i t i c i s m
misses the p o i n t , and t h a t the r e a l c o n t r i b u t i o n o f
l o g i c i s not i t s usual r a t h e r sparse syntax , but
the semantic theory which i t p rov ides . AI is as
much in need now of good semantic theor ies w i th
which to compare formalisms as it always has been.
I w i l l a lso re-examine the p rocedura l /dec la ra t i ve
controversy and show how regard ing rep resen ta t i ona l
languages as programming languages has, i r o n i c a l l y ,
made procedural ideas as vu lnerab le to the o l d
p r o c e d u r a l i s t s ' c r i t i c i s m s as the c l a s s i c a l
theorem-proving paradigm was. I w i l l argue tha t
the con t ras t between a s s e r t i o n a l and procedural
languages is f a l s e : we have ra the r two kinds of
sub jec t -mat te r than two kinds of language.

This paper i s d e l i b e r a t e l y polemical in tone.
Much has been w r i t t e n from the p rocedu ra l i s t po in t
o f v iew. I t ' s t ime the other arguments were pu t .

Logic is not a programming system

I t w i l l , and has been, sa id t ha t to defend
l o g i c is to adopt a reac t ionary p o s i t i o n . Logic
has been t r i e d (i n the late s i x t i e s) and found
want ing; now it has been superceded by b e t t e r
systems, in p a r t i c u l a r , procedural languages such
as uPLANNER [17] , CONNIVER f l8] and more recen t l y
KRL [2] .

But l o g i c is not a system in t h i s sense. I t ' s
not a s t y l e of programming. I t e n t a i l s no commit­
ment to the use of any p a r t i c u l a r process o rgan is ­
a t i o n o r technique o f coding. To t h i n k t ha t i t
does is to make a category e r r o r .

Logic is a c o l l e c t i o n of ideas on how to
express a c e r t a i n k ind of knowledge about a cer ­
t a i n k ind of wo r ld . The moetatheory o f l o g i c is a
c o l l e c t i o n o f mathematical t o o l s f o r ana lys ing r e ­
p resen ta t i ona l languages of t h i s c l a s s . What these
t o o l s analyse is not the behaviour o f an i n t e r ­
p r e t e r , or the s t r uc tu re o f processes in some r u n ­
n ing system, but r a t h e r , the ex tens iona l meaning
of expressions of a language, when these are taken
to be making claims about some ex te rna l w o r l d .

These two d i s t i n c t t o p i c s - the meaning of a
language and the behaviour of an i n t e r p r e t e r f o r
i t - are r e l a t e d in var ious ways. They meet in
p a r t i c u l a r , i n the no t i on o f i n fe rence . Log ica l
meaning j u s t i f i e s in fe rences . A running system

Theorem Prov
55

performs in fe rences : some of i t s processes are the
making of i n fe rences .

But two d i f f e r e n t systems may be based on the
same no t ion of in ference and the same representa­
t i o n a l language. The in ference s t ruc tu re of the
language used by a system does not depend on the
process s t r u c t u r e . In p a r t i c u l a r , a system may
have a l o g i c a l in ference s t r uc tu re - may be making
deduct ive ly v a l i d in ferences - w i thou t being a
c l a s s i c a l uni form theorem-prover which j u s t "g r inds
l i s t s o f clauses t oge the r " .

What l o g i c i s : the ex tens iona l ana lys i s of meaning

One of the f i r s t tasks which faces a theory of
representa t ion is to g ive some account of what a
representa t ion or r ep resen ta t i ona l language means.
Without such an account , comparisons betweer rep re ­
sentat ions or languages can only be very super­
f i c i a l . Log ica l model theory provides such an
ana l ys i s .

Suppose i t i s claimed t h a t :

means t ha t B i l l h i t Mary w i t h a f i s h (t o take a
represen ta t i ve example), o r t h a t :

((DO(^AGENT)^BADTHING))CAUSE(^AGENT)DISPLAY
(tfNEGATIVEEMOTION)))

means tha t people o f t en seem upset when bad th ings
happen (t o take ano ther) . How could one judge
whether they r e a l l y do mean those th ings? What
would count as a s p e c i f i c a t i o n of t h e i r meanings?
Several answers can be suggested.

The f i r s t might be c a l l e d " p r e t e n d - i t ' s -
E n g l i s h " . Here, one takes the p r i m i t i v e symbols
to stand f o r t h e i r o rd inary Eng l ish meaning, and
gives a way of t r a n s l a t i n g the grammar of the
representa t ion i n t o Eng l ish surface syntax (t h i s
i s o f ten l e f t i m p l i c i t but f a i r l y obv ious) . The
f i r s t example above then is to be read as something
l i k e " B i l l moved some ob jec t - which was a f i s h -
in the d i r e c t i o n of Mary, thus causing the ob ject
to make an impact upon Mary". One now has to judge
whether t h i s Engl ish sentence has the same meaning
as the o r i g i n a l Eng l ish sentence (" B i l l h i t Mary
w i t h a f i s h ") . The Engl ish render ing of t l .e
second example is even more obv ious.

This way of ana lys ing meaning has the v i r t u e
o f s i m p l i c i t y , and i t a l so requ i res very l i t t l e
t e c h n i c a l e x p e r t i s e . I t i s w ide ly used in modern

l n K - 3 : Hayes

l i n g u i s t i c s , where i t o f t en goes hand in hand w i t h
the assumption there is some f i n i t e c o l l e c t i o n of
basic words in terms of which the meanings of a l l
sentences can be exp la ined.

But there are many problems w i t h t h i s simple
idea. For a s t a r t , i t ' s p e r i l o u s l y vague. I t ' s
always hard to judge whether two Engl ish sentences
have the same meaning. It depends what you mean by
"meaning" - w i t h a very t i g h t sense o f 'mean ing" ,
the sentences "John h i t Mary" and "Mary was h i t by
John" are d i f f e r e n t in meaning. Second, i t ' s an
e s s e n t i a l l y l i n g u i s t i c view o f meaning. While t h i s
doesn' t bother many workers in the n a t u r a l language
a rea , i t should bother anyone who be l ieves t ha t at
l eas t some knowledge representa t ions need to be
independent of any p a r t i c u l a r sensory b i a s . (We
can a l l look at a scene and descr ibe what we see.
How is in fo rmat ion t r ans fe r red from the v i s u a l
r ecogn i t i on process to the l i n g u i s t i c representa­
t i o n ?) Much of what a v i s i o n program needs to
represent may not be r e a d i l y express ib le in Engl ish
(e . g . , 2-d imensionalpat terns o f l i g h t and shade).
T h i r d , i t provides no use fu l gu ide l ines f o r how a
system might use the rep resen ta t i on . Given t ha t
the network of the f i r s t example is supposed to
mean the same as i t s a n g l i c i s a t i o n , does anyth ing
f o l l ow concerning what in ferences can or should be
made from the network?

This l a s t po in t is r e a l l y a symptom of the
most basic problem, which is t h a t on t h i s account
we could j u s t as w e l l use the Eng l ish sentences
themselves as t h e i r own rep resen ta t ions . The
symbols in the formal ism might as w e l l be Eng l ish
words. (Wi lks [20] s ta tes t h i s e x p l i c i t l y .) U n t i l
some independent account of the formal ism is
p rov ided , no a c t u a l ana lys is o f meaning is f o r t h ­
coming.

The model - theore t ic approach to meaning i n t e r ­
p re ts an expression of a formal ism as making a
c la im about the way the wor ld i s . Suppose we give
some c r i t e r i a by which we can judge whether a
suggested poss ib le wor ld s a t i s f i e s the express ion ,
or whether on the con t ra ry i t is a counterexample
to the c la im made by the express ion. Then these
c r i t e r i a can be used as an account of meaning. An
expression means what it c la ims about a poss ib le
wo r l d . Two expressions which are s a t i s f i e d by the
same poss ib le worlds are i d e n t i c a l in meaning. A
n a t u r a l no t i on o f in ference fo l l ows a l s o . I f every
counterexample to E1_ is a lso a counterexample to
E2, then we can i n f e r E± from E 2 : f o r then a l l the
poss ib le worlds which are cons is ten t w i t h the c la im
we make when E2 is asser ted a lso s a t i s f y E i .

Not ice t ha t on t h i s account an expression can
usua l l y not be sa id to d e f i n i t e l y correspond to
anyth ing i n tire ac tua l w o r l d . I t s meaning i s f i x e d
on ly w i th respect to a poss ib le wor ld . In order to
p i n down i t s meaning (we should say ' r e f e r e n t ')
more p rec i se l y in the a c t u a l w o r l d , we must add
more asser t ions so as to cut down the set of
poss ib le example wor lds . Take f o r example the
expression "MARY", which is intended to denote a
p a r t i c u l a r lady i n the r e a l w o r l d . I n order t o
achieve t h i s i d e n t i f i c a t i o n , we would have to asser
asser t enough axioms con ta in ing the expression
"MARY" to ensure tha t in any poss ib le wor ld s a t i s ­
f y i n g them, the denotat ion of "MARY" corresponded
to the p a r t i c u l a r lady i n quest ion i n the ac tua l

wor ld . These axioms w i l l con ta in o ther names and
r e l a t i o n s symbols, and we cannot in general say
conc lus ive ly t ha t any o f these is def ined in terms
of some p a r t i c u l a r subset of the o the rs . The
e n t i r e web of l o g i c a l l y connected asser t ions is
presumably t i e d down to the ac tua l wor ld by some
of them having an i n t e r p r e t a t i o n as observa t ions ,
in the case of an ac tua l robot w i t h these b e l i e f s
in i t s head. On t h i s account , percept ion is a form
of i n fe rence : in ference which invo lves observa t ion ­
al asse r t i ons . (This is not to say tha t we can
deduc t ive ly der ive b e l i e f s from observa t ions , which
is of course not t ime in genera l . The requ i red
r e l a t i o n s h i p is cons is tency: b e l i e f s must be kept
cons is ten t w i t h observa t ions .)

This model - theoret ic account of meaning
corresponds exac t l y to Bobrow and Winograd's |_2]
view tha t "a d e s c r i p t i o n . . . cannot be broken down
i n t o a s ing le set of p r i m i t i v e s , but must be ex­
pressed through m u l t i p l e v iews" and " . . . there
would be no simple sense in which the system con­
t a i n s a ' d e f i n i t i o n ' of the o b j e c t , or a complete
desc r i p t i on i n terms o f i t s s t r u c t u r e " . The i r
subsequent remarks suggest, however, a confusion
between the l o g i c a l no t ion of meaning and the
p r e t e n d - i t ' s - E n g l i s h no t ion using " p r i m i t i v e s " .

The problem w i t h t h i s approach to meaning i s ,
of course, to spec i fy what we mean by a poss ib le
wor ld in such a way tha t we can s ta te the meaning
c r i t e r i a - the t r u t h - c o n d i t i o n s as they are usua l l y
and somewhat mis lead ing ly c a l l e d . F i r s t - o r d e r
l o g i c makes on ly very elementary assumptions. A
l o g i c a l l y - p o s s i b l e wor ld is a set o f i n d i v i d u a l s
(each name denotes some i n d i v i d u a l) and a set of
r e l a t i o n s between them (each r e l a t i o n symbol de­
notes some r e l a t i o n) . The ru les f o r dec id ing which
worlds are examples f o r an expression and which are
counterexamples, are w e l l known, y i e l d i n g the usual
no t ion o f deduct ive in fe rence .

Model t heo ry , un l i ke p r e t e n d - i t ' s - E n g l i s h ,
gives an account of ex tens iona l meaning r e l a t i v e to
an exact no t i on of poss ib le wor ld . One might ob­
j e c t t ha t t h i s no t ion is mistaken. Perhaps the
r e a l wor ld i s n ' t l i k e t h a t , does not cons is t o f
i n d i v i d u a l s w i t h r e l a t i o n s between them. Ce r ta in l y
t h i s no t i on of wor ld seems too s imple. Are l i q u i d s
i n d i v i d u a l s , f o r example? E i the r answer (yes or
no) g ives r i s e to c e r t a i n problems. There is much
scope f o r ingenu i ty in g i v i n g prec ise desc r ip t i ons
of more i n t e r e s t i n g c lasses of poss ib le wor lds .
I t would be i n t e r e s t i n g to see a c lass of worlds
in which there was a f i x e d no t ion of c a u s a l i t y ,
f o r example [8] , Not ice how such an en te rp r i se
would d i f f e r from the ' a n a l y s i s ' of CAUSE provided
by p r e t e n d - i t ' s - E n g l i s h . The l a t t e r y i e l d s no
account of what a causa l ly poss ib le wor ld would be
l i k e , nor does i t exp la in what cons t i t u t es causa l ly
v a l i d i n fe rence .

An important p roper ty of the model - theore t ic
account is t ha t i t enables one to judge a proposed
represen ta t ion by imagining the circumstances which
would render i t t r u e . Of course t h i s is only a
h e u r i s t i c remark, but I f i n d t ha t i t i s an impor­
t a n t f e a t u r e . One way to t e s t a proposed rep re ­
sen ta t ion i s t o run i t , i f poss ib le on a computer,
but perhaps on ly in a p e n c i l and paper sense, i . e . ,
w r i t e down some formal consequences of i t us ing
whatever in ference s t r uc tu re comes w i t h the

Theorem P r o v i n g - 3 : Hayes
560

rep resen ta t i ona l language. But t h i s does not
always generate i n s i g h t i n t o e r r o r s or inadequacies
of the rep resen ta t i on , because a c h a r a c t e r i s t i c
symptom of such a s i t u a t i o n is t ha t nonsense
becomes d e r i v a b l e , or a l t e r n a t i v e l y t h a t no th ing
use fu l i s der ivab le a t a l l , ne i t he r o f which i s
very much he lp . Another way to t e s t i t however is
to attempt to understand i t as a d e s c r i p t i o n of a
w o r l d , and to imagine what the wor ld would have to
be l i k e to make i t f a l s e . I f i n d the l a t t e r the
most u s e f u l .

For example, suppose one is t r y i n g to formal
ise knowledge about l i q u i d s , and one w r i t e s some­
t h i n g l i k e

INUIQUID, CONTAINER) &MOVES(CONTAINER)
=>IN(LIQUID.CONTAINER)

Is t h i s a reasonable asser t ion? In order to answer
tha t ques t ion , one would at l eas t have to say
whether i t were usua l l y t r u e . What would the wor ld
have to be l i k e to render i t f a l s e ; what would be a
counterexample? W e l l , what does i t mean? I t ' s not
c l e a r , s ince we have no model theory . Presumably
IN is a r e l a t i o n , but is MOVES then a r e l a t i o n ?
The i n t e n t i o n behind t h i s semiformal axiom can be
crudely expressed thus :

INUIQUID,CONTAINER,STATE)
=>IN(LIQUID,CONTAINER,MOVE(STATE))

where MOVE is a func t i on from s ta tes to s t a t e s .
Now the ontology is c l e a r , anyone who has p icked
up an o v e r f u l l cup of co f fee can e a s i l y imagine a
counterexample. Without a model theory - a l b e i t
perhaps an in fo rma l one - we would not be able to
so connect expressions of the formal ism to poss ib le
con f i gu ra t i ons of a wor ld tha t i t would even be
poss ib le to imagine such counterexamples. A
formal ism wi thout a model theory can hard ly be sa id
to c o n s t i t u t e a rep resen ta t i ona l language a t a l l .

None of these basic semantic ideas say any­
t h i n g about the syntax of the expressions used to
encode f a c t s . The same meanings can be expressed
in a wide v a r i e t y of syn tac t i c forms. There is
thus an a p r i o r i p o s s i b i l i t y t ha t some a l ready
e x i s t i n g language may be best i n t e r p r e t e d as another
syntax f o r p red ica te (o r even p r o p o s i t i o n a l) c a l c u ­
l u s . "Semantic networks" are a good example, as
several recent w r i t e r s have observed (see f o r
example Woods [2] and Schubert [l 5]) . If someone
argues f o r the s u p e r i o r i t y of semantic networks
over l o g i c , he must be r e f e r r i n g to some other
proper ty o f the former than t h e i r meaning (f o r
example, t h e i r usefulness f o r r e t r i e v i n g re levan t
f ac t s from a database - an aspect of a poss ib le
process s t r u c t u r e - or t h e i r a t t r a c t i v e appearance
on a p r i n t e d page). A more recent example is KRL.
V i r t u a l l y the whole of KRL-0 can be regarded as-
merely a new syntax f o r f i r s t - o r d e r p red ica te l o g i c .

Now it must be admit ted t h a t sometimes
semantic networks (f o r example) are used in ways
which do not r e f l e c t t h e i r obvious l o g i c a l meaning.
For example, there is o f ten a so r t o f i m p l i c i t
uniqueness cond i t i on which prevents two nodes from
denot ing the same e n t i t y in any i n t e r p r e t a t i o n .
Without such a c o n d i t i o n , f o r example, the
'pedesta l ' network of f i g . 1 would be merely an
instance of the 'a rch ' network, got by i d e n t i f y i n g
B2 and B3 (much as P (x , x) is an instance of

P(x , y) in the usual syn tax) .
S i m i l a r l y , frames are a syntax which have been

used to convey a v a r i e t y of meanings. They can be
understood as a strange syntax f o r l o g i c in at
l eas t 2 d i s t i n c t ways (e i t h e r frames are objects
and s l o t s 2-place r e l a t i o n s , or frames are n-place
r e l a t i o n s) , they are used in GUS | l l to represent
conversa t iona l sequencing, in EVIL \H] to represent
perceptua l hypotheses. One syntax, fou r d i f f e r e n t
meanings.

Representat ion and c o n t r o l

Almost every idea on representa t ion in AI has
even tua l l y appeared in the guise of a programming
language. This i s in pa r t the legacy o f the p ro ­
cedura l /asser t i o n a l debate, which was won f a i r l y
conc lus i ve ly by the p r o c e d u r a l i s t s . I t i s wor th ,
however, going back over the o ld h i s t o r y of t h i s
dispute ra the r c a r e f u l l y , as the ground of the
argument has s h i f t e d subte ly but s i g n i f i c a n t l y over
the years .

C lass i ca l theorem-proving operated in the
general problem-solver paradigm. This takes the
form of a compet i t i ve game between he who designs
the theorem-prover and he who provides the axioms
on which they are t e s t e d . The aim of the game is
to w r i t e theorem-provers which can solve r e a l l y
hard problems, and which are genera l . To cunningly
adapt the axioms so tha t the theorem-prover is able
to prove the theorem is cheat ing and is frowned
upon, l i k e cheat ing at cards. Moreover, the
theorem-prover, being general purpose, has no b ias
to any p a r t i c u l a r domain. The r e s u l t is t h a t
c l a s s i c a l theorem-provers know very l i t t l e about
what to do, and are incapable o f being t o l d i t .

This was the p o s i t i o n the p rocedura l i s t s
a t t acked , and t h e i r argument was, I t h i n k , conc lu ­
s i v e . I t has to be poss ib le to t e l l a system what
to $2/ what in ferences to make and when to make
them (and not to make them), as w e l l as what is
t r u e . In a word, a system has to be programmable.

Contrast the problem-solver methodology w i t h
the programming language des igner 's methodology.
The l a t t e r does h i s best to make the workings of the
language i n t e r p r e t e r a v a i l a b l e , o r a t l eas t v i s i b l e ,
to the user , even to the extent in some cases of
w r i t i n g a manual (the u l t ima te anathema f o r problem-
so lve rs : a handbook f o r cheats) . The d i f fe rence is
u l t i m a t e l y one of where the r e s p o n s i b i l i t y f o r a
system's behaviour l i e s : the problem so lv ing system
designer r e t a i n s i t , the programming language de­
s igner g ives i t to the user , to the person who
composes the knowledge represen ta t ions . What more
n a t u r a l , t hen , than to regard a representa t ion
language as a programming language?

I t i s important t o emphasise t h i s con t ras t o f
methodologies because i t i s the only s i g n i f i c a n t
d i f f e rence between the p rocedura l i s t p o s i t i o n , as
i t was argued in the e a r l y seven t ies , and the t r a d ­
i t i o n a l theorem-proving view. In p a r t i c u l a r , the
procedural languages, o f f e red in t h i s pe r iod as
replacements f o r l o g i c , have very s i m i l a r in ference
s t ruc tu res to pred ica te c a l c u l u s . The procedura­
l i s t 's own remarks about how to represent f a c t s
r e i t e r a t e the basic semantic i n t u i t i o n s o f formal
l o g i c (see Winograd |j22] f o r example). The i n f e r ­
ence s t r u c t u r e of uPLANNER is a subset of p red ica te

Theorem P r o v ! n R - 3 : Hayes
561

c a l c u l u s , augmented w i t h THNOT. Even the newer
languages, such as KRL, based on d i f f e r e n t and
apparent ly r i v a l i n t u i t i o n s (see Minsky's broadside
in [I 2]) d i sp lay some remarkably l o g i c a l f ea tu res .

Nor is there any important d i f f e rence in
under ly ing mechanisms of implementat ion. The
b a s i c , and qu i t e o l d , mechanism of an and/or t r ee
w i t h va r i ab le - sha r i ng across and nodes, implemented
using invoca t ion records w i t h separate access and
c o n t r o l l i n k s and l o c a l environment b i nd ings ,
under l ies theorem-proving programs, AI programming
i n t e r p r e t e r s , product ion systems and ACTORS \9j .

But t h i s methodological d i f f e rence runs very
deep, and does have t echn i ca l consequences. A
procedura l language to represent knowledge has two
d i s t i n c t tasks to per form. I t must encode f a c t s
and inferences about ex te rna l domains (and hence
have some k ind of in ference s t r u c t u r e which we
might t r y t o analyse using l o g i c a l t o o l s) ; and i t
must a lso express s t r a teg ies of behaviour f o r i t s
i n t e r p r e t e r to obey, some of which w i l l presumably
be s t r a teg ies of in fe rence. I t w i l l have both an
inference s t ruc tu re and a process s t r u c t u r e , both
usable by the programmer. This is a t a l l o rde r ,
and nobody has managed to b u i l d a s a t i s f a c t o r y such
language y e t . There have been e s s e n t i a l l y three
ideas on how to do i t .

The f i r s t idea is to spec i fy c o n t r o l by the
way in which one s ta tes the f a c t s . Supposing tha t
there are a few predef ined s t r a teg ies which the
i n t e r p r e t e r can use to process an a s s e r t i o n : then
one provides the user w i t h j us t enough syn tac t i c
va r i an ts f o r s t a t i n g f ac t s to enable him to
i m p l i c i t l y t e l l the i n t e r p r e t e r which s t ra tegy t o
use. This is the uPLANNER idea (THCONSE and
THASSERT), a lso under l ies Kowalsk i 's more recent
proposal to t r e a t pred ica te l o g i c as a programming
language [l l] , and has been used by some " n a t u r a l
deduct ion" theorem-provers_which f i n d i t much
eas ier to prove AoB than AVB . But t h i s idea is
f a r too i n f l e x i b l e : one r a p i d l y f i nds tha t one
wants to spec i fy behaviours which cannot be encoded
as some simple combination of the predef ined
s t r a t e g i e s .

The n a t u r a l reac t i on to t h i s s i t u a t i o n i s t o
b u i l d systems which provide the necessary machinery
but make few commitments as to how it should be
used. To b u i l d systems, t h a t i s , in which s p e c i a l ­
i s t i n t e r p r e t e r s can be implemented. This is the
second idea. CONNIVER has j u s t t h i s r e l a t i o n s h i p
to pPLANNER, f o r example. CONNIVER was a t o o l k i t
f o r implementing PLANNER-like systems and, more
u s e f u l l y , f o r experiment ing w i t h corout ine c o n t r o l
s t r u c t u r e s . The KRL authors s i m i l a r l y i n s i s t t ha t
a represen ta t ion language "must provide a f l e x i b l e
set of under ly ing t o o l s , r a t h e r than embody
s p e c i f i c commitments about e i t h e r processing s t r a ­
teg ies or the represen ta t ion o f s p e c i f i c areas o f
knowledge", [2] , page 4.

But what then happens to the inference
s t ruc tu re of the rep resen ta t i ona l language? We
have now moved to a lower conceptual l e v e l , the
l e v e l o f the i n t e r p r e t e r r a the r than the l e v e l a t
which substant ive c la ims about some domain are
made. What we now have is pu re ly a programming
language, and not a d e s c r i p t i v e language. The
ob jec ts which, in a d e s c r i p t i v e language, would be
meaningful asser t ions or desc r i p t i ons or names -
meaningful i f the exact sense t h a t t h e i r r e l a t i o n ­

ship to a poss ib le ex te rna l wor ld was def ined by
the meaning of the language - these ob jec ts appear rig of the language

data s t ruc tu res i r merely as da ta "s t ruc tu res in an i n t e r p r e t e r -
implement ing language. And of course i t is par t
of the phi losophy of programming language design
tha t the i n t e r p r e t a t i o n of what a data s t r uc tu re
mean8 must be l e f t to the programmer.

Going down a l e v e l thus renders vacuous the
o r i g i n a l c la ims o f the p rocedura l i s t s w i t h regard
to rep resen ta t i on . To argue tha t CONNIVER is
be t t e r than pred icate ca lcu lus is to compare incom-
parab les . CONNIVER is about processes and t h e i r
behaviour: l o g i c is about asser t ions and t h e i r
meaning. CONNIVER is one of the programming
languages one might use to implement a system w i th
a l o g i c a l in ference s t ruc tu re (o r indeed any other
s t r u c t u r e) .

There is s t i l l a procedural problem, in any
case. The i n t e r p r e t e r - d e f i n i n g language has to be
based on some c o n t r o l regime. CONNIVER and
INTERLISP use co rou t i ne i ng , f o r example. But what­
ever c o n t r o l regime i s used, a t t h i s l e v e l i t i s
de te rm in i s t i c code - a sequence of i n s t r u c t i o n s -
which a c t u a l l y runs.

A widespread d i s s a t i s f a c t i o n w i t h pure ly
procedura l languages stems from the f e e l i n g t h a t
procedural code is too r i g i d a language to express
i n t e r e s t i n g behaviours (see [2] , page 36, f o r
example). One can use " p a t t e r n - d i r e c t e d invoca­
t i o n " (i . e . , r e s o l u t i o n *) , o r "procedura l a t t a c h ­
ment", or whatever, to make a more sens i t i ve choice
of which procedure to r un : but when t h a t choice has
been made, d e t e r m i n i s t i c code is found in i t s body.
I t a l l gets down to LISP in the end. Using the
CONNIVER (GEDANKEN, PAL . . .) idea of f rozen
process s ta tes a l lows a c e r t a i n amount of freedom:
but s t i l l we have the f e e l i n g tha t c o n t r o l is l i k e
a baton being passed from hand to hand. If one
process doesn' t know who to hand it t o , every­
t h i n g comes unstuck. A l l runnable code, whi le
runn ing , has t o t a l r e s p o n s i b i l i t y f o r keeping the
whole system a l i v e .

While t h i s does make some ingenious programm­
ing poss ib le , espec ia l l y when combined w i th a
database of asser t ions used to ' s imu la te ' a wor ld
(see Fahlman [17] f o r a b e a u t i f u l example), i t s t i l l
lacks the f l e x i b i l i t y and opportunism which we
need.

We need to have severa l coex i s t i ng processes,
each a c t i n g f o r i t s e l f w i thout needing to be
e x p l i c i t l y c a l l e d from some other process. The
obvious idea then is some form of mu l t i p rocess ing ,
where the i n t e r p r e t e r maintains a queue of
processes and runs them a l l from time to t i m e ,
according to some s t ra tegy . This is the t h i r d
idea. Ca l l i ng a process is p u t t i n g i t on the queue.
This makes apparent ly hard code, l i k e : beg inF () ;
G () ; H() end; i n t o something much s o f t e r , since
exac t l y what w i l l happen depends on what other
processes there are around. When F is c a l l e d , t ha t
doesn' t mean t h a t i t ' s a c t u a l l y c a l l e d , on ly t h a t
i t ' s put on the agenda.** Maybe some other process
* Resolut ion is an inference r u l e , not a

" s t r a t e g y " or a "method".
agenda = queue. A l o t of impressive renaming
goes on in t h i s business. For example, good
o ld environments appear in KRL under the t i t l e s
'procedure d i r e c t o r y ' and ' s i g n a l p a t h ' .

**

Theorem P r o v l n r - 3 : Hayes
562

w i l l run f i r s t and f l u s h F before i t has a chance
t o r u n , f o r example.

This very o l d (c . f . , Elcock and Foster [6])
idea is c u r r e n t l y popular . But we have now come
f u l l c i r c l e , t o a c l a s s i c a l prob lem-solv ing s i t u a ­
t i o n . How can the i n t e r p r e t e r decide what order
to run the processes in? I t doesn ' t know any th ing
about any p a r t i c u l a r domain, so i t c a n ' t dec ide.
So we have to be able to t e l l i t . But how?

This is exac t l y the s i t u a t i o n w i t h which we
began, the s i t u a t i o n the p rocedu ra l i s t s a t tacked .
In removing the dec is ion to a c t u a l l y run from the
code and p lac ing in in the i n t e r p r e t e r , advocates
of mu l t ip rocess ing systems have re -c rea ted the
uni form black-box prob lem-solver .

The next step then is to design a language in
which the programmer can c o n t r o l the agenda. The
s implest such idea is to use numbers: the agenda
has l e v e l s numbered from zero , and process c a l l s
spec i fy t h e i r l e v e l . This is used by KRL-0 and the
Graph Traverser [Y] . A somewhat more soph is t i ca ted
idea is to a l l ow desc r ip to rs f o r subqueues and
a l low processes to access these d e s c r i p t o r s , as in
POPEYE [l6] . But none of these ideas seem very
conv inc ing . And we have now moved down another
l e v e l , t o the i n t e r p r e t e r o f the i n t e r p r e t e r -
w r i t i n g language of the rep resen ta t i ona l language.

The on ly way out of t h i s descending s p i r a l is
upwards. We need to be ab le to describe processing
s t r a teg ies in a language at l eas t as r i c h as t h a t
in which we descr ibe the ex te rna l domains: and f o r
good eng ineer ing , it should be the same language.
The aspects of procedural languages - THNOT of
uPLANNER, passing context frames as parameters in
CONNIVER, de fau l t s in KRL - which r e s i s t simple
syn tac t i c mappings i n t o l o g i c , are a l l places where
the languages r e f e r to t h e i r own i n t e r p r e t e r ' s
behaviour. THNOT means not provable (f rom cur ren t
resources) : passing a context frame is p rov ing
something about another p roo f ; a de fau l t value is
one which is taken unless there is a proof t h a t i t s
value i s d i f f e r e n t . I t i s t h i s r e f l e x i v e nature o f
these languages which gives them t h e i r ' n o n - l o g i c a l 1

f ea tu res .
But t h i s is a quest ion of what knowledge is

represented, not o f what language i t is represented
i n . These r e f l e x i v e a s s e r t i o n s , r e f e r r i n g to the
system's own i n t e r n a l s t a t e s , can a lso be expressed
in l o g i c , w i t h the same gains in o n t o l o g i c a l c l a r i t y
as are r e a l i s e d in other areas. Th is d i s t i n c t i o n
between l o g i c and procedures is then seen as a
d i s t i n c t i o n between kinds of domain ra the r than
k inds o f language: the p rocedu ra l i s t p o s i t i o n leads
one to envisage a system which can describe i t s own
i n f e r e n t i a l processes and thus make inferences about
i t s own behaviour.

In order to design the i n t e r p r e t e r f o r such a
system, one needs a framework in which these
behaviours can be adequately descr ibed. Logic
provides - in the no t ion of p roof - a r i c h e r such
framework than any of the usual procedural ideas.

What l o g i c i s n ' t

I t ' s worth spending a l i t t l e t ime l a y i n g t o
r e s t some misunderstandings I ' ve met about l o g i c .
(1) Logic i s n ' t a programming system.
(2) Logic i s n ' t a p a r t i c u l a r syntax.

(3) Logic does not assume that the world is made
up of concrete phys ica l i nd i v i dua l s wi thout "ab ­
s t r a c t " i n d i v i d u a l s such as p r o p e r t i e s , events,
na t ions or f e e l i n g s . This view is nominalism, and
leads to a qu i te d i f f e r e n t sor t o f semantic i n t u i -
t i o n , in wh ich , f o r example, red denotes not a
p roper ty o f phys i ca l i n d i v i d u a l s , but the (ra the r
disconnected) i n d i v i d u a l cons i s t i ng o f a l l pieces
o f red s t u f f i n the wor ld .

Other s i m i l a r confusions are a lso made. For
example, l o g i c is no worse (and no b e t t e r) than
Conceptual Dependency at represent ing warm, human
f a c t s about people h i t t i n g each o ther ,
(4) Logic doesn' t g ive " the u l t ima te in decompos­
i t i o n o f knowledge". Winograd, in h i s widely c i t e d
d iscuss ion [23] o f the asse r t i ona l /p rocedura l con­
t r o v e r s y , draws a d i s t i n c t i o n between l o g i c ' s atom­
i s t i c view of knowledge, in which a representa t ion
is seen as a set of separate disconnected f a c t s ,
and the p r o c e d u r a l i s t ' s h o l i s t i c view in which
i n t e r a c t i o n s between procedures have prominence.
But t h i s is exac t l y the opposi te o f the t r u t h . The
i n t e r a c t i o n s sanct ioned by l o g i c between asser t ions
are f a r r i c h e r and more compl icated than the i n t e r ­
act ions between procedures in a procedural language
(any procedural language). Thus, e x p l i c i t recu r ­
s ive procedure c a l l s (LISP) are more r e s t r i c t e d
than e x p l i c i t corout ine c a l l s (SIMULA), these more
r e s t r i c t e d than p a t t e r n - d i r e c t e d co rou t i ne ing
(CONNIVER), these more r e s t r i c t e d than r e s o l u t i o n
(which a l lows both c a l l e r and c a l l e e to have
va r iab les bound dur ing the matching process) and
f i n a l l y r e s o l u t i o n i t s e l f i s a spec ia l case o f
general l o g i c in ference ru les o f i n s t a n t i a t i o n and
c u t . In each case, one pa t t e rn of i n t e r a c t i o n s is
a spec ia l case o f , and can be i m i t a t e d by, the
nex t . In each case, the more general i n t e r a c t i o n
pa t t e rn a l lows more i n t e r a c t i o n s and hence y i e l d s
a more complex search space, and a more d i f f i c u l t
search problem. I t i s p rec i se l y the r e s t r i c t i o n s
on i n t e r a c t i o n s in procedural languages which make
them so u s e f u l .

Aga in , Winograd claims tha t procedures, un l i ke
a s s e r t i o n s , mean very l i t t l e in i s o l a t i o n but
acquire meaning from t h e i r i n t e rac t i ons w i t h o ther
procedures; and again has got i t exac t l y the wrong
way round. A procedure may w e l l mean a l o t in
i s o l a t i o n . RANDOM(), f o r example, or PRINT(X):
any procedure whose body contains code but no c a l l s
of o ther procedures. Whereas the func t i on and
pred icate symbols in a l o g i c a l ax i oma t i sa t i on , l i k e
the tokens at nodes of a semantic n e t , l i t e r a l l y
mean noth ing unless t h e i r meaning is spec i f i ed by
axioms. The model - theoret ic account of meaning
makes t h i s abso lu te ly p rec i se ; as one con jo ins
a s s e r t i o n s , so the set of i n t e r p r e t a t i o n s poss ib le
f o r the symbols occu r r i ng in them is r e s t r i c t e d ,
and the set of poss ib le inferences from them is en­
l a rged . The i r meaning is p rogress ive ly t i g h t e n e d ,
as more f ac t s i n v o l v i n g them become i n f e r r a b l e .
(5) The tendency to replace rep resen ta t i ona l
languages by pure ly procedural languages goes hand
in hand w i t h a tendency to judge rep resen ta t i ona l
issues in computat ional terms. Thus Minsky 12) in
a t t a c k i n g what he sees as the malevolent in f luence
of l o g i c , dimisses pred icate ca lcu lus by observing
tha t the machinery of P.C. inference - i n s t a n t i a t i o n
and t r ee -g row ing , b a s i c a l l y - is ava i l ab le as a

Theorem Prov?r iP : -3 : Mav
563

simple byproduct of the more soph is t i ca ted symbol-
manipulat ion operat ions needed f o r ana log i ca l
reasoning. But t h i s , whi le perhaps t r u e , misses
the p o i n t : i t i s the meaning o f those opera t ions ,
i n t e r p r e t e d as i n fe rences , o f which l o g i c provides
an a n a l y s i s .

Aga in , Winograd [_23] i d e n t i f i e s the procedura l
/ a s s e r t i o n a l d i s t i n c t i o n w i t h the program/data-
s t ruc tu re d i s t i n c t i o n , a completely f a l se analogy.
The l a t t e r d i s t i n c t i o n is to do w i th two d i f f e r e n t
r e l a t i o n s h i p s a piece of data can have to an i n t e r ­
p re te r (i n c l u d i n g , u l t i m a t e l y , the hardware CPU):
the former w i t h the meanings of those s t r u c t u r e s .
An asse r t i on can be t r e a t e d as a da tas t ruc tu re or
i n t e rp re ted as a program, j u s t as a procedure can.
The d i s t i n c t i o n s are or thogona l .

1 0 .

1 1 .

Fahlman (1974) , "A p lann ing system f o r Robot
Const ruct ion Tasks" , A . I . J . 5 , pp. 1-49.

Hayes (1971) , "A l o g i c of a c t i o n s " , Machine
I n t e l l i g e n c e 6 , Edinburgh Un i ve rs i t y
Press.

Hew i t t , Bishop and Ste iger (1973) , "A un iver ­
s a l modular ACTOR formal ism f o r
a r t i f i c i a l i n t e l l i g e n c e " , Proc. 3rd
I . J . C . A . I . , S tan fo rd .

Huet (1972) , Constrained Reso lu t ion , r epo r t
1117, Case Western U n i v e r s i t y .

Kowalski (1975) , "Predicate ca lcu lus as a
programming language", Proc. I . F . I . P . 75.

Last word

I have argued the case f o r t ak ing l o g i c ' s
no t ion of meaning s e r i o u s l y . I do n o t , however,
wish to argue tha t t h i s is the on ly important
issue in cons ider ing rep resen ta t i ona l languages.
Process c o n t r o l i s impor tan t , o f course: quest ions
o f ease o f r e t r i e v a l , o f focuss ing o f a t t e n t i o n ,
o f re levance, are a lso o f great s i g n i f i c a n c e .
Nei ther is syn tac t i c convenience completely unim­
po r t an t . These issues are however a l l r ece i v i ng
considerable a t t e n t i o n a l ready . Semantics -
quest ions of meaning - tend to be discussed l e s s .

Acknowledgements

I have had h e l p f u l conversat ions and
correspondence w i t h Bruce Anderson, Richard Bornat ,
Eugene Charniak, Jack Lang, Bob Wiel inga and
Yorick Wi lks . Alan Bundy, Aaron Sloman and Terry
Winograd made use fu l comments on the f i r s t d r a f t
of the paper. This work was supported in par t by
the Science Research Counc i l .

References

1. Bobrow, et al (1976), GUS, a f rame-dr iven
d i a l o g system, Xerox Palo A l t o Research
Center.

2. Bobrow and Winograd (1976), An overview of KRL,
A Knowledge Representat ion Language,
Xerox Palo Research Center.

3. Brady and Wiel inga (1977) , "Reading the w r i t ­
i ng on the w a l l " , Proc. Workshop on
Computer V i s i o n , Amherst, Mass.

4. Brooks and Rowbury (1976) , An EVIL p r imer ,
Memo CSM-14, Essex Un i ve r s i t y .

5. Doran and Michie (1966) , "Experiments w i t h the
Graph Traverser program", Proc. Royal
Society (A) 294, pp. 235-59.

6. Elcock and Foster (1969) , "ABYSY 1: an i n c r e ­
mental compi ler f o r asse r t i ons i an
i n t r o d u c t i o n " , Machine I n t e l l i g e n c e 4 . ,
Edinburgh Un ive rs i t y Press.

1 2 .

1 3 .

1 4 .

1 5 .

Minsky (1974) , "A framework f o r represent ing
knowledge", Memo, M. I .T. A . I . Lab.
(unexpurgated v e r s i o n) .

P ie t rykowsk i and Jensen (1973) , "Mechanising
w-order type theory through u n i f i c a t i o n " ,
Report CS-73-16, Un ive rs i t y of Water loo.

Schank (ed .) (1975) , Conceptual In fo rmat ion
Processing, Nor th-Hol land.

Schubert (1975) , Extending the Expressive
Power of Semantic Networks, Un ive rs i t y
o f A l b e r t a .

16. Sloman (1976) , (personal communication).

17. Sussman, et a l (1970) , Micro-planner reference
manual, M. I .T. A . I . Memo 203.

18. Sussman and McDermott (1972) , "From PLANNER
to C0NNIVER-- A genet ic approach",
A . F . I . P . S . F a l l Jo in t Computer Conference.

19. Anderson, e t a l (1972), A f t e r L e i b n i t z , A . I .
Memo, Stanford U n i v e r s i t y .

20. Wilks (1975) , " P r i m i t i v e s and Words", Proceed­
ings of the Conference on Theore t i ca l
Issues in Natura l Language Processing,
Assoc ia t ion f o r Computational L i ngu i s t i c s

2 1 . Wilks (1973) , "An a r t i f i c i a l i n t e l l i g e n c e
approach to machine t r a n s l a t i o n " ,
Computer Models of Thought and Language,
W.H. Freeman.

22. Winograd (1972) , Understanding Natu ra l
Language, Academic Press.

23. Winograd (1975) , "Frames and the d e c l a r a t i v e -
procedural con t rove rsy " , Representat ion
and Understanding, Academic Press.

24. Woods (1975) , "What's in a l i n k " , Representa­
t i o n and Understanding, Academic Press.

Theorem P r o v i n g - 3 : Hayes
56l4

Arch

