WRITING A NATURAL LANGUAGE DATA BASE SYSTEM*

David L. Waltz and Bradley A.Goodman
Coordinated Science Laboratory

University of Il]inois,

Abstract

We present a model for processing English
requests for information from a relational data
base. The model has as its main steps (a) lo-
cating semantie constituents of a request; (b)
matching these constituents against larger tem-
plates called concept case frames; (c) filling
in the concept case frame using information from
the user's request, from the dialogue context and
from the user's responses to questions posed by
the system; and (d) generating a formal data base
query using the collected information. Methods
are suggested for constructing the components of
such a natural language processing system for an
arbitrary relational data base. The model has
been applied to a large data base of aircraft
flight and maintenance data to generate a system
called PLANES; examples are drawn from this
system.

1. Introduction

The language processing model for the PLANES
system for natural language access to a large
data base [9,18-21] has evolved over the past two
years to a point where we feel that it is now
practical to begin constructing such systems for
other data bases. Key ideas and assumptions in
the model are described below.

The model is designed to handle requests by
real, casual users, whose only programming lan-
guage is English, but who have some knowledge of
the material in the data base.t We have assumed
that users will ask questions which are often
ungrammatical, which include many abbreviations,
both standard and non-standard, and which use
ellipsis (omission of information to be under-
stood in context) and pronouns extensively. (See
Malhotra [13] for ideas about the types of things
users are likely to type in.)

The model is designed to work with a rela-
tional model |3,8], Data is viewed as being
divided into relations which correspond to files
or sets of files in conventional data base ter-
minology. Each relation contains a collection of
tuples which correspond to records; each tuple
contains one or more domains or fields. A rela-
tion can conveniently be thought of as a table,

*Thc research described in this paper was support-
ed by the Office of Naval Research under Contract
Number N00014-75-C-0612.

tin the PLANES systems, we have provided easily
accessible HELP files to bring a user without data
base knowledge to a point where he can use the
rest of the system.

Natural

Urbana,

Illinois 61801

with each row being a tuple and each column a
domain. There are two important reasons for
using the relational approach:

(1) The relational approach stresses data inde-
pendence. This means that the user and front end
programs are effectively isolated from the actual
data base organization. We are now working with
only a small subset (approximately 10" bits) of a
much larger database (approximately 1044 bits);
if we were to use our front end with the entire-
data base, the data accessing programs would
have to be modified, hut, using the relational
model, changes need not affect the "data model"
seen by users and the natural language front end.
(2) Many data bases arc already internally organ-
ized in a tabular form, and are thus naturally
suited to a relational data model. We are not in
this paper concerned with updating and normaliza-
tion aspects of the relational data bases.

Most of the examples given in this paper are
drawn from the world of the PLANES system [9,18-
21j. PLANES is a working system which operates
on a data base supplied by 3-M (Maintenance and
Material Management), Mechanicsburg, PA. The data
base is comprised of detailed flight and mainte-
nance data, plus data summaries, and is organized
by month, aircraft, and type of data (scheduled
maintenance, unscheduled maintenance, flights,
etc.).

2. Key ldeas

Probably the most important contributions of
our work are the overall organization of the model,
and ideas on how to generate each component of the
model for a novel data base. We have attempted in
our work to attack on a broad front and integrate
solutions to many practical problems including
operating speed, dialogue and paraphrase genera-
tion, spelling correction and error recovery,
browsing and answering of vague questions, answer
generation, automatic HELP files, etc.

2.1 Central Assumption

The central novel assumption underlying the
model is that a data base request is uniquely
determined by the set of semantic constituents in
a clause, independent of the order of the con-
stituents.# We need only sufficient grammatical
correctness to recognize the phrase boundaries of
semantic constituents and clause boundaries
(if any). Thus the modei handles grammatical
English, "pidgin English," or ungrammatical lists

There are important exceptions, for example com-
parative constructions such as "...did plane 3
have more flights than plane 2..."where the order
of "plane 3" and "plane 2" in the sentence is
important.

Language-8; Waltz

of semantic constituents with equal ease. To our
knowledge the use of a method such as this for
data queries is original with this project.

Given our central assumption, the processing
of a user's query involves primarily identifying
all the semantic constituents, e.g. (for our data
base) time period, plane type, serial numbers,
maintenance types, etc. Each of these semantic
constituents can be a variable; (i.e. the name of a
field for which the system is to find values), or a
constant (i.e. a value for a particular field which
a data item must satisfy), or a set of constants
(i.e. a set of values or range of values). Thus,
in "Which planes had engine maintenance in May
1973?" planes is a variable and engine maintenance
and May 1973 are constants. An operation on a
variable (e.g. "sum of flight hours") functions as
a constant. The identification of semantic con-
stituents is handled by a group of ATN subnets,
each of which is an "expert" on recognizing dif--
ferent ways of expressing one type of semantic-
constituent; thus, there are subnet experts for
time period, planetype, etc.

2.2 Concept Case Frames and Context Registers

to
re-

A second major set of
handle the following problem:

ideas is necessary
often a user's

quest will omit information necessary to form an
adequate query. This can happen because! (a) a

user leaves out information meant to be understood
in context (this is called ellipsis), (b) a user
uses a pronoun in place of a named constituent, or
(c) a user simply neglects to include all the'
necessary information. To handle these situations
we- use context registers together with concept

case frames. Context registers are history keepers;

semantic constituents of requests
questions and other

they store all
along with answers to earlier
information.

Each concept case frame is a template repre-
senting a whole series of questions about the data
base. The templates are used as tools to "build"
a legal query by filling in the mandatory "slots"
of the template with information extracted from the
current request, earlier requests, world know-
ledge or default values. If the set eif semantic
constituents found in a user's request does not
match a concept case frame exactly, we can look
back through past context register values to fill
in missing elements (as with ellipsis and pronoun
reference), ask the user to pick the appropriate
meaning if there is more than one possible way of
filling in the concept case frame, or note that a
join (combining of more than one relation) is
necessary if there are. elements left over after
matching any single concept case frame. Certain
concept case frames also correspond to requests
for HELP files, or note that declarative infor-
mation is being input (e.g. "From now on consider
only plane 3."), or note that the request requires
special processing, as in the case of a vague
question or one requiring alerting functions. A
good way to begin enumerating concept case frames
is to look at the domains (field names) for each
relation.

Natural

Lanr;uaf:e-8:

145

2.3 QueryGenerator

The third important set of ideas is concerned
with query generation. The system can generate a
formal data base query from the set of semantic
constituents whether or not a concept case frame
was matched.

The first step is to decide what to return as
an answer, and to specify what patterns "hits"
must satisfy. To do this, the query generator
first notes which constituents are constants or
sets of constants and which are variables (see
above). Often there will be only one variable,
denoted by a question word (e.g. which, when,
where, etc.); all variables and sets of constants
must be part of the answer returned. The constants
and sets of constants are treated as predicates,
i.e. as field values against which individual data
items or "tuples" must be cemipared to find which
are "hits".

The second step is to decide which relations
to search. There are about 600 relations in our
data base, each corresponding to one month's de-
tailed data of a particular type (e.g. flight-
hours) for one particular plane, or to summary
data for planes of one class for various periods,
and so on. There are also temporary relations
which are created as a dialogue progresses, and
the system must be able to determine when these
are being referred to (as in "Of these, ..." and
other folleow up questions). Because there is both
summary and detailed data, and several types of
data for each plane, the? decision of the query
generator requires some processing. The' query
generator intersects the sets of relations re-
ferred to by each semantic constituent, in the
hope that only a single relation will remain.

If no relations remain, then a join (or joins) is
required and additional processing is necessary;
if more than one relation remains, then heuristics
can often help select one (e.g. use summary data
rather than detailed data if either is possible)
or the user can be offered a choice among the
alternatives.

As its third step, the query generator must
decide on how to sort the hits when retrieved.
Sometimes sorting is specified in queries (e.g.

"Give me total maintenance hours for plane 3 by
month") ; otherwise it is determined by a heuristic
priority scheme.

3. Model Operation

The processing of a user's request is divided

into four main phases: parsing, interpretation,
evaluation, and response.

(1) In the parsing phase, a set of semantic
features with values is formed from the user's
request. As part of this phase pronoun reference

and ellipsis are resolved, and complex questions
are broken up into a sequence of simple queries.

(2) In the interpretation phase, the feature
and value representation of the user's request is
translated into a 'program,' called a "data base
query", to generate the data to answer the re-
quest.

Waltz

The bulk of this paper is devoted to explain-
ing these first two phases of the model's opera-
tion.

(3) The evaluation phase uses the query
generated in the previous stage to search the
data base and return the needed data.

(4) The evaluation portion passes the. re-
sulting data to the response generator.

At each stage of the process, the results are
sent to context registers, which consist of a set
of stacks of relevant information. These stacks
contain the results of each stage (e.g. user's
request, paraphrase, etc.), syntactic components
(e.g. subject, object, etc.), and semantic/con-
textual information (e.g. time specification,
etc.). This information is made available for
later resolving of anaphoric reference, supplying
phrases deleted through ellipsit;, and generating
responses.

3.1 Parsing

The first phase,
several operations.

"parsing," actually covers
These include

(a) cleaning up the input (correcting spell-
ing, substituting canonical words and
synonyms, etc.);

(b) applying the semantic ATNs to the input
request and filling in context register-
values ;
(c)breakingupquestionswithenbedded
clauses into two or more "simple queries";
(d) applying concept case frames to "simple
queries," resolving ellipsis, pronoun refer-
ence and questions involving multiple rela-
tion searches.

These operations are explained in more de-
tail in the following sections.

3.2 Cleaning Up the Input

The parser first checks to make sure that
each word of the input is known by the system.
Roots and inflection markers are substituted for
inflected words, canonical words are substituted
for synonyms, and single words are substituted for
certain phrases (e.g. "USA" for United States of
America"). If a given input word cannot be found
in the dictionary, then the spelling correction
module is called. This module attempts to find
dictionary entries "close" to the input word using
methods described in |17]; if one of these candi-
dates is correct, it is inserted in place of the
misspelled word. If no candidates are found, or
if the user rejects all the suggested candidates,
a word adding module can be called to try to add
the user's word to the dictionary by finding a
synonymous word or phrase already known to the
system. The user can also tell the system to
ignore the word and continue.

3.3 Applying Semantic ATNs

This section together with the next two des-
cribe the heart of the language understanding
process. It is here that pronoun reference and
ellipsis are resolved, and here too that much of
the overall programming effort for the system has
been expended. The processing in this portion

is handled by subnets.

Each subnet is an ATN [23] phrase parser
which matches only phrases with specific meaning.
For example, in the PLANES world there are subnets
for each different semantic object: plane type,
date, time period, malfunction, maintenance type,
aircraft component, etc. Some examples of phrases
with the subnet for "time period" would match are:
"between Jan 1 and Feb 28 1972," "1972," "during
February and March," "then," and "in the first
six months of 1972." Most subnets match noun
phrases or prepositional phrases. The construc-
tion of subnets is based on Winograd's analysis of
noun phrase Quantifiers (e.g. "first,"
"rest," "more than," "largest," etc.) are handled
by a special subnet as are qualifiers (e.g. the
italicized words in the phrase "A7s which crashed
in May"). Subnets also check for compounds
(e.g. "planes 3 and b," "plane 3 or plane 5,"
etc.), and recognize verb phrases.

Subnets are applied to the Input request one
after another. When a subnet matches a phrase,
that phrase is saved along with information on
which subnet matched it, and attention is shifted
to the next portion of the request. Also as part
of this phase, "noise words" are matched by a
subnet and essentially discarded. "Noise words"

refer to phrases like "please tell me," "can you
tell me," "would you let me know," "could you
find," etc.

Whenever subnets match a phrase, they set the
value of a corresponding context register, which
acts as a history keeper. Context registers are;
used for pronoun reference and ellipsis; if some
item(s) in a request have been left unspecified
or replaced by pronouns, context register values
from previous request are used to supply the
missing information or the referent of a pronoun.
There are also context registers for the last
request, last paraphrase, last query language
form, and last answer. Context registers are
implemented as stacks; which are pushed down with
each new request. Thus an earlier context could
be retrieved from a user statement like "A while
ago we were talking about skyhawks," by looking
back through context registers until a planetype
context register value equal to "skyhawk" was
found, and then restoring all the other context
register values current at that time.

At the end of this phase we arc left with a
set of representations of the semantic contents
of the phrases in the sentence and a list of the
order of the constituents. Unless certain con-
structs (such as comparatives, e.g. "...greater
than...," or embedded quantified clauses) are
present, the order of the phrases is ignored.
This means that passive, active,and "pidgin
English" requests are all represented identically
from this point of processing onward. Given this
sort of processing, pronoun reference and ellipsis
become a relatively difficult task. The parsing
of a pronoun does not result in its attachment to
a particular semantic category. Ellipsis may be

Natural Language -8: Waltz
1

taking place but it is hard to be sure." Our
handling of these issues is described in the next
section.

requests for HELP
in directly.

Specific subnets recognize
information, and draw HELP files

Embedded clauses are handled by subnets;
this process is described in section 3.9 below.

3.4 Concept Case Frames

Concept case frames enumerate the patterns of
questions understood by the system (and can also
associate data base query skeletons with question
types which cannot be properly handled by the
query generator). Our concept case frames are
somewhat different than ordinary case frames |2];
each concept case frame consists of the act
(typically related to the verb) and a list of
noun phrases (referred to by subnet/context
register name) which can occur meaningfully with
the act. Unlike ordinary case frames, we do not
store information about the role (e.g. agent,
patient, instrument) played by the various
phrases, and each act covers a number of related
verbs (e.g. "fly," "log" and "record" map into
the same act). Phrases which would have to occur
in every concept case frame, such as "time
period," are omitted from the internal repre-
sentation of concept case frames. Together, the
subnets and concept case frames form a "semantic
grammar" very similar to that used in SOPHIE ['l].

Whenever constituents of a sentence are
missing (as in ellipsis) or replaced by pronouns
or referential phrases, the model is able to
suggest what type of phra.se is necessary to com-
plete the concept by finding all the concept case
frames which match the rest of the sentence. If
only one concept case frame matches, we are done;
if more than one matches, then reference to which
constituents were present in the previous sen-
tence is usually adequate to decide among candi-
dates; otherwise, the user can be given the set of
possibilities from which to choose the appropriate
referents for each phrase. Furthermore, the
system can guess that sentences like "How many
malfunctions logged more than 10 flight hours"
are meaningless because all phrases are recog-
nized but no matching concept case frame exists.

More specifically, the matching is done as
follows. After the best concept case frame (i.e.
the longest one that matches the most semantic-
categories of the phrases) has been chosen and as
many slots in the template as possible filled
in, pronoun reference and ellipsis must be re-
solved. If all mandatory slots are filled and no
pronouns occur, everything is already resolved.

*One clue for ellipsis
followed by an action.
that it is occurring--namely the noun phrase
normally expected in that position is missing.
The probable ellipsis can be tagged so that fur-
ther investigation can be taken on later.

is finding a question word
This sometimes indicates

Natural

Language-8:
u7z

Pronouns are resolved by noting which semantic
category slots are left over for them. Pronouns
can be replaced with items that fit that same
semantic category by scanning backwards through
the context register values for earlier sentences.
When ellipsis and pronouns occur at the same time,
it may be impossible to decide which of two or
more slots to put a pronoun into. If the frame
contains no optional slots, it makes no differ-
ence where the pronoun is put because the system
will have to fill in any other empty slots before
proceeding. Should optional slots be included,
the task becomes more difficult because the pro-
noun may go in a required slot or an optional

slot. If it should go in an optional slot, the-
ellipsis must be occurring for the required slot.
If it fills the required slot, then ellipsis may
or may not be occurring for the optional slot.

The second case is the one that causes a problem-
we must know if ellipsis is occurring to be able
to extract the full meaning of the query. We
resolve this problem by assuming that ellipsis is
occurring, and scanning the very recent set of
past queries (say the last one or two sentences)
to see if the context built up confirms our hy-
pothesis (i.e. see if can find anything to fill
the optional slot). If nothing fits the semantic
category of the slot, the ellipsis is overruled
and the hypothesis dropped. Otherwise we fill in
the slot with the information found. If all else
fails, we can ask the user to select the appro-
priate interpretation from among a set of hy-
potheses. (Being able to choose from among a
small set of possibilities is still much simpler
for the user than rephrasing!)

Ellipsis alone is a little easier to handle.
Any time information is missing from required
slots we know that ellipsis is occurring. The
past queries can be scanned backwards for infor-
mation to fill the slots. If we do not find
enough information to fill all the slots we can
ask the user for the required information. When
e 11ipsis of optional slots is occurring, we must
use a set of heuristics to give us a clue that the
omission of a phrase has occurred. Earlier we
mentioned an example of such a heuristic-namely
finding a question word followed by a verb other
than the verb to be without any intervening noun
phrase-.

3.5 Construction of a Query

The filled-in concept case frame is next
translated into a formal query expression for use
with a relational data base system.t The trans-

lation involves:
(1) selecting the relations (files and card types)
to look at in order to retrieve the information

necessary for answering the user's request;

(2) deciding what domains (data fields) to return
from the relations which are searched. (In
general, more fields are returned than are actually

+ While we have not done so, it should be possible
to write similar query generators for other data
models.

Waltz

asked for. For example, if asked about which
planes had engine maintenance during some time
period, PLANES returns not only the plane identi-
fication numbers, but also the dates of mainten-

ance and codes for the exact type of maintenance.);

(3) deciding how to arrange the output data.
Typical orderings are by increasing or decreasing
size of some field value (like "number of hours
down time") or sequentially by date. Other more
complex orderings may be specified by the user
(e.g. "List maintenances for plane 5 by month.);
(4) deciding which operations should be performed
on the fields returned. Examples of operations
include list, count, average, sum, and find
largest;

(5) translating field values (e.g. for dates,
plane types, or actions) into internal data base
codes.

(6) Most important, organizing all this material
into an expression in the relational calculus [4,
5,8] which can be used to implement the actual
data base search.

The general process was described briefly in
Section 2.2. For a simple query (one involving
no joins, comparatives, listing by special group-
ing (e.g. by month, plane serial number, repair
location, etc.), and no special quantification.)
this process involves (a) finding the question
phrase (s) (e.g. which planes in "which planes flew
more than 10 times?"), (b) inserting it in the
answer slot of the general query skeleton,' (c)
interpreting other semantic phrases and values
(constants and sets of constants) as predicates,
(d) inserting these in the general skeleton (e.g.
adding (GT FLIGHTS 10.) to the list of predicates,
given the question above), (e) completing the
answer-description portion of the skeleton with
other field values, using both heuristic knowledge
about meaningful answer forms and any special user
instructions (e.g. "Plot...", "List...", etc.),
and (f) deciding upon and filling in a answer
sort specification (e.g. by increasing serial
number, in time sequence, by groups according to
portion of the plane repaired, etc.).

The query construction is more complex for
quantified expressions (e.g. "Find all repairs for
the 5 planes with the most flight hours), com-
paratives (e.g. "Did plane 5 log more flight hours
than plane 37"), questions with embedded clauses
(e.g. "Which planes that crashed in May had engine
maintenance in April ?") and requests involving
special operations (e.g. 'Vhich plane flew the
most hours in May?").

Of particular interest is the method by which
relations to be searched are selected. The system
looks at each phrase separately, and notes which
relations the phrase could possibly belong to.
Some phrases (like plane type and date) are not

*The general query skeleton consists of an ordered
set of slots for quantification, locally bound

variables, answer format, predicates to be satis-
fied by "hits," and an answer sort specification.

Natural

very useful for this process, since they appear in
most relations, but others (like flighthours)
appear in only one or two relations. All the
relations possible for a clause are then inter-
sected, and if a single relation is selected, the
process of selecting a relation is complete for
the phrase. Clauses are then considered in pairs,
and so on. If more than one relation or a set of
relations remains, then the request is ambiguous,
and priority scheme or a dialogue is necessary to
select the appropriate relation. If no relations
remain at any intersection step, then more than
one relation must be searched to answer the re-
quest, and the results of these searches must
then be combined via the relational operation
called Joining (constructing a single relation
from two different relations). As an example,
the request: "Find all planes which had engine
maintenances on the same day as a flight" would
require searching the maintenance and flight
relations, and then joining these relations via
the date and plane domains by intersecting the
sets of tuples for maintenance and flight and
retaining tuples with identical planes and dates.

3.6 Constructing a Paraphrase

An important part of any query system's
operation is allowing a user to verify whether or
not the system has correctly understood his re-
quest. To this end, the. system feeds back its
understanding of the request, with pronoun refer-
ence and ellipsis resolved, for the user's
approval. The paraphrase is straightforwardly
constructed from the formal query, and any special
information associated with the matched concept
case frame. "Special information" includes query
language skeletons, calls to HELP files, and
special functions, such as statistical comparison
functions, needed to answer complex questions.

If the user does not approve of the inter-
pretation of his request, he can enter into a
clarifying dialogue with the system [6], The
system asks whether the user wants this query
executed on the data base, if he wishes to con-
tinue with the current sentence as context (this
is useful for correcting minor errors, e.g.
typing the wrong year), or with the previous
sentence as context. As a simple example, suppose
a user wanted data (for a previously specified
question) for January 1972, but (using ellipsis)
typed "January 1973" instead. It is simple to
correct this by typing "n" when asked by the
system "Shall | execute this query on the data
base...y or n?", and then simply typing "1972".
The system will recognize this as a year, substi-
tute it for 1973, and the user can then have the
corrected query executed. Clearly, minimum typing
and no remembering of special commands is required
for this sort of error correction.

3.7 Retrieving the Data

The query expression generated is expressed
in the data sublanguage ALPHA [4], as implemented
in LISP by Green [10]. This expression is used
by the relational data base system to construct
the actual program which retrieves the data. In
order to construct the search program, the system

Lan&uaKe-8: Waltz

must :

(1) select the files to be searched;

(2) select an order for searching these files;

(3) generate an expression for testing and select-
ing tuples values to return while searching;

(4) generate a program to combine data, possibly
from a number of different relations, so that the
proper answer will be returned.

(5) decide when to save the results of a search
for future use. This is important in interactive
querying, since interesting results can be expect-
ed to evoke follow-up queries from a user, and
such queries are likely to reference tuples just
retrieved.

3.8 Generating an Answer

Once the data has been retrieved, the results
are passed to the output module, which decides on
an appropriate, display format for the data. If
possible it attempts to produce a graph. This
can only be done if (1) pairs of items are re-
turned, (2) one item is numerical, (3) the number
of items returned is small enough (but not too
small) to produce a reasonable graph which will
fit on a CRT screen. |If a graph is not possible,
the system will produce a list or table; if there
is too much data to fit on the screen, the results
will be automatically output to the line printer.

3.9 Embedded Clauses

Qualifying phrases or qualifiers (see
Winograd [22]),constitute the most common type of
dependent clause. Examples of qualifiers are the
underlined parts of "planes which crashed in May,"
"maintenance performed on A7s," and "planes with
poor maintenance records." Qualifiers appear
after the main noun in a noun phrase, and are
often introduced by relative pronouns such as
"which" or "that", or by verb forms ending in -ed
or -ing. Prepositional phrases can also serve as
qualifiers.

Qualifiers can be found by applying a quali-
fier subnet to the portion of a request following
the main noun of a noun phrase. Because quali-
fier syntax is fairly restrictive, in many cases
merely examining the single word after the main
noun may suffice to preclude the presence of a
qualifier. If a qualifying phrase or clause may
be present, the following actions are taken:

(1) A syntactic parser (based on Woods' LSNL1S
parser [24]) is invoked to find if a qualifier

is present, and if so what its boundaries are.

(2) If the embedded clause is not grammatical,
heuristics are invoked to attempt to bracket the
clause.

(3) Once a qualifier is found to be present,
processing is suspended on the current clause, and
the current context register values are pushed
down.

(4) The main noun from outside the qualifying
phrase is substituted for the relative pronoun

(if any) or is inserted as a phrase element in
the qualifier.

(5) The qualifying phrase or clause is processed
like a normal request, with the main noun from the
clause above serving the role of the requested
item. Note that verb forms get changed to a root

Natural

LanKuap:e-8:
1U9

plus an inflection, so that the exact verb form
does not affect this processing. Prepositions as
well as verbs can refer to certain case frames, so
that, for example, "planes with poor maintenance
records" has the same meaning to the system as
"planes having poor maintenance records."

(6) The query corresponding to the. qualifier must
be integrated with the query corresponding to its
surrounding clause to form the overall query.

The ordinary meaning of qualifiers seems to sug-
gest that the qualifier query be evaluated on the
data base first, and its result should then be
used as the scope of search for the other clauses,
in fact, either search can in general be per-
formed first.”

Notice that request can involve searching
more than one relation, even if there are no
qualifiers or dependent clauses, as in the sen-
tence: "Did any planes have a flight on the same
day as an engine maintenance?" In this case the
relation for flights and the relation for mainten-
ances must both be searched, and the results
joined with respect to plane and date values.

3.10 Adding New Questions

Extending system competence within the model
is particularly easy although for the most part it
must be done by a programmer. To add the ability
to handle a new type of sentence, one must only
add a concept case frame which expresses that sen-
tence. Variations on this sentence, including
active and passive forms, ellipsis, different
phrase orderings and the addition of noise words
can all be handled with no additional machinery,
provided that the proper relation (or relations)
is automatically selected by the translation
mechanisms discussed above. The addition can be
handled in ordinary user mode. If a novel request
is encountered (i.e. one which does not match any
concept case frame), the query generator can still
attempt to handle the request, and feed back a
paraphrase to the user. If the user approves of
the paraphrase, the request can be added to the
concept case frame list. The request can be added
in a general way only if there were no pronoun
reference and no ellipsis in the request--if there
were, the concept case frame generated would be
incomplete. If special instructions are necessary,
these are attached to the concept case frame but
this process probably will involve a programmer
for the foreseeable future.

Extending the subnets is also fairly easy;
we have written a net editor (described in [20])
which takes a phrase and adds the states and arcs
to match this phrase, to a specified subnet, using
a minimum number of new arcs and states. Once a

PLANES estimates temporary storage required for
each query, and selects the query with minimum
requirements to search first. The storage esti-
mates are made on the basis of statistical infor-
mation stored for each file. Query construction
is discussed in more detail in [20] and [10].

Waltz

new phrasing has been added to a subnet's reper-
toire, the phrase can of course be matched in any
sentence context. To add a new phrase in user
mode, the new phrase must be synonymous with some
phrase already known by the system.

4. Evaluation of the Model

To our knowledge, no other model proposed or
implemented attempts to deal with ungrammatical
input; any scheme based on sentence parsing (e.g.
Woods et al. [24]) must be restrictive, even if
certain ungrammatical constructs are allowed

(Woods, for example allowed single noun phrases
as requests, interpreting them and "Find <noun
phrase>."). The SOPHIE system [1] uses a

semantic grammer similar to that in PLANES, and is
thus at least conceivably able to deal with non-
grammatical input.

A number of other systems have dealt with
pronoun reference and ellipsis, including (at
least) LUNAR [24], SOPHE [1], SHRDLU [22],
RENDEZVOUS [6], NLPQ 11], and LIFER [12].

Much of the stimulation for generating our
model came from reading Codd [6], and some of the.
query generator ideas are similar to those ex-
pressed in Sowa [16]. Some language processing
ideas were inspired by PARRY [7],

The amount of computation required by the
model is relatively modest. PLANES typically
requires 1-4 seconds to parse a sentence and
generate a formal relational query. Total pro-
cessing time depends critically on the amount
of data to be searched.

Plans for the near future include extensive
testing on real potential users.

References

1. Brown, J. S. and Burton, R. R. Multiple
representation of knowledge for tutorial
reasoning. In Bobrow, D. G. and Collins, A.
(ed.) Representation and Understanding,
Academic Press, New York, 1975, 311-349.

2. Bruce, B. Case systems for natural language.
Artificial Intelligence 6, 4 (Winter 1975),
327-360. .

3. Codd, E. F.
larged shared data banks.
(June 1970), 377-387.

4. Codd, E. F. A data base sublanguage founded
on the relational calculus. Proc. ACM-
S1GFIDET Workshop on Data Description, Access
and Control, Nov. 1971, ACM, New York, 35-68.

5. Codd, E. F. Relational completeness of data
base sublanguages. Courant Computer Science

A relational model of data for
Comm. ACM 13, 6

Symposium 6: Data Base Systems, Prentice-Hall,

New York, 1971, 33-64.

6. Codd, E. F. Seven steps to RENDEZA/OUS with
the casual user. Proc. IFIP TC-2 Working
Conf. on Data Base Management Systems,(April
1974) North-Holland Publ. Co., Amsterdam,
1974, 179-200.

7. Colby, K. M., Faught, B., and Parkison, R.
Pattern-matching rules for the recognition of

Natural

150

10.

14.

15.

17.

18.

20.

21.

22.

23.

24.

natural language dialogue expressions.
Stanford Al Lab. Memo AIM 234, June 1974.
Date, C. J. An Introduction to Database
Systems, Addison-Wesley, Reading, MA, 1975.
Gabriel, R. P. and Waltz, D. L. Natural
language based information retrieval. Proc.
12th Allerton Conf. on Circuit and Sys.

Theory, Univ. of 111., Urbana (Oct. 1974),
875-884.

Green, F. R. Implementation of a query
language based on the relational calculus.
M.S. thesis, Dept. of Computer Science, Univ.
of 111., Urbana, Oct. 1976. (CSL Rpt. T-38).
Heidorn, G. E. Natural language inputs to a

simulation programming system. Tech. Rpt.
NPS-55HD72101A, Naval Postgraduate School,
Monterey, CA., Oct. 1972.

Hendrix, G. G. LIFER: A natural language
interface facility. Stanford Res. Inst.
Tech. Note 135, Dec. 1976.

Malhotra, A. Knowledge-based English language
systems for management support: an analysis
of requirements. 41JCAIl (Sept.1975) 842-847.
Palermo, F. P. A data base search problem.
4th Intl. Symp. on Computer and Infor. Tech.
(Dec. 1972), Plenum Press, N.Y., 1972, 67-101.
Schank, R. C. Identification of conceptuali-
zations underlying natural language. |In
Schank, R. C. and Colb, K. M.(ed.). Com-
puter Models of Thought and Language. Wott,

Freeman, San Francisco, CA, 1973, 187-247.
Sowa, J. F. Conceptual graphs for a data
base interface. [BM J. Res. Develop., Vol.
20, No. 4, July 1976, 336-357.

Tenczar, P. J. and Golden, W. M. Spelling,
word, and concept recognition. Report.
Computer-based Education Res. Lab., Univ. of
111., Urbana, 1972.

Waltz, D. L. Natural language access to a
large data base: an engineering approach.
41JCAIl (Sept. 1975) 868-872.

Waltz, D. L. Natural language to a large
data base. Naval Research Reviews XXIX, 1
(Jan. 1976), 11-25. Reprinted in Computers
and People 25, 4 (April 1976), 19-26.
Waltz, D. L., Finin, T., Green, F., Conrad,
F., Goodman, B., and Hadden, G. The PLANES
system: natural language access to a large
data base. Coordinated Science Lab., Univ.

of 111., Urbana, Tech. Rpt. T-34 (July 1976).
Waltz, D. L. An English language question
answering system for a large relational data

base. (Submitted for publication.)

Winograd, T. Understanding Natural Language,
Academic Press, New York, 1972.

Woods, W. A. Transition network grammars

for natural language analysis.
10 (Oct. 1970), 591-606.
Woods, W. A., Kaplan, R. M., and Nash-Webber,
B. The lunar sciences natural language
system: final report. Report No. 2378, Bolt
Beranek and Newman, Inc., Cambridge, MA.
1972.

Comm. ACM 13,

Languag.e-8: Waltz

