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ABSTRACT

The design and prototype implementation of
a deductive processor for efficient extraction of

implicit information from explicit data stored
within a relational data-base system is described.
General statements (premises or inference rules)

as well as queries are expressed in a canonical
form as implications. From user queries, the
system constructs skeletal derivations (proof
plans) through the use of a predicate connection
graph, a pre-computed net structure representing
possible deductive interactions among the general
statements. The system incorporates techniques
for rapid selection of small sets of relevant
premises (by proof planning); development and
elaboration of proof plans; proof plan verifica-
tion; use of proof plans as a basis for deter-
mining data-base access strategies; and instantia-
tion of plans (i.e., turning proof plans into
proofs) with retrieved data-base values. Examples
of the current capability of the system are
illustrated.

INTRODUCTION

The deductive processor (DP) described in
this paper has been designed to interface with
existing and emerging relational data management
systems (RDMSs). Given this orientation, we have
made a sharp distinction between specific facts
(n-tuples) which reside in an ROMS data base and
general statements (rule-based knowledge or
premises) that are directly accessible to the DP.
Since the number of general statements that may be
required for a practical application is likely to
be large (perhaps hundreds to thousands of
premises), particular attention has been paid to
the development of techniques for the rapid
selection of relatively small sets of premises
relevant to answering a user's specific request.
Premise-selection techniques are automatically
invoked when deductive support is necessary to
respond to a user's request; otherwise, queries
"fall through" the DP and directly drive the RDMS.

This "deductive inference by exception”
principle suggests that the DP be viewed as an add-
on or enhancement to existing data-base searching
capabilities4 Such an enhancement can result
in a major increase in the power of a data manage-
ment system by providing a means for extracting
and deriving implicit information from data bases
of explicit facts. Further, as we shall see, the
DP can aid a user in evaluating the utility and/or
plausibility of an inferentially obtained answer
by displaying the evidence on which the answer is
based.

We briefly review some of the relevant work in
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the field of deductive question answering, outline
our approach, describe the several components of
our prototype DP, and illustrate by means of two
examples the current operation of the system.

APPROACH

Previous approaches to adding deductive capa-
bilities to data management have occurred primarily
in the develospment of question-answering systems
(Simmons1**'® reviews many of these). The primary
aeductive methods that have been used are set-
inclusion logic, e.g., CONVERSE® and SYNTHEX':
techniques based on the "resolution" principle'10,
e.g., QA2 and MRPfJ*; procedural-oriented deduc-
tion, e.g., SHRDLU18; and goal-oriented backward
chaining, e.g., MYCIN

The primary difference between these systems
and our DP is in our use of planning. Our system
creates deduction plans to guide the generation of
full deductions. We believe such planning to be
essential for cutting through the massive number
of dead ends and irrelevant inferences which have
impaired the performance of earlier systems.
Planning becomes even more important for systems
involving large numbers of premises. Selection of
a manageably small set of possibly relevant
premises can be based on such planning.

To this end we have designed and implemented
a deductive processor that first builds deriva-
tion skeletons which represent possible deduction
plans. Once such plans are generated, the system
will attempt to instantiate and verify the plans
(examine substitutions for variables in premises).
We have thus separated the premise-selection
process from the process of verifying the consis-
tency of variable substitutions.

The generation of derivation (proof) plans is
centered around middle-term chaining”. This process
finds implication chains from assumptions to goals
through the premises. Middle-term chaining combines
the processes of forward chaining from the assump-
tions in a query and backward chaining from the
goals in a query. (In the case of no query
assumptions, middle-term chaining defaults to back-
ward chaining.) As chaining proceeds in the two
directions, intersections are performed on the
derived sets. When a non-empty intersection occurs,
the system has found an implication chain from
an assumption to a goal. The resulting chain is
passed on to the proof plan generator, which
extracts the premises whose occurrences are involved
in the chain. Subproblems may result, requiring
further deduction or data-base search. The
examples presented below will illustrate these
processes.
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The chaining process does not operate on the
Premises themselves but on a net structure called
"¢ predicate connection graph (PCG). This graph
is abstracted from the premises. When a premise
is introduced into the system, the implication
connections existing among the predicate occur-
rences in the premise are encoded into the PCG.
Further, the deductive interactions (i.e., unifica-
tions10) between predicate occurrences in the new
premise and predicate occurrences in existing
premises are pre-computed and encoded into the PCG.
The variable substitutions required to effect the
unifications are stored elsewhere, for latter use
by the proof plan verifier. Thus, the POG contains
information on the implications within premises and
the deductive interactions among the premises.
During the generation of middle-term chains and
proof plans, the system is aware of the existence
of unifications among the premises, but it does
not need to generate the unifications nor does it
need to examine and combine the variable substitu-
tions associated with the interacting unifications.
The former is done by a pre-processor, while the
latter is done by the verifier after proof plan-
ning.

Although some connection graphs used in
theorem-proving systems also contain information
on the unifications among general assertions
(resolution clauses in these systems), they are
not used as a planning tool as is the PCG. The
POG most resembles Sickel's clause interconnec-
tivity graph"l3 in that both graphs represent the
initial deductive search space and are not changed
in the course of constructing deductions. Other
graph procedures'''?involve adding nodes to graphs
as deductions are formed. More detail on the POG
is given in Klahr?.

REPRESENTATION OF INFORMATION

The basic representation for general asser-
tions (premises) is the primitive conditional'?.
This form is a normalized first-order predicate-
calculus implication statement. The antecedent of
the implication contains the assumptions (con-
ditions) of the assertion; the consequent contains
the goals of the assertion. Conjunctions, dis-
junctions, and negations can occur on either side
of the implication. Each assumption and goal is a
predicate occurrence consisting of a predicate
(relation) and its argument terms (i.e., variables,
constants, or functions).

The primitive conditional was chosen because
general assertions are usually formulated in the
form of "if....then..." implications. Users can
easily express and understand general assertions
in this form and can easily control and understand
proofs involving them. Further, this form
facilitates system discovery of deductive
tion chains.

implica-

Variables and constants occurring in premises
and queries may be categorized into specific domain
classes. For example, a variable "x" might be

specified as being a LABORATORY and the constant

"Joe" as being a SCIENTIST. In attempting to
KnowleHff
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match argument strings involving these terms, the
system will not allow the substitution of Joe for
x because they belong to different domains. The
use of such semantic information eliminates cer-
tain deductive interactions among the premises and
thus reduces the search space of possible
deductions °»°®

Semantic information in the form of user-
supplied advice can also be given to the system.
Advice most typically involves recommendations on
the use of particular premises or predicates in
finding deductions. For advised premises, the
system will try using them whenever possible in
the course of constructing a proof. For advised
predicates, the system will try chaining through
occurrences of them (in premises). In the case of
negative advice, specified premises and predicates
are avoided in proofs.

Advice may be given for a particular input
query or stored in a permanent advice file which
the system accesses for each query. Advice state-
ments are in the form of condition-recommendation
rules similar to the meta-rules used in MYCIN'.

The conditions contain information about predicates,
constants, and domain classes that may occur in
query assumptions and goals. The conditions are
matched against the input query and, if they are
satisfied, the associated recommendations about the
use of certain premises and predicates are activated.
Internally, advice is transformed into premise and
predicate alert lists (as well as negative alert
lists for negative advice), which are accessed in
the chaining and proof-planning processes.

In addition to the information used by the
deductive processor, there is also a file of
specific facts used by a data management system.
This latter system searches for and retrieves
specific facts needed to resolve subproblems result-
ing from premises. For our experiments with the
prototype deductive processor, we have written a
small LISP relational data-base management system.
Facts are stored relationally as n-tuples associa-
ted with a predicate (relation) name. When a
particular predicate occurrence becomes a sub-
problem, the system has three alternative methods
for resolving it; the decision is based on how the
user defined the various predicates known to the
system. If a predicate is defined computationally
by a procedure, the procedure is executed to
determine the predicate's truth value. If a
predicate is specified by the user as defined
primarily by its data-base values, the unresolved
predicate is left for data-base search. Otherwise,
an unresolved predicate occurrence is given further
deductive support through the premises. (Such
predicate classification is currently mutually
exclusive but need not be. An alternative control
structure could try several methods for resolving
each subgoal.) The examples below will show the
interface between the deductive processor and the
data management system, as well as examples of
procedurally defined predicates.
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Figure 1.

SYSTEM COVEONENTS

Figure 1 displays the various components of
the deductive processor as well as its position
in a deductive data management system. The
language processor is currently not a part of our
initial prototype environment but will be incor-
porated at a later date. The control processor
shown in Figure 1 currently accepts premises and
queries in primitive conditional form as well as
user advice and commands. It accesses and coordi-
nates the several system components described below.

Array Initialization and Maintenance

Information abstracted from the premises is
segmented into seven internal arrays. This segmen-
tation contributes to good system structuring and
increases processing efficiency. Each predicate
occurrence is assigned a unique integer index. In-
formation about a particular predicate occurrence
is obtained from the array containing the kind of
information needed by indexing into the array with
the integer associated with the occurrence. The
seven arrays are:

Premise Array: Each entry represents a

premise and contains a list of the occurrences (i.e.,

occurrence indices) in the premise, the plausibility
of the premise, and the premise itself, both
symbolic (primitive conditional form) and English,
for purposes of display.

This array contains the
relations known to the system. Associated with
each relation is its support indicator, i.e., the
method used to resolve the relation when it occurs
as a subgoal (deduce, search data base, compute).

Predicate Array:

Deductive Processor Components

Predicate Occurrence Array: Each entry
represents a predicate occurrence and contains
the following information about the occurrence:
its predicate name (index into predicate array), the
premise in which it occurs (index into premise
array), the sign of the occurrence (positive or
negative), whether the occurrence is in an ante-
cedent or consequent of a primitive conditional,
the main connective governing the occurrence (i.e.,
conjunction or disjunction), and the numerical
position of the occurrence within the premise.
The information is compactly stored in a single
one-word bit vector.

Arguments Array: The argument strings of the
predicate occurrences are stored in this array
in a one-to-one correspondence to the positions
of the occurrences in the predicate occurrence
array.

Links Array: Deductive dependencies within
premises are stored in this array. Basically,
these dependencies derive from implication connec-
tions among predicate occurrences within premises
(Klahrs). This array is also indexed by occurrence
integers. For each occurrence, a list of the
occurrences it implies is stored in the entry
corresponding to the occurrence's index.

Unifications Array: Each entry contains a
list of the unifications (deductive interactions)
associated with the given occurrence. The unifi-
cations array and the links array comprise the
predicate connection graph.

Variable-Substitutions Array: The substitution
lists association with unifications are stored in
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a one-to-one correspondence to the position of the
unifications in the unifications array.

Middle-Term Chain Generator

Each input query is broken down (based on the
logical connectives in the query) into sets of
assumptions (from query antecedents) and goals
(from query consequents). The predicate connec-
tion graph is used to find deductive implication
chains between assumptions and goals. "Wave
fronts" are expanded out of assumptions and out of
goals until an intersection is found, at which
point the middle-term chain is identified and
extracted.

Proof Plan Generator

For each middle-term chain generated, the
system extracts the premises whose occurrences are
part of the chain. Any subgoals resulting from
the premises are set up as requiring deductive
support through the premises, data-base search, or
procedural computation. Subgoals are added to a
proof proposal tree, which contains proof plans
as they are being formed and developed. Proof
plans having no remaining deduce subgoals are then
passed on to the verifier.

Proof Plan Verifier

The variable substitutions required by the
unifications in a proof plan are examined for con-
sistency. If there are no clashes, i.e., no
variable taking on more than one distinct constant
value, then verification is successful. If there
are any remaining subgoals requiring data-base
support, the data management system is called to
search the file of specific facts.

Display Processor

The user has a wide variety of display options
available to monitor the operation of the deductive
system. In particular, he can examine middle-
term chains generated, proof plans formed, subgoals,
proof plan verification, data-base search requests,
data-base values returned, answers, completed
proofs, and premises used in proofs.

COVRUTER EXAVALES

In Figures 2 and 3 we illustrate examples of
the current operation of our initial DP prototype
interfaced to a small ROMS. (Both DP and ROMB are
written in LISP 1.5 and operate on an IBM 370/158
computer.)

In the first example, we illustrate the
generation of short inference and search/compute
plans for the question, "What ships are closer to
the Kittyhawk's home port than the Kittyhawk is?"
The query is first shown in English and then in the
primitive conditional symbolic form that our
prototype currently recognizes. The query is
expressed in terms of a conjunctive goal composed
of the predicates CLOSERTHAN and HOMEPORT.
Constants (e.g., Kittyhawk) are specified by being
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enclosed in parentheses, while variables (e.g., x
and y) are not. Ore of the query goals (HOMEPORT)
is to be given data-base support, i.e., it has
been characterized as defined by data-base values,
while the other goal (CLOSER-THAN) is to be
deduced. Since the antecedent in the query is
empty, middle-term chaining defaults to backward
chaining. The system back-chains from CLOSERTHAN
through premise 29. The plausibility (similar to
certainty factors in MYCIN') of the plan in this
case is simply the plausibility of the single
premise used. Premise plausibilities range from

1 to 99 and are set by the user.

Two new search requests (in addition to HOME
PORT) result from premise 29, as well as a compute
relation containing functional arguments. Computa-
tions for the functions and the relation are
delayed until values for the variables x and y
have been found in the data base (i.e., values
which satisfy the search requests).

The system sends the three search requests to
the RDMS, which finds two ships, the Forrestal and
the Gridley, that are closer to the Kittyhawk's
home port (San Diego) than the Kittyhawk is. The
system then displays the proof that led to the
first answer (the Forrestal). A proof using the
other answer would be identical to this one except
that Gridley would replace Forrestal in the proof,
and the distance between the Gridley and San Diego
would replace 310 (the distance between the
Forrestal and San Diego). The symbols G2, G3, etc.
represent nodes in the proof proposal tree and are
used here for reference. G2 and G3 represent the
original goals as also shown in the inference plan.
G5, G6, and G7 are subgoals that resulted from
premise 29, which was used to deduce G2. Thus,
these three subgoals are indented below G2.

The middle-term-chaining and proof-planning
processes are more evident in the example in
Figure 3. The input query contains two assumptions

and DESTINATION) and one goal (TRANSPORT).

Taurus and NY are constants; Cargo and x are
variables. The query asks the system to find values
for x that satisfy the query. The variable x is
restricted to range over ships. (This is an example
of a domain class specification for a variable.
Such domain specifications could also have been
used in the previous example.) In the course of
developing deductions, the system will not allow
values to be substituted for x that belong to
domain classes other than ships.

The inference plan shown in Figure 3 has al-
ready been verified. To see the planning
mechanism more clearly, we will refer to Figure 4.
The first middle-term chain generated connects the
DESTINATION assumption to the TRANSPORT goal via
premise 23. This is shown by the unifications u
and u, in Figure 4. The predicate occurrences
involving the relations AVAILABLE and OFFLOAD
become subproblems. The former is to be given
data-base support; the latter is deduced by a
middle-term chain from the DAVAWED assumption
through premises 7 and 15. The chain is shown in
Figure 4 by the unifications us,us, and Us. The
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*WHAT SHIPS ARE CLOSER TO THE KITTVHAWK'S HOME PORT «IF THE TAURUS WERE DAMAGED WHILE DESTINED FOR NEW

*THAN THE KITTYHAWK [1S? *YORK WITH A CARGO, WHAT SHIPS COULD TRANSPORT THE
*CARGO TO NEW YORK?

QUERY ((OIMP<AND(CLOSER-THAN X (KITTYHAWK) Y)

(HOME-PORT  (KITTYHAWK) Y)))) QUERY(((WHAT (SHIP . X))

INFERENCE PLAN: (AND (DAMAGED (TAURUS))

DEDUCE G2 *CLOSER-THAN X KITTYHAWK Y (DESTINATION (TAURUS) (NY) CARGO))
SEARCH  G3 *HOME-PORT KITTYHAWK Y IMP (TRANSPORT X CARGO (NY))))

PREMISES USED: (29) PLAN PLAUSIBILITY: 99 INFERENCE PLAN:

SEARCH/COMPUTE PLAN: DEDUCE Gl *TRANSPORT SHIP#X X75 NY
SEARCH *SHIPS KITTYHAWK ASSUME ‘DESTINATION TAURUS NY X75
SEARCH *SHIPS X
SEARCH *HOME-PORT KITTYHAWK Y DEDUCE  G3 --OFFLOAD TAURUS X75 X72
COMPUTE *GREATER-THAN (DISTANCE-BETWEEN KITTYHAWK Y) ( ASSUME **DAMAGED TAURUS

DISTANCE-BETWEEN X Y) MID-TERM «RETURNS TAURUS X72
ENTERING DATA BASE
DATA-BASE SEARCH SUCCESSFUL PREMISES USED: (23 7 15) PLAN PLAUSIBILITY: 80
SEARCH/COMPUTE PLAN:

ANSWER SUMMARY — SEARCH -HOME-PORT TAURUS X72

VARIABLES: SEARCH *CARRY TAURUS X75

X Y) SEARCH -AVAILABLE SHIP#X X72

ANSWERS: ENTERING DATA BASE

(FORRESTAL SAN-DIEGO) DATA-BASE SEARCH SUCCESSFUL

(GRIDLEY SAN-DIEGO)
ANSWER SUMMARY —

PROOF DISPLAY: VARIABLES:

DEDUCED G2 *CLOSER-THAN FORRESTAL KITTYHAWK SAN-DIEGO (X)
FACT G5 «+SHIPS KITTYHAWK ANSWERS:
FACT G6 ++*SHIPS FORRESTAL (PISCES)
COMPUTED G7 +*GREATER-THAN 378 310 (GEMINI)
FACT G3 <HOME-PORT KITTYHAWK SAN-DIEGO

PREMISES USED: (29) PROOF PLAUSIBILITY: 99 PROOF DISPLAY:

TYPE PREMISE NUMBER TO DISPLAY, OR 'ENO': DEDUCED Gl *TRANSPORT PISCES 01L NY

29 ASSUME *DESTINATION TAURUS NY OIL

((ALL X79) (ALL X80) (ALL X81)

(AND (SHIPS X79) (SHIPS X80)) DEDUCED G3 +-OFFLOAD TAURUS OIL FREEPORT
(GREATER-THAN (DISTANCE-BETWEEN X79 X81) ASSUME «¢DAMAGED TAURUS
(DISTANCE-BETWEEN X80 X81))) MID-TERM **RETURNS TAURUS FREEPORT

IMP (CLOSER-THAN X80 X79 X81>)

PLAUSIBILITY: 99 FACT GlI***HOME-PORT TAURUS FREEPORT

TYPE PREMISE NUMBER TO DISPLAY, OR 'END': FACT G12**«CARRY TAURUS OIL

ENO FACT G4 +*AVAILABLE PISCES FREEPORT

END DISPLAY PREMISES USED: (23 7 15) PROOF PLAUSIBILITY:

END DISPLAY
Figure 2. Deduction Involving Deduce, Data-Base Figure 3.  Deduction Using Middle-Term Chaining

Search, and Compute Predicates

meumption:
DAMAGED {Tgurua)

& {DAMAGED {X;p1, HOMEPORT iXpe. X1}) 2 AETURNS {Xg. X39)
deta-base

Yy

& {CARRY (Xgg, N5gl. RETURNS (Xgg, Xgy)) 2 OFFLOAD (X, X5y, Xag!

epumption:
DESTINATION {Tauns, NY, Cargo)

L]

1] lDESTINATbN %24, Xy3. X351, OFFLOAD My, Xap. Xyz). AVAILABLE {X74. X72)) D TRANSPORT (X34, Xyp. Xys!
dute-base

ponl:
TRANSFORT (X, Cargo, NY)

Figure 4. Proof Plan for Query in Figure 3
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two new subproblems are to be given data-base
support. Thus the plan generated uses three
premises and contains three subproblems requiring
data-base search. The plausibility of the plan is
currently calculated by a fuzzy intersection (the
minimum of the plausibilities of the premises
involvedig).

The plan is then verified with variable sub-
stitutions inserted in the plan and in the search
requests (Figure 3). Note the variable con-
straints in the search requests. The variable x7;
represents the home port of Taurus; values found
for this variable must be the same as those found
for x,, in the AVAILABLE search request. The
proof aisplay is given for the first answer found
(the Pisces).

In Figure 4 we note that the unifications u,
and us were computed when these premises were
first entered into the system and stored in the
PCG. Also stored in the ROG were the implication
connections within the premises, e.g., between
DAVIEEED and RETURNS, between RETURNS and OFFLOAD,
and between DESTINATION and TRANSPORT. The
unifications U-, u-, and u, were computed after
query input (because they involve predicate
occurrences in the query) and serve to locate
possible middle-term-chain end points. Once these
end points were identified, only the ROG was used
for middle-term chaining.

SIMVRY AND RUTURE PLANS

We have described a deductive system specifi-
cally designed to provide inferential capability
for a data management system.
assertions, the system generates skeletal deriva-
tions or proof plans in response to given input
queries. These plans are then used to trigger
data-base search requests for the specific facts
needed to instantiate and thus complete proof
plans, turning them into proofs and answers.
General information is thus used to guide and
direct the proof-planning process and to identify
subproblems that may be resolved by data-base
search or by computation. (Or subproblems may be
left open in the display of incomplete proof plans
to the user, thus identifying information which
cannot be found within the system but which the
user may be able to supply from without.)

We are currently expanding the prototype
along several different dimensions in line with
our goal of eventually incorporating the deductive
processor into an operational data management sys-
tem and language processor environment. A number
of improvements in man-machine interaction and
user displays are being made in order to allow
users to have more direct and flexible control of
the proof-plan-generation and data-base-search
processes. Additional semantic constraints oh the
generation of plans will be introduced through the
use of a semantic net to further restrict the
range of variables, as well as through extensions
to the existing semantic-advice condition-recom-
mendation formalism. Work in these two critical
areas of improved user and semantic control of

Knowledge
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deductive processes is being supplemented by
additional investigations into the encoding and
integration of incomplete and plausible knowledge.
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SPARK: A SYSTEM FOR
PARALLEL REPRESENTATION OF KNOWLEDGE

Gerald A. Wilson
Computer Science Laboratory
Naval Research Laboratory

Washington, D.C. 20375

In  the System for Parallel Representation of
Knowledge (SPARK) the ingredient of concern is not
the high-level, human-like, modeling of knowledge,
but the compact, efficient, and effective internal
representation and use of the knowledge. SPARK
employs a knowledge base representation technique
which has been shown to be as much as seven times
more efficient for information retrieval than some
other relational representations. At the same
time, this technique, called the Parallel
Representation (PAR) Technique, can also compact
the knowledge base by a factor of two or more.

What distinguishes SPARK from data management
systems is that this efficient and effective
retrieval mechanism also provides a powerful

deductive inference capability.

Two types of parallelism are employed in
SPARK, one achelved by data structures anc the
other by parallel processing. Both are made
possible by the distinction made between the
"structure" and the "content" of data. In human
problem solving the structure is the general
concept while the content is the sets of items
which, when combined with the structure, make one
or more instances of that concept. Thus
"transporting A from X to Y" is a concept while
"carrying the block from the floor to the table"
Is an instance of that concept with the
content: carrying; block; floor; and table. For
the basic constructs (the individual facts and
inference rules of the knowledge base) PAR employs
templates to represent the structure and sets to
specify the content. For example, the ~collection
of facts about objects supported by the table
would be given by:

((R,X,Y){[supports]/R,[table]/X,
[block,cone,lump,hammer] /Y »

where (R,X,Y) is the template specifying the
concept of a binary relation with two independent
arguments. The sets associated with R, X, and Y
can be used to form specific instances by
appropriate substitutions, in this case simply
ordered cross products of the sets. To index the
knowledge base PAR employs meta-templates and
super-sets in a corresponding manner. The
indexing structure proovides a compact form which
facilitates efficient search and retrieval. Thus
the representation Is parallel because any single
symbol appearing in a PAR structure can represent
an unbounded number of instances of that symbol in
the knowledge base.

The second type of parallelism is multi-
processing made possible by the meta-templates and

super-sets of the index structure. The
meta-templates are cannonlcal B-trees which
partition the knowledge base into disjoint

collections of data. When a query pattern matches

n meta-tempates, n independent
created to complete the retrieval
performing many retrievals in parallel.

processes may be
match, thus

SPARK, with the PAR Technique, is not posed
as a panacea for all knowledge base management
problems. Several constraints were assumed in the
development:

(1) Very large knowledge bases (more than 10**12
bits) are to be commonly employed.

(2) There is a significant degree of
interrelationship among the -elements of the
knowledge base. If the knowledge base is viewed

as a collection of n-tuples, then any distinct
argument of a tuple has a high probability of
appearing in multiple tuples.

(3) Search and retrieval are the preponderance
of knowledge base operations.
(A) Search and retrieval may be -equally likely

for any combination of arguments, i.e. a query
n-tuple may have instantiated any combination of

argument positions, the remaining positions
being left free.

(5) The representation must allow semantic
(domain specific) constraints to be used In the

search and retrieval process.
(6) Sets should be treated as sets.

(7) The representation should facilitate the use
of inference.

These constraints appear to be quite general and
representative of a large variety of realistic
knowledge bases.

The Parallel Representation Technique
employed in the SPARK system is posed as an
approach to intelligent knowledge base management

(i.e. management employing inference) for very
large knowledge bases. Preliminary results from a
simplified model and analysis of the technique
indicate the potential for significant storage and
search processing savings over some other
relational representations. It is significant to
note that the space savings due to the knowledge
base compression ability of PAR do not cause an
increase in the effort required to search the
knowledge base on the average. The search
mechanism can accomplish its task more efficiently
in fact. This is due primarily to the elimination
of any conflict between the manner in which the
information is stored and the manner in which it
is utilized by the search mechanism. Because the
PAR Technique is intended as an internal repre-
sentation of information it can be adapted to many
different high level external representations.

The implementation and testing of SPARK s
continuing at the Naval Research Laboratory. Once
the system is fully operational experimentation
will be made with large practical knowledge bases
to further determine the strenghts and weaknesses
of SPARK and the PAR Technique.
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Our' goal is the development and application of
various techniques for generating approximate re-
sponses to data base queries. An "approximate re-
sponse" is a response other than a direct answer to
the question. Approximate responses are frequently
referred to by linguists as "indirect answers" or
"replies" (e.g. in BS76). What is approximate is
not so much the response as the relationship be-
tween the response and the initial query. Qur ap-
proach is to regard an interaction between a user
and a data base as a discourse, having the
properties and constraints normally associated with
human dialog. (Conversational Postulates of Grice
(G67) are examples of such constraints.) Many of
the conventions of human dialog can be implemented
through approximate responses which, for instance,
1) aid a user in formulating a suitable alternative
query when the precise response to the initial
query would be uninteresting or useless; 2) inform
a user about the structure or content of the data
base when the user is unfamiliar with its com-

plexities; and 3) summarize at an appropriate level,

eliminating unnecessary detail.

Natural language (NL) query systems are of
benefit to users who are only partially familiar
with the structure and/or content of the under-
lying data base. Such "naive" users are typically
hampered by their lack of knowledge in formulating

a query which will retrieve the. desired information.

We believe that NL can do more than simply provide
the user with a convenient, higher-level re-
placement for a formalized query syntax. NL
questions frequently embed information about the
user's understanding of the structure of the data.
This information can be exploited to inform and
guide the user in the use of the data base.

Of particular interest to us is the key role
that shared knowledge between conversants plays in
the effectiveness of human dialog. As observed in
(CH75), dialog tends to proceed with statements
which offer a specific piece of 'new' information
to the conversation which is differentiated from
information considered as 'given' or already known

* This work is partially supported by NSr Grant
MCS 76-19466.

We wish to thank Peter Buneman, Rob Gerritsen,
and lvan Sag for many fruitful discussions.
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to the other party. Breaches of this 'Given-New
Contract' can point to the need for additional
background information to be supplied in order for
communication to be effective. We believe that
this observation can be effectively utilized with-
in the context of queries to a data base system.
Our approach here is to pay special attention to
the 'given' information contained in the user's
questions in the form of presuppositions. If
these turn out to be false, we interpret this as a
signal that the user misunderstands some aspect of
the data base's structure or content and is in
need of additional clarification. An approximate
response explicitly contradicting the failed
presupposition and perhaps suggesting an alterna-
tive is appropriate, as it is in human dialog.
Such a response serves to correct the users

mis impressions and provide suggestions for alter-
natives, hopefully relevant and useful ones.

A presupposition of a sentence S can be
broadly defined as any assertion that must be true
in order for S to be meaningful. In the case of
questions, the presupposition must be true for a
direct answer to be meaningful.

Presuppositions come in many forms. There
are presuppositions which are primarily syntactic
(JW77). Others deal with implied restrictions on
the size, or a claim about the completeness of the
answer set (BS76). Of particular interest in a
data base context are those presuppositions of an
NL question which are implied by a corresponding
formal query to a given data-base structure. We
have observed that each stage in the execution of
a formal query, except for the final one, has an
interpretation as a presupposition of the NL
question. If a particular stage of execution re-
turns a null set, the corresponding presupposition
has failed and can be explicitly contradicted,
rather than returning an obviously uninformative
or misleading null response.

Consider the query

"WHICH LINGUISTICS MAJORS GOT A GRADE OF B OR
BETTER IN CS500?"
Assuming a suitable structure for the data

(see Figure one), a corresponding

formal query might perform the following oper-
ations: 1) Find the set of students and restrict
it to linguistics majors; 2) Find the set of
courses and restrict it to CS500; 3) Find the
class list (set of students) associated with the
result of 2; M) Restrict the class list of 3 to
those with grades » B; and 5) Intersect 4 with 1
to produce the response. An empty set at each
stage could be used to produce the following ap-
proximate responses contradicting the failed
presuppositions: 1) There are no linguistics
majors; 2) There is no course "CS500"; 3) No
students were enrolled in CS500; and 4) No students
received a grade of B or better in CS500. A
failure in the final stage leads to the direct
answer NONE. It is worth noting that different
data structures will reveal different presuppo-
sitions. For instance, a different data base
might produce the response "No linguistics majors
took CS500."
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Another type of approximate response deals
with the generation of a response to a substitute
query. For instance, "Is Venus the fourth planet?"
may be responded to by "No, it is the second
planet."(see (L77) for similar examples). A de-
termination of the focus and topic of the question
can be used to generate an appropriate alternative,
as opposed to (say) "No, Mars is the fourth
planet." Syntactic and contextual cues are
under investigation to determine the topic and
focus in the face of partial information. Careful
construction of the formal query can provide a
relevant piece of alternative information forfree
by selecting the most appropriate access path to
the desired information.

An important convention of human conversation
is that no participant monopolize the discourse,
so that control can be shared. One implication of
this is that all responses given in a conver-
sational mode must be short. Thus where the system
would otherwise respond with a lengthy list, we
would prefer to be able to return a non-enumera-
tive, or "intensional" response". Lengthy response
sets could be summarized, or defined by a charac-
teristic or attribute. For instance, the question
"Which employees engage in profit sharing?" may be
answered by listing the extension of a set
containing (perhaps) 10,000 names, or by the in-
tensional response "All vice-presidents." The
summary might be computed from the data or infered
from the data base schema, and can be used to
avoid unnecessary and distracting detail. In
these cases, the response may implicitly incorpo-
rate the restrictions of the question. For
instance, a response to "Which students were in-
vited to the party?" of "The girls living in
West Philadelphia.” clearly implies that only
those girls who are students were invited (KH 73).

Conversations also allow hypothetical
questions, or questions about the structure of the
world (in our case, the data base). Questions
such as "Can supervisors profit share?" may be
answered affirmatively by the contents of the
data base (finding an instance), or negatively by
noting that the data base structure precludes
such a possibility. If neither of these alterna-
tives are successful, an approximate response of
"maybe", or "I don't know" may be returned, (since
many constraints to the data base may be imposed
by the logic of the updating programs or organi-
zational procedures).

Finally, conversations admit answers of a
statistically approximate nature. "What per-
centage of welfare recipients are single mothers?"
may be sufficiently answered by "About 80%".
This concept is of use in the execution of
queries on very large data bases, when precise
responses are both unnecessary and expensive.
the user is willing to accept an approximate
response which is within a given confidence level,
this can frequently be computed for a fraction

of the cost of a complete one.

f

Existing data base systems could be described
as "stonewalling", giving only limited, precise
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answers, which inhibited browsing and query
formulation, Approximate responses, as they are
used in human dialog, can significantly increase

the usefulness and convenience of data base query
systems.
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In the relational formalism:
STUDENTS(STUDENTS,MAJOR)
OFFERINGS*(COURSES,SEQUENCER)

ENROLLMENTS (SEQUENCED , STUDENT# ,GRADE)

Figure 1

* NOTE: SEQUENCE# uniquely

of a course.

identifies an offering
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