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I n t r o d u c t i o n 

Modern formal l o g i c is the most successfu l 
p rec ise language ever developed to express human 
thought and in fe rence . Measured across any reason­
ab ly broad spectrum, i n c l u d i n g ph i losophy, 
l i n g u i s t i c s , computer sc ience , mathematics and 
a r t i f i c i a l i n t e l l i g e n c e , no other formal ism has 
been anyth ing l i k e so success fu l . And yet recent 
w r i t e r s in the AI f i e l d have been almost unanimous 
in t h e i r condemnation of l o g i c as a rep resen ta t i on ­
al language, and other formalisms are in a s ta te of 
r ap id development. 

I w i l l argue t h a t most o f t h i s c r i t i c i s m 
misses the p o i n t , and t h a t the r e a l c o n t r i b u t i o n o f 
l o g i c i s not i t s usual r a t h e r sparse syntax , but 
the semantic theory which i t p rov ides . AI is as 
much in need now of good semantic theor ies w i th 
which to compare formalisms as it always has been. 
I w i l l a lso re-examine the p rocedura l /dec la ra t i ve 
controversy and show how regard ing rep resen ta t i ona l 
languages as programming languages has, i r o n i c a l l y , 
made procedural ideas as vu lnerab le to the o l d 
p r o c e d u r a l i s t s ' c r i t i c i s m s as the c l a s s i c a l 
theorem-proving paradigm was. I w i l l argue tha t 
the con t ras t between a s s e r t i o n a l and procedural 
languages is f a l s e : we have ra the r two kinds of 
sub jec t -mat te r than two kinds of language. 

This paper i s d e l i b e r a t e l y polemical in tone. 
Much has been w r i t t e n from the p rocedu ra l i s t po in t 
o f v iew. I t ' s t ime the other arguments were pu t . 

Logic is not a programming system 

I t w i l l , and has been, sa id t ha t to defend 
l o g i c is to adopt a reac t ionary p o s i t i o n . Logic 
has been t r i e d ( i n the late s i x t i e s ) and found 
want ing; now it has been superceded by b e t t e r 
systems, in p a r t i c u l a r , procedural languages such 
as uPLANNER [17] , CONNIVER f l8 ] and more recen t l y 
KRL [ 2 ] . 

But l o g i c is not a system in t h i s sense. I t ' s 
not a s t y l e of programming. I t e n t a i l s no commit­
ment to the use of any p a r t i c u l a r process o rgan is ­
a t i o n o r technique o f coding. To t h i n k t ha t i t 
does is to make a category e r r o r . 

Logic is a c o l l e c t i o n of ideas on how to 
express a c e r t a i n k ind of knowledge about a cer ­
t a i n k ind of wo r ld . The moetatheory o f l o g i c is a 
c o l l e c t i o n o f mathematical t o o l s f o r ana lys ing r e ­
p resen ta t i ona l languages of t h i s c l a s s . What these 
t o o l s analyse is not the behaviour o f an i n t e r ­
p r e t e r , or the s t r uc tu re o f processes in some r u n ­
n ing system, but r a t h e r , the ex tens iona l meaning 
of expressions of a language, when these are taken 
to be making claims about some ex te rna l w o r l d . 

These two d i s t i n c t t o p i c s - the meaning of a 
language and the behaviour of an i n t e r p r e t e r f o r 
i t - are r e l a t e d in var ious ways. They meet in 
p a r t i c u l a r , i n the no t i on o f i n fe rence . Log ica l 
meaning j u s t i f i e s in fe rences . A running system 
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performs in fe rences : some of i t s processes are the 
making of i n fe rences . 

But two d i f f e r e n t systems may be based on the 
same no t ion of in ference and the same representa­
t i o n a l language. The in ference s t ruc tu re of the 
language used by a system does not depend on the 
process s t r u c t u r e . In p a r t i c u l a r , a system may 
have a l o g i c a l in ference s t r uc tu re - may be making 
deduct ive ly v a l i d in ferences - w i thou t being a 
c l a s s i c a l uni form theorem-prover which j u s t "g r inds 
l i s t s o f clauses t oge the r " . 

What l o g i c i s : the ex tens iona l ana lys i s of meaning 

One of the f i r s t tasks which faces a theory of 
representa t ion is to g ive some account of what a 
representa t ion or r ep resen ta t i ona l language means. 
Without such an account , comparisons betweer rep re ­
sentat ions or languages can only be very super­
f i c i a l . Log ica l model theory provides such an 
ana l ys i s . 

Suppose i t i s claimed t h a t : 

means t ha t B i l l h i t Mary w i t h a f i s h ( t o take a 
represen ta t i ve example), o r t h a t : 

((DO(^AGENT)^BADTHING))CAUSE(^AGENT)DISPLAY 
(tfNEGATIVEEMOTION))) 

means tha t people o f t en seem upset when bad th ings 
happen ( t o take ano ther ) . How could one judge 
whether they r e a l l y do mean those th ings? What 
would count as a s p e c i f i c a t i o n of t h e i r meanings? 
Several answers can be suggested. 

The f i r s t might be c a l l e d " p r e t e n d - i t ' s -
E n g l i s h " . Here, one takes the p r i m i t i v e symbols 
to stand f o r t h e i r o rd inary Eng l ish meaning, and 
gives a way of t r a n s l a t i n g the grammar of the 
representa t ion i n t o Eng l ish surface syntax ( t h i s 
i s o f ten l e f t i m p l i c i t but f a i r l y obv ious) . The 
f i r s t example above then is to be read as something 
l i k e " B i l l moved some ob jec t - which was a f i s h -
in the d i r e c t i o n of Mary, thus causing the ob ject 
to make an impact upon Mary". One now has to judge 
whether t h i s Engl ish sentence has the same meaning 
as the o r i g i n a l Eng l ish sentence ( " B i l l h i t Mary 
w i t h a f i s h " ) . The Engl ish render ing of t l .e 
second example is even more obv ious. 

This way of ana lys ing meaning has the v i r t u e 
o f s i m p l i c i t y , and i t a l so requ i res very l i t t l e 
t e c h n i c a l e x p e r t i s e . I t i s w ide ly used in modern 
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l i n g u i s t i c s , where i t o f t en goes hand in hand w i t h 
the assumption there is some f i n i t e c o l l e c t i o n of 
basic words in terms of which the meanings of a l l 
sentences can be exp la ined. 

But there are many problems w i t h t h i s simple 
idea. For a s t a r t , i t ' s p e r i l o u s l y vague. I t ' s 
always hard to judge whether two Engl ish sentences 
have the same meaning. It depends what you mean by 
"meaning" - w i t h a very t i g h t sense o f 'mean ing" , 
the sentences "John h i t Mary" and "Mary was h i t by 
John" are d i f f e r e n t in meaning. Second, i t ' s an 
e s s e n t i a l l y l i n g u i s t i c view o f meaning. While t h i s 
doesn' t bother many workers in the n a t u r a l language 
a rea , i t should bother anyone who be l ieves t ha t at 
l eas t some knowledge representa t ions need to be 
independent of any p a r t i c u l a r sensory b i a s . (We 
can a l l look at a scene and descr ibe what we see. 
How is in fo rmat ion t r ans fe r red from the v i s u a l 
r ecogn i t i on process to the l i n g u i s t i c representa­
t i o n ? ) Much of what a v i s i o n program needs to 
represent may not be r e a d i l y express ib le in Engl ish 
( e . g . , 2-d imensionalpat terns o f l i g h t and shade). 
T h i r d , i t provides no use fu l gu ide l ines f o r how a 
system might use the rep resen ta t i on . Given t ha t 
the network of the f i r s t example is supposed to 
mean the same as i t s a n g l i c i s a t i o n , does anyth ing 
f o l l ow concerning what in ferences can or should be 
made from the network? 

This l a s t po in t is r e a l l y a symptom of the 
most basic problem, which is t h a t on t h i s account 
we could j u s t as w e l l use the Eng l ish sentences 
themselves as t h e i r own rep resen ta t ions . The 
symbols in the formal ism might as w e l l be Eng l ish 
words. (Wi lks [20] s ta tes t h i s e x p l i c i t l y . ) U n t i l 
some independent account of the formal ism is 
p rov ided , no a c t u a l ana lys is o f meaning is f o r t h ­
coming. 

The model - theore t ic approach to meaning i n t e r ­
p re ts an expression of a formal ism as making a 
c la im about the way the wor ld i s . Suppose we give 
some c r i t e r i a by which we can judge whether a 
suggested poss ib le wor ld s a t i s f i e s the express ion , 
or whether on the con t ra ry i t is a counterexample 
to the c la im made by the express ion. Then these 
c r i t e r i a can be used as an account of meaning. An 
expression means what it c la ims about a poss ib le 
wo r l d . Two expressions which are s a t i s f i e d by the 
same poss ib le worlds are i d e n t i c a l in meaning. A 
n a t u r a l no t i on o f in ference fo l l ows a l s o . I f every 
counterexample to E1_ is a lso a counterexample to 
E2, then we can i n f e r E± from E 2 : f o r then a l l the 
poss ib le worlds which are cons is ten t w i t h the c la im 
we make when E2 is asser ted a lso s a t i s f y E i . 

Not ice t ha t on t h i s account an expression can 
usua l l y not be sa id to d e f i n i t e l y correspond to 
anyth ing i n tire ac tua l w o r l d . I t s meaning i s f i x e d 
on ly w i th respect to a poss ib le wor ld . In order to 
p i n down i t s meaning (we should say ' r e f e r e n t ' ) 
more p rec i se l y in the a c t u a l w o r l d , we must add 
more asser t ions so as to cut down the set of 
poss ib le example wor lds . Take f o r example the 
expression "MARY", which is intended to denote a 
p a r t i c u l a r lady i n the r e a l w o r l d . I n order t o 
achieve t h i s i d e n t i f i c a t i o n , we would have to asser 
asser t enough axioms con ta in ing the expression 
"MARY" to ensure tha t in any poss ib le wor ld s a t i s ­
f y i n g them, the denotat ion of "MARY" corresponded 
to the p a r t i c u l a r lady i n quest ion i n the ac tua l 

wor ld . These axioms w i l l con ta in o ther names and 
r e l a t i o n s symbols, and we cannot in general say 
conc lus ive ly t ha t any o f these is def ined in terms 
of some p a r t i c u l a r subset of the o the rs . The 
e n t i r e web of l o g i c a l l y connected asser t ions is 
presumably t i e d down to the ac tua l wor ld by some 
of them having an i n t e r p r e t a t i o n as observa t ions , 
in the case of an ac tua l robot w i t h these b e l i e f s 
in i t s head. On t h i s account , percept ion is a form 
of i n fe rence : in ference which invo lves observa t ion ­
al asse r t i ons . (This is not to say tha t we can 
deduc t ive ly der ive b e l i e f s from observa t ions , which 
is of course not t ime in genera l . The requ i red 
r e l a t i o n s h i p is cons is tency: b e l i e f s must be kept 
cons is ten t w i t h observa t ions . ) 

This model - theoret ic account of meaning 
corresponds exac t l y to Bobrow and Winograd's |_2] 
view tha t "a d e s c r i p t i o n . . . cannot be broken down 
i n t o a s ing le set of p r i m i t i v e s , but must be ex­
pressed through m u l t i p l e v iews" and " . . . there 
would be no simple sense in which the system con­
t a i n s a ' d e f i n i t i o n ' of the o b j e c t , or a complete 
desc r i p t i on i n terms o f i t s s t r u c t u r e " . The i r 
subsequent remarks suggest, however, a confusion 
between the l o g i c a l no t ion of meaning and the 
p r e t e n d - i t ' s - E n g l i s h no t ion using " p r i m i t i v e s " . 

The problem w i t h t h i s approach to meaning i s , 
of course, to spec i fy what we mean by a poss ib le 
wor ld in such a way tha t we can s ta te the meaning 
c r i t e r i a - the t r u t h - c o n d i t i o n s as they are usua l l y 
and somewhat mis lead ing ly c a l l e d . F i r s t - o r d e r 
l o g i c makes on ly very elementary assumptions. A 
l o g i c a l l y - p o s s i b l e wor ld is a set o f i n d i v i d u a l s 
(each name denotes some i n d i v i d u a l ) and a set of 
r e l a t i o n s between them (each r e l a t i o n symbol de­
notes some r e l a t i o n ) . The ru les f o r dec id ing which 
worlds are examples f o r an expression and which are 
counterexamples, are w e l l known, y i e l d i n g the usual 
no t ion o f deduct ive in fe rence . 

Model t heo ry , un l i ke p r e t e n d - i t ' s - E n g l i s h , 
gives an account of ex tens iona l meaning r e l a t i v e to 
an exact no t i on of poss ib le wor ld . One might ob­
j e c t t ha t t h i s no t ion is mistaken. Perhaps the 
r e a l wor ld i s n ' t l i k e t h a t , does not cons is t o f 
i n d i v i d u a l s w i t h r e l a t i o n s between them. Ce r ta in l y 
t h i s no t i on of wor ld seems too s imple. Are l i q u i d s 
i n d i v i d u a l s , f o r example? E i the r answer (yes or 
no) g ives r i s e to c e r t a i n problems. There is much 
scope f o r ingenu i ty in g i v i n g prec ise desc r ip t i ons 
of more i n t e r e s t i n g c lasses of poss ib le wor lds . 
I t would be i n t e r e s t i n g to see a c lass of worlds 
in which there was a f i x e d no t ion of c a u s a l i t y , 
f o r example [8] , Not ice how such an en te rp r i se 
would d i f f e r from the ' a n a l y s i s ' of CAUSE provided 
by p r e t e n d - i t ' s - E n g l i s h . The l a t t e r y i e l d s no 
account of what a causa l ly poss ib le wor ld would be 
l i k e , nor does i t exp la in what cons t i t u t es causa l ly 
v a l i d i n fe rence . 

An important p roper ty of the model - theore t ic 
account is t ha t i t enables one to judge a proposed 
represen ta t ion by imagining the circumstances which 
would render i t t r u e . Of course t h i s is only a 
h e u r i s t i c remark, but I f i n d t ha t i t i s an impor­
t a n t f e a t u r e . One way to t e s t a proposed rep re ­
sen ta t ion i s t o run i t , i f poss ib le on a computer, 
but perhaps on ly in a p e n c i l and paper sense, i . e . , 
w r i t e down some formal consequences of i t us ing 
whatever in ference s t r uc tu re comes w i t h the 
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rep resen ta t i ona l language. But t h i s does not 
always generate i n s i g h t i n t o e r r o r s or inadequacies 
of the rep resen ta t i on , because a c h a r a c t e r i s t i c 
symptom of such a s i t u a t i o n is t ha t nonsense 
becomes d e r i v a b l e , or a l t e r n a t i v e l y t h a t no th ing 
use fu l i s der ivab le a t a l l , ne i t he r o f which i s 
very much he lp . Another way to t e s t i t however is 
to attempt to understand i t as a d e s c r i p t i o n of a 
w o r l d , and to imagine what the wor ld would have to 
be l i k e to make i t f a l s e . I f i n d the l a t t e r the 
most u s e f u l . 

For example, suppose one is t r y i n g to formal 
ise knowledge about l i q u i d s , and one w r i t e s some­
t h i n g l i k e 

INUIQUID, CONTAINER) &MOVES(CONTAINER) 
=>IN(LIQUID.CONTAINER) 

Is t h i s a reasonable asser t ion? In order to answer 
tha t ques t ion , one would at l eas t have to say 
whether i t were usua l l y t r u e . What would the wor ld 
have to be l i k e to render i t f a l s e ; what would be a 
counterexample? W e l l , what does i t mean? I t ' s not 
c l e a r , s ince we have no model theory . Presumably 
IN is a r e l a t i o n , but is MOVES then a r e l a t i o n ? 
The i n t e n t i o n behind t h i s semiformal axiom can be 
crudely expressed thus : 

INUIQUID,CONTAINER,STATE) 
=>IN(LIQUID,CONTAINER,MOVE(STATE)) 

where MOVE is a func t i on from s ta tes to s t a t e s . 
Now the ontology is c l e a r , anyone who has p icked 
up an o v e r f u l l cup of co f fee can e a s i l y imagine a 
counterexample. Without a model theory - a l b e i t 
perhaps an in fo rma l one - we would not be able to 
so connect expressions of the formal ism to poss ib le 
con f i gu ra t i ons of a wor ld tha t i t would even be 
poss ib le to imagine such counterexamples. A 
formal ism wi thout a model theory can hard ly be sa id 
to c o n s t i t u t e a rep resen ta t i ona l language a t a l l . 

None of these basic semantic ideas say any­
t h i n g about the syntax of the expressions used to 
encode f a c t s . The same meanings can be expressed 
in a wide v a r i e t y of syn tac t i c forms. There is 
thus an a p r i o r i p o s s i b i l i t y t ha t some a l ready 
e x i s t i n g language may be best i n t e r p r e t e d as another 
syntax f o r p red ica te (o r even p r o p o s i t i o n a l ) c a l c u ­
l u s . "Semantic networks" are a good example, as 
several recent w r i t e r s have observed (see f o r 
example Woods [2] and Schubert [ l 5 ] ) . If someone 
argues f o r the s u p e r i o r i t y of semantic networks 
over l o g i c , he must be r e f e r r i n g to some other 
proper ty o f the former than t h e i r meaning ( f o r 
example, t h e i r usefulness f o r r e t r i e v i n g re levan t 
f ac t s from a database - an aspect of a poss ib le 
process s t r u c t u r e - or t h e i r a t t r a c t i v e appearance 
on a p r i n t e d page). A more recent example is KRL. 
V i r t u a l l y the whole of KRL-0 can be regarded as-
merely a new syntax f o r f i r s t - o r d e r p red ica te l o g i c . 

Now it must be admit ted t h a t sometimes 
semantic networks ( f o r example) are used in ways 
which do not r e f l e c t t h e i r obvious l o g i c a l meaning. 
For example, there is o f ten a so r t o f i m p l i c i t 
uniqueness cond i t i on which prevents two nodes from 
denot ing the same e n t i t y in any i n t e r p r e t a t i o n . 
Without such a c o n d i t i o n , f o r example, the 
'pedesta l ' network of f i g . 1 would be merely an 
instance of the 'a rch ' network, got by i d e n t i f y i n g 
B2 and B3 (much as P ( x , x) is an instance of 

P(x , y ) in the usual syn tax) . 
S i m i l a r l y , frames are a syntax which have been 

used to convey a v a r i e t y of meanings. They can be 
understood as a strange syntax f o r l o g i c in at 
l eas t 2 d i s t i n c t ways ( e i t h e r frames are objects 
and s l o t s 2-place r e l a t i o n s , or frames are n-place 
r e l a t i o n s ) , they are used in GUS | l l to represent 
conversa t iona l sequencing, in EVIL \H] to represent 
perceptua l hypotheses. One syntax, fou r d i f f e r e n t 
meanings. 

Representat ion and c o n t r o l 

Almost every idea on representa t ion in AI has 
even tua l l y appeared in the guise of a programming 
language. This i s in pa r t the legacy o f the p ro ­
cedura l /asser t i o n a l debate, which was won f a i r l y 
conc lus i ve ly by the p r o c e d u r a l i s t s . I t i s wor th , 
however, going back over the o ld h i s t o r y of t h i s 
dispute ra the r c a r e f u l l y , as the ground of the 
argument has s h i f t e d subte ly but s i g n i f i c a n t l y over 
the years . 

C lass i ca l theorem-proving operated in the 
general problem-solver paradigm. This takes the 
form of a compet i t i ve game between he who designs 
the theorem-prover and he who provides the axioms 
on which they are t e s t e d . The aim of the game is 
to w r i t e theorem-provers which can solve r e a l l y 
hard problems, and which are genera l . To cunningly 
adapt the axioms so tha t the theorem-prover is able 
to prove the theorem is cheat ing and is frowned 
upon, l i k e cheat ing at cards. Moreover, the 
theorem-prover, being general purpose, has no b ias 
to any p a r t i c u l a r domain. The r e s u l t is t h a t 
c l a s s i c a l theorem-provers know very l i t t l e about 
what to do, and are incapable o f being t o l d i t . 

This was the p o s i t i o n the p rocedura l i s t s 
a t t acked , and t h e i r argument was, I t h i n k , conc lu ­
s i v e . I t has to be poss ib le to t e l l a system what 
to $2/ what in ferences to make and when to make 
them (and not to make them), as w e l l as what is 
t r u e . In a word, a system has to be programmable. 

Contrast the problem-solver methodology w i t h 
the programming language des igner 's methodology. 
The l a t t e r does h i s best to make the workings of the 
language i n t e r p r e t e r a v a i l a b l e , o r a t l eas t v i s i b l e , 
to the user , even to the extent in some cases of 
w r i t i n g a manual ( the u l t ima te anathema f o r problem-
so lve rs : a handbook f o r cheats ) . The d i f fe rence is 
u l t i m a t e l y one of where the r e s p o n s i b i l i t y f o r a 
system's behaviour l i e s : the problem so lv ing system 
designer r e t a i n s i t , the programming language de­
s igner g ives i t to the user , to the person who 
composes the knowledge represen ta t ions . What more 
n a t u r a l , t hen , than to regard a representa t ion 
language as a programming language? 

I t i s important t o emphasise t h i s con t ras t o f 
methodologies because i t i s the only s i g n i f i c a n t 
d i f f e rence between the p rocedura l i s t p o s i t i o n , as 
i t was argued in the e a r l y seven t ies , and the t r a d ­
i t i o n a l theorem-proving view. In p a r t i c u l a r , the 
procedural languages, o f f e red in t h i s pe r iod as 
replacements f o r l o g i c , have very s i m i l a r in ference 
s t ruc tu res to pred ica te c a l c u l u s . The procedura­
l i s t 's own remarks about how to represent f a c t s 
r e i t e r a t e the basic semantic i n t u i t i o n s o f formal 
l o g i c (see Winograd |j22] f o r example). The i n f e r ­
ence s t r u c t u r e of uPLANNER is a subset of p red ica te 
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c a l c u l u s , augmented w i t h THNOT. Even the newer 
languages, such as KRL, based on d i f f e r e n t and 
apparent ly r i v a l i n t u i t i o n s (see Minsky's broadside 
in [ I 2 ] ) d i sp lay some remarkably l o g i c a l f ea tu res . 

Nor is there any important d i f f e rence in 
under ly ing mechanisms of implementat ion. The 
b a s i c , and qu i t e o l d , mechanism of an and/or t r ee 
w i t h va r i ab le - sha r i ng across and nodes, implemented 
using invoca t ion records w i t h separate access and 
c o n t r o l l i n k s and l o c a l environment b i nd ings , 
under l ies theorem-proving programs, AI programming 
i n t e r p r e t e r s , product ion systems and ACTORS \9j . 

But t h i s methodological d i f f e rence runs very 
deep, and does have t echn i ca l consequences. A 
procedura l language to represent knowledge has two 
d i s t i n c t tasks to per form. I t must encode f a c t s 
and inferences about ex te rna l domains (and hence 
have some k ind of in ference s t r u c t u r e which we 
might t r y t o analyse using l o g i c a l t o o l s ) ; and i t 
must a lso express s t r a teg ies of behaviour f o r i t s 
i n t e r p r e t e r to obey, some of which w i l l presumably 
be s t r a teg ies of in fe rence. I t w i l l have both an 
inference s t ruc tu re and a process s t r u c t u r e , both 
usable by the programmer. This is a t a l l o rde r , 
and nobody has managed to b u i l d a s a t i s f a c t o r y such 
language y e t . There have been e s s e n t i a l l y three 
ideas on how to do i t . 

The f i r s t idea is to spec i fy c o n t r o l by the 
way in which one s ta tes the f a c t s . Supposing tha t 
there are a few predef ined s t r a teg ies which the 
i n t e r p r e t e r can use to process an a s s e r t i o n : then 
one provides the user w i t h j us t enough syn tac t i c 
va r i an ts f o r s t a t i n g f ac t s to enable him to 
i m p l i c i t l y t e l l the i n t e r p r e t e r which s t ra tegy t o 
use. This is the uPLANNER idea (THCONSE and 
THASSERT), a lso under l ies Kowalsk i 's more recent 
proposal to t r e a t pred ica te l o g i c as a programming 
language [ l l ] , and has been used by some " n a t u r a l 
deduct ion" theorem-provers_which f i n d i t much 
eas ier to prove AoB than AVB . But t h i s idea is 
f a r too i n f l e x i b l e : one r a p i d l y f i nds tha t one 
wants to spec i fy behaviours which cannot be encoded 
as some simple combination of the predef ined 
s t r a t e g i e s . 

The n a t u r a l reac t i on to t h i s s i t u a t i o n i s t o 
b u i l d systems which provide the necessary machinery 
but make few commitments as to how it should be 
used. To b u i l d systems, t h a t i s , in which s p e c i a l ­
i s t i n t e r p r e t e r s can be implemented. This is the 
second idea. CONNIVER has j u s t t h i s r e l a t i o n s h i p 
to pPLANNER, f o r example. CONNIVER was a t o o l k i t 
f o r implementing PLANNER-like systems and, more 
u s e f u l l y , f o r experiment ing w i t h corout ine c o n t r o l 
s t r u c t u r e s . The KRL authors s i m i l a r l y i n s i s t t ha t 
a represen ta t ion language "must provide a f l e x i b l e 
set of under ly ing t o o l s , r a t h e r than embody 
s p e c i f i c commitments about e i t h e r processing s t r a ­
teg ies or the represen ta t ion o f s p e c i f i c areas o f 
knowledge", [ 2 ] , page 4. 

But what then happens to the inference 
s t ruc tu re of the rep resen ta t i ona l language? We 
have now moved to a lower conceptual l e v e l , the 
l e v e l o f the i n t e r p r e t e r r a the r than the l e v e l a t 
which substant ive c la ims about some domain are 
made. What we now have is pu re ly a programming 
language, and not a d e s c r i p t i v e language. The 
ob jec ts which, in a d e s c r i p t i v e language, would be 
meaningful asser t ions or desc r i p t i ons or names -
meaningful i f the exact sense t h a t t h e i r r e l a t i o n ­

ship to a poss ib le ex te rna l wor ld was def ined by 
the meaning of the language - these ob jec ts appear rig of the language 

data s t ruc tu res i r merely as da ta "s t ruc tu res in an i n t e r p r e t e r -
implement ing language. And of course i t is par t 
of the phi losophy of programming language design 
tha t the i n t e r p r e t a t i o n of what a data s t r uc tu re 
mean8 must be l e f t to the programmer. 

Going down a l e v e l thus renders vacuous the 
o r i g i n a l c la ims o f the p rocedura l i s t s w i t h regard 
to rep resen ta t i on . To argue tha t CONNIVER is 
be t t e r than pred icate ca lcu lus is to compare incom-
parab les . CONNIVER is about processes and t h e i r 
behaviour: l o g i c is about asser t ions and t h e i r 
meaning. CONNIVER is one of the programming 
languages one might use to implement a system w i th 
a l o g i c a l in ference s t ruc tu re (o r indeed any other 
s t r u c t u r e ) . 

There is s t i l l a procedural problem, in any 
case. The i n t e r p r e t e r - d e f i n i n g language has to be 
based on some c o n t r o l regime. CONNIVER and 
INTERLISP use co rou t i ne i ng , f o r example. But what­
ever c o n t r o l regime i s used, a t t h i s l e v e l i t i s 
de te rm in i s t i c code - a sequence of i n s t r u c t i o n s -
which a c t u a l l y runs. 

A widespread d i s s a t i s f a c t i o n w i t h pure ly 
procedura l languages stems from the f e e l i n g t h a t 
procedural code is too r i g i d a language to express 
i n t e r e s t i n g behaviours (see [ 2 ] , page 36, f o r 
example). One can use " p a t t e r n - d i r e c t e d invoca­
t i o n " ( i . e . , r e s o l u t i o n * ) , o r "procedura l a t t a c h ­
ment", or whatever, to make a more sens i t i ve choice 
of which procedure to r un : but when t h a t choice has 
been made, d e t e r m i n i s t i c code is found in i t s body. 
I t a l l gets down to LISP in the end. Using the 
CONNIVER (GEDANKEN, PAL . . . ) idea of f rozen 
process s ta tes a l lows a c e r t a i n amount of freedom: 
but s t i l l we have the f e e l i n g tha t c o n t r o l is l i k e 
a baton being passed from hand to hand. If one 
process doesn' t know who to hand it t o , every­
t h i n g comes unstuck. A l l runnable code, whi le 
runn ing , has t o t a l r e s p o n s i b i l i t y f o r keeping the 
whole system a l i v e . 

While t h i s does make some ingenious programm­
ing poss ib le , espec ia l l y when combined w i th a 
database of asser t ions used to ' s imu la te ' a wor ld 
(see Fahlman [17] f o r a b e a u t i f u l example), i t s t i l l 
lacks the f l e x i b i l i t y and opportunism which we 
need. 

We need to have severa l coex i s t i ng processes, 
each a c t i n g f o r i t s e l f w i thout needing to be 
e x p l i c i t l y c a l l e d from some other process. The 
obvious idea then is some form of mu l t i p rocess ing , 
where the i n t e r p r e t e r maintains a queue of 
processes and runs them a l l from time to t i m e , 
according to some s t ra tegy . This is the t h i r d 
idea. Ca l l i ng a process is p u t t i n g i t on the queue. 
This makes apparent ly hard code, l i k e : beg inF ( ) ; 
G ( ) ; H() end; i n t o something much s o f t e r , since 
exac t l y what w i l l happen depends on what other 
processes there are around. When F is c a l l e d , t ha t 
doesn' t mean t h a t i t ' s a c t u a l l y c a l l e d , on ly t h a t 
i t ' s put on the agenda.** Maybe some other process 
* Resolut ion is an inference r u l e , not a 

" s t r a t e g y " or a "method". 
agenda = queue. A l o t of impressive renaming 
goes on in t h i s business. For example, good 
o ld environments appear in KRL under the t i t l e s 
'procedure d i r e c t o r y ' and ' s i g n a l p a t h ' . 

** 
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w i l l run f i r s t and f l u s h F before i t has a chance 
t o r u n , f o r example. 

This very o l d ( c . f . , Elcock and Foster [ 6 ] ) 
idea is c u r r e n t l y popular . But we have now come 
f u l l c i r c l e , t o a c l a s s i c a l prob lem-solv ing s i t u a ­
t i o n . How can the i n t e r p r e t e r decide what order 
to run the processes in? I t doesn ' t know any th ing 
about any p a r t i c u l a r domain, so i t c a n ' t dec ide. 
So we have to be able to t e l l i t . But how? 

This is exac t l y the s i t u a t i o n w i t h which we 
began, the s i t u a t i o n the p rocedu ra l i s t s a t tacked . 
In removing the dec is ion to a c t u a l l y run from the 
code and p lac ing in in the i n t e r p r e t e r , advocates 
of mu l t ip rocess ing systems have re -c rea ted the 
uni form black-box prob lem-solver . 

The next step then is to design a language in 
which the programmer can c o n t r o l the agenda. The 
s implest such idea is to use numbers: the agenda 
has l e v e l s numbered from zero , and process c a l l s 
spec i fy t h e i r l e v e l . This is used by KRL-0 and the 
Graph Traverser [Y] . A somewhat more soph is t i ca ted 
idea is to a l l ow desc r ip to rs f o r subqueues and 
a l low processes to access these d e s c r i p t o r s , as in 
POPEYE [l6] . But none of these ideas seem very 
conv inc ing . And we have now moved down another 
l e v e l , t o the i n t e r p r e t e r o f the i n t e r p r e t e r -
w r i t i n g language of the rep resen ta t i ona l language. 

The on ly way out of t h i s descending s p i r a l is 
upwards. We need to be ab le to describe processing 
s t r a teg ies in a language at l eas t as r i c h as t h a t 
in which we descr ibe the ex te rna l domains: and f o r 
good eng ineer ing , it should be the same language. 
The aspects of procedural languages - THNOT of 
uPLANNER, passing context frames as parameters in 
CONNIVER, de fau l t s in KRL - which r e s i s t simple 
syn tac t i c mappings i n t o l o g i c , are a l l places where 
the languages r e f e r to t h e i r own i n t e r p r e t e r ' s 
behaviour. THNOT means not provable ( f rom cur ren t 
resources ) : passing a context frame is p rov ing 
something about another p roo f ; a de fau l t value is 
one which is taken unless there is a proof t h a t i t s 
value i s d i f f e r e n t . I t i s t h i s r e f l e x i v e nature o f 
these languages which gives them t h e i r ' n o n - l o g i c a l 1 

f ea tu res . 
But t h i s is a quest ion of what knowledge is 

represented, not o f what language i t is represented 
i n . These r e f l e x i v e a s s e r t i o n s , r e f e r r i n g to the 
system's own i n t e r n a l s t a t e s , can a lso be expressed 
in l o g i c , w i t h the same gains in o n t o l o g i c a l c l a r i t y 
as are r e a l i s e d in other areas. Th is d i s t i n c t i o n 
between l o g i c and procedures is then seen as a 
d i s t i n c t i o n between kinds of domain ra the r than 
k inds o f language: the p rocedu ra l i s t p o s i t i o n leads 
one to envisage a system which can describe i t s own 
i n f e r e n t i a l processes and thus make inferences about 
i t s own behaviour. 

In order to design the i n t e r p r e t e r f o r such a 
system, one needs a framework in which these 
behaviours can be adequately descr ibed. Logic 
provides - in the no t ion of p roof - a r i c h e r such 
framework than any of the usual procedural ideas. 

What l o g i c i s n ' t 

I t ' s worth spending a l i t t l e t ime l a y i n g t o 
r e s t some misunderstandings I ' ve met about l o g i c . 
(1) Logic i s n ' t a programming system. 
(2) Logic i s n ' t a p a r t i c u l a r syntax. 

(3) Logic does not assume that the world is made 
up of concrete phys ica l i nd i v i dua l s wi thout "ab ­
s t r a c t " i n d i v i d u a l s such as p r o p e r t i e s , events, 
na t ions or f e e l i n g s . This view is nominalism, and 
leads to a qu i te d i f f e r e n t sor t o f semantic i n t u i -
t i o n , in wh ich , f o r example, red denotes not a 
p roper ty o f phys i ca l i n d i v i d u a l s , but the ( ra the r 
disconnected) i n d i v i d u a l cons i s t i ng o f a l l pieces 
o f red s t u f f i n the wor ld . 

Other s i m i l a r confusions are a lso made. For 
example, l o g i c is no worse (and no b e t t e r ) than 
Conceptual Dependency at represent ing warm, human 
f a c t s about people h i t t i n g each o ther , 
(4) Logic doesn' t g ive " the u l t ima te in decompos­
i t i o n o f knowledge". Winograd, in h i s widely c i t e d 
d iscuss ion [23] o f the asse r t i ona l /p rocedura l con­
t r o v e r s y , draws a d i s t i n c t i o n between l o g i c ' s atom­
i s t i c view of knowledge, in which a representa t ion 
is seen as a set of separate disconnected f a c t s , 
and the p r o c e d u r a l i s t ' s h o l i s t i c view in which 
i n t e r a c t i o n s between procedures have prominence. 
But t h i s is exac t l y the opposi te o f the t r u t h . The 
i n t e r a c t i o n s sanct ioned by l o g i c between asser t ions 
are f a r r i c h e r and more compl icated than the i n t e r ­
act ions between procedures in a procedural language 
(any procedural language). Thus, e x p l i c i t recu r ­
s ive procedure c a l l s (LISP) are more r e s t r i c t e d 
than e x p l i c i t corout ine c a l l s (SIMULA), these more 
r e s t r i c t e d than p a t t e r n - d i r e c t e d co rou t i ne ing 
(CONNIVER), these more r e s t r i c t e d than r e s o l u t i o n 
(which a l lows both c a l l e r and c a l l e e to have 
va r iab les bound dur ing the matching process) and 
f i n a l l y r e s o l u t i o n i t s e l f i s a spec ia l case o f 
general l o g i c in ference ru les o f i n s t a n t i a t i o n and 
c u t . In each case, one pa t t e rn of i n t e r a c t i o n s is 
a spec ia l case o f , and can be i m i t a t e d by, the 
nex t . In each case, the more general i n t e r a c t i o n 
pa t t e rn a l lows more i n t e r a c t i o n s and hence y i e l d s 
a more complex search space, and a more d i f f i c u l t 
search problem. I t i s p rec i se l y the r e s t r i c t i o n s 
on i n t e r a c t i o n s in procedural languages which make 
them so u s e f u l . 

Aga in , Winograd claims tha t procedures, un l i ke 
a s s e r t i o n s , mean very l i t t l e in i s o l a t i o n but 
acquire meaning from t h e i r i n t e rac t i ons w i t h o ther 
procedures; and again has got i t exac t l y the wrong 
way round. A procedure may w e l l mean a l o t in 
i s o l a t i o n . RANDOM(), f o r example, or PRINT(X): 
any procedure whose body contains code but no c a l l s 
of o ther procedures. Whereas the func t i on and 
pred icate symbols in a l o g i c a l ax i oma t i sa t i on , l i k e 
the tokens at nodes of a semantic n e t , l i t e r a l l y 
mean noth ing unless t h e i r meaning is spec i f i ed by 
axioms. The model - theoret ic account of meaning 
makes t h i s abso lu te ly p rec i se ; as one con jo ins 
a s s e r t i o n s , so the set of i n t e r p r e t a t i o n s poss ib le 
f o r the symbols occu r r i ng in them is r e s t r i c t e d , 
and the set of poss ib le inferences from them is en­
l a rged . The i r meaning is p rogress ive ly t i g h t e n e d , 
as more f ac t s i n v o l v i n g them become i n f e r r a b l e . 
(5) The tendency to replace rep resen ta t i ona l 
languages by pure ly procedural languages goes hand 
in hand w i t h a tendency to judge rep resen ta t i ona l 
issues in computat ional terms. Thus Minsky 12) in 
a t t a c k i n g what he sees as the malevolent in f luence 
of l o g i c , dimisses pred icate ca lcu lus by observing 
tha t the machinery of P.C. inference - i n s t a n t i a t i o n 
and t r ee -g row ing , b a s i c a l l y - is ava i l ab le as a 
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simple byproduct of the more soph is t i ca ted symbol-
manipulat ion operat ions needed f o r ana log i ca l 
reasoning. But t h i s , whi le perhaps t r u e , misses 
the p o i n t : i t i s the meaning o f those opera t ions , 
i n t e r p r e t e d as i n fe rences , o f which l o g i c provides 
an a n a l y s i s . 

Aga in , Winograd [_23] i d e n t i f i e s the procedura l 
/ a s s e r t i o n a l d i s t i n c t i o n w i t h the program/data-
s t ruc tu re d i s t i n c t i o n , a completely f a l se analogy. 
The l a t t e r d i s t i n c t i o n is to do w i th two d i f f e r e n t 
r e l a t i o n s h i p s a piece of data can have to an i n t e r ­
p re te r ( i n c l u d i n g , u l t i m a t e l y , the hardware CPU): 
the former w i t h the meanings of those s t r u c t u r e s . 
An asse r t i on can be t r e a t e d as a da tas t ruc tu re or 
i n t e rp re ted as a program, j u s t as a procedure can. 
The d i s t i n c t i o n s are or thogona l . 
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Last word 

I have argued the case f o r t ak ing l o g i c ' s 
no t ion of meaning s e r i o u s l y . I do n o t , however, 
wish to argue tha t t h i s is the on ly important 
issue in cons ider ing rep resen ta t i ona l languages. 
Process c o n t r o l i s impor tan t , o f course: quest ions 
o f ease o f r e t r i e v a l , o f focuss ing o f a t t e n t i o n , 
o f re levance, are a lso o f great s i g n i f i c a n c e . 
Nei ther is syn tac t i c convenience completely unim­
po r t an t . These issues are however a l l r ece i v i ng 
considerable a t t e n t i o n a l ready . Semantics -
quest ions of meaning - tend to be discussed l e s s . 
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