
KNOWLEDGE-BASED ENGLISH LANGUAGE SYSTEMS
FOR MANAGEMENT SUPPORT:

AN ANALYSIS OF REQUIREMENTS

Ashok Malhotra
I B M Thomas J. Watson Research Center

York town Heights, New York 10598

1- Introduction

T w o of the factors that have mitigated against better manage

ment use of computers are the necessity to communicate wi th them

in a special language and to specify the details of the processing

required. Apart from the investment required in learning how to

use computers, these factors lead to delays and neccessitate a

significant, special effort whenever the manager has an unusual

request. To try to overcome these limitations we decided to inves

tigate the uti l i ty and feasibility of a computer-based management-

support system that would allow the manager to phrase his requests

in English and contain enough domain-specific knowledge to ana

lyze them and respond to them. The investigation is described in

detail in Malhotra (4] . This paper summarizes our methodology

and main findings.

Preliminary conversations wi th managers indicated that such a

system should serve as a front-end to a corporate data base to

support problem analysis and decision-making. It should provide

facilities for data retrieval and manipulation as well as be able to

answer questions about its contents and capabilities. The system

should also provide facilities for building and using management

models. If a software error occurs during the processing of a re

quest the user should not be asked to take any special action. It

should be trapped by the system and the user merely asked to

rephrase his request.

2. The Prototype System

To come to grips wi th the substantive problems involved in

building such a system we decided to implement a prototype as a

front-end to the corporate data base of the operations of a manu

facturer of lead batteries. Figure I. is a schematic diagram of the

prototype system. Functionally, the system can be divided into two

parts, the parser and the processor. These two operating sub

systems rely upon a knowledge base that contains a model of the

world, a model of the problem area and knowledge of the structure

and the contents of the data base.

The parser undertakes the init ial analysis of input to the system.

We shall not describe the parser since it is the knowledge base and

the processor that are central to this paper

The morphology routine acts as a preprocessor for the parser.

It examines each word in the input request and checks if it is known

to the system. Unknown words are analyzed to determine whether

they belong to general classes of words for which the system has

knowledge or are variants of known words. If a word cannot be

recognized by the morphology routine a message is printed out

indicating the offending work and the user is asked to retype his

request.

Once the complete sentence is accepted, the "case-oriented"

parser attempts to f ind the main verb and to arrange the noun

phrases in the sentence as "cases" of the main verb. (See Fil lmore

[3] for the theory of case grammar and Celce-Murcia [2] for an

early implemtation of a case-oriented parser.) The processor exam

ines the output of the parser and attempts to identi fy the request as

one of the classes of requests it knows about. The classification is

along the general lines described in Section 4.4. Further processing

towards response generation is based on special knowledge about

the request type. A request for data, for example, is processed very

dif ferently f rom a request for a model value or a yes-no question.

3. The Experiment

To test whether such a system would be natural and useful to

managers we conducted an experiment in which 23 subjects, cho

sen to have some acquaintance with the concepts and vocabulary of

management, were asked to explore a realistic problem situation.

Analysis of their problem-solving protocols was used to determine

the facilities that would be required for a system of this type. The

sentences used by them in framing their requests were analyzed to

determine the vocabulary and the parsing capabil i ty required for

such a system.

The situation placed the subject in the role of the president of a

company that manufactures lead batteries and confronted him wi th

the operat ing results for the last year which show that although

842

sales increased by 20 percent profits decreased. He was asked to

reach an understanding of the situation sufficient to recommend a

course of action with the assistance of a Perfect System that would

respond to any request he made. By allowing unrestricted English

input we attempted to create conditions in which the subjects could

behave as naturally as possible, unhampered by technological

restrictions.

The Perfect System was implemented by interconnecting two

consoles logged into a time-sharing system. Requests typed at the

subject's console appeared at the experimenter's console and he

was able to create responses to them by calling on the prototype

system as well as on a set of prepared programs. One of these

allowed him to create responses by typing them in directly. The

subject saw only the output of the programs invoked by the experi

menter. The system was perfect in the sense that it could respond

to any request that the experimenter could understand and for

which he could create answers.

4. The Results

The behavior of the subjects and the requests made by them

were analyzed to provide the following results:

1. Behavioral reactions to the system and the setting.

2. Vocabulary requirements for an English language

management-support system.

3. Parsing requirements for an English language

management-support system.

4. Facilities required to support management problem-

solving in a specific domain.

5. Knowledge requirements for a domain-specific English

language management-support system. In other words,

the knowledge required to provide the facilities described

in 4.

6. Conceptual structures and strategies used by the subjects

to solve the problem.

These results are summarized in the following six sub-sections.

4 1 Behavioral Reactions to the System and the Setting

In every case, the subject read the problem scenario and the

instructions to use the system and went readily to work. In a few

cases the mechanics of editing and sending a request had to be

explained. This was done quite rapidly, however, and the subject

was at work within a few minutes after reading the documentation.

Some subjects started out with very simple requests for single

items of data. As they gained confidence in the system, they asked

more demanding questions requesting blocks of data, invoking

models and performing complex computations on the data. They

would then go on to ask "what i f" questions, define models and ask

for underlying causes. Thus, the subjects explored the capabilities

of the system and gained confidence in it while solving the prob

lem. They did this by gradually increasing the complexity of the

questions and by asking direct questions about system capability:

"Can you format reports?"

"Do you perform mathematical computations?''.

One of the initial, fuzzy notions we had was that managers "should

be able to talk to the system like a human being". And indeed,

after a few questions, the subjects began to treat it like one. Their

English was informal, they were cavalier about sentence forms and

style and tended to ignore inessentials like punctuation. The for

mality of having to type in the requests and the knowledge that

they were interacting with a computer system did seem to have

some effect on the input, however. Their sentences were short and

simple and for the most part coherent and unambiguous.

A few subjects expressed their impatience at having to precede

all requests for data with "what is" by leaving it out. Others at

tempted to set specifications to be obeyed over the next set of

questions. Yet another form of economizing on input was to define

simple models and then merely specify parameters in subsequent

questions. Thus, some subjects seemed to feel that English was a

little cumbersome for routine data retrieval. It may be desirable,

therefore, to build a command language on top of the English

system.

In summary, all the subjects took quite naturally to the system

and were able to work comfortably with it without significant

problems. After the experiment, most of them commented that the

system "would be very useful if it could be implemented". A

high-level manager for a retail food chain felt it would be very

useful to train store managers and also to manage individual profit

centers like a bakery.

4.2 The Vocabulary

The 496 sentences used by the subjects were formed from 358

basic words. Further, the probability of encountering new words in

subsequent sentences decreased rapidly with the number of sen

tences. Analysis of the rate at which new words occur seems to

suggest that a vocabulary of 1000 to 1500 words may be sufficient

for an English language system to support a particular business

application. (See Malhotra [4].)

Analysis of the words used in the subjects' requests allows us to

develop the requirements for the morphological analysis program

that attempts to associate each word of the input with appropriate

pieces of knowledge contained in the system. If a word is not

contained in the dictionary the program should check to see if it

belongs to a class of words it knows about. If so, it can create the

required knowledge from general knowledge about the class and

the special characteristics of the word. In this way it can recognize

inflected forms of known words (ran and running from run), noun

idioms (cost of goods sold), numerical nomilizations (products 1, 2

and 3), contractions (what's, I'm) and abbreviations ($, info, O H ,

mfg). The program must also be able to make allowances for

common misspellings and for run in words such as "whatis". (See

Tietelman [6].)

It seems desirable to allow the user to define new words con

versationally as part of his interaction. The problem is, however,

that, except in special cases such as names of defined models, each

work in a knowledge-based system has a significant amount of

knowledge attached to it. Without this knowledge it cannot be

processed correctly, if at all. Since it is unrealistic to expect the

user to be able to supply this knowledge (in the proper format) it

seems best not to allow words to be defined conversationally.

843

4.3 The Parsing Requirements
A basic parser that analyzes sentences syntactically to match

ten known sentence types and uses semantic knowledge to put

together a canonical representation of the sentence was able to

parse 78 percent of the sentences obtained from the users. The

parser also possesses the capability to analyze simple conjunction

forms and initial preposition groups and to ignore the noise word

"please". A detailed description of the parser is given by Malhotra

[4] . Figure 2. shows the ten sentence types and their relative

frequency of occurrence in the parsed sentences.

The frequency of sentences classified by sentence type seems to

follow the well known Pareto distribution [5]. This often appears

in analyzing occurrence frequencies by class; be they sales by item

or the amount of damage by fire. Typically, a few classes account

for a large percentage of the occurrences. Thus, the majority of the

sentences fall into a few types but, if the tail is to be covered, a

number of additional sentence types must be added. We estimate

that a parser capable of analyzing some twenty sentence types and

other syntactic conventions will be able to provide adequate fluen

cy and completeness. It will not be able to accept anything the user

wishes to say but will accept a subset of English that is "habitable"
in the sense of Watt {7].

4 4 The Facilities Required

The requests obtained from the subjects, which can be consid
ered to be typical of those that will be made to a management-
support system of this kind, can be divided into two major classes:
requests for information about the problem situation and requests
for information about the contents and capabilities of the system.
The following are typical examples extracted from the user proto
cols.

REQUESTS ABOUT THE PROBLEM SITUATION

Data Retrieval

What was production by plant by product?
How much did we sell to Sears in '72?

Functions of Data

What is the ratio of overhead cost to sales for the last 2 years?
What is the percentage increase in sales of each product in

1973?
Models and What~If Questions

What was contribution margin for each plant?
What would profits have been if there was no deviation be
tween selling price and list price?

Would sales have decreased the price if product 5 was raised
to give a margin of $2?

Properties of Entities and Identity Questions

How many plants do we have?

Which products are made by plant 4?
Yes-No Questions

1. About the Corporation

Do we have any repeat customers?
Was any equipment purchased for long term deprecia
tion?

2. Asking if a Sub-Problem Exists

Did the product mix change for any plant whose profita
bility had decreased from last year?
Were profit margins maintained in 1973?

Model Definitions

Define p-cost to be the sum of overhead and production cost.
Define chcost =

((Cost in 1973 - Cost in 1972)/(Cost in 1972))

REQUESTS ABOUT THE SYSTEM

Regarding Capability

1. Computational Capability

Can you calculate percentages?

List all the functions you can perform.

2. Content Capability

Can you produce a profit figure for each product at a

specific plant?

Can you give me data on product mix from each plant?

844

Regarding Contents

How far back does your information go?

Do you have a forecasting model for demand?

Do you have any information on customer satisfaction?

Regarding Composition of Data Items

Do overhead costs vary with volume?

Where does transportation cost get included?

What makes up operating costs?

Definition of Data Items and Models

Define the terms "unit cost" and "unit price".

How is profit calculated?

What is the definition of profit for a product?

The above examples indicate the kind of facilities requested by the

subjects. Requests inquiring about the causes and motivation of

various states and events cannot, of course, be answered by such a

system. Similarly, it cannot accept information and respond to

requests for data or facilities it does not possess.

4.5 The Knowledge Base

A variety of different kinds of knowledge is required to analyze

and respond to the requests obtained from the subjects. The sys

tem needs to have knowledge about data, about models, and about

functions of data and model values. For each of these it requires

different kinds of information. The system also needs to know the

properties of entities and deduction rules that can be used to relate

questioned properties to stored properties. In addition to knowl

edge about the problem situation and the environment the system

also needs to know how to respond to different types of requests

including those that are ambiguous, incorrect or cannot be analyzed

by the system. If a request cannot be processed the system should

ask the user to rephrase it and provide as much information as

possible to assist him in doing so.

The total amount of knowledge required to respond to the 496

requests made by the subjects is presented in Appendix I I I of

Malhotra (4]. Although the amount of knowledge is large, it is not

intractable and it seems feasible to incorporate it into a

management-support system.

4.6 Analysis of Problem Solving Behavior
A paradigm of coming to grips with problem situations is de

scribed in Malhotra [4]. This states that managers attempt to
understand a gross problem by checking lists of sub-problems that
may contribute to i t . This hierarchical process stops with the isola
tion of a set of sub-problems that can either be alleviated directly
by actions or decisions or for which more information or expertise
is required for further analysis.

In cases where the set of potential sub-problems does not yield
an existing problem the manager follows one or more of three
strategies: he goes back over the list of sub-problems and rechecks
each one, perhaps using different data and different functions to
test if it exists; he attempts to generate additional potential sub-
problems; or he reverts to more basic concepts and uses these to
attack the problem.

The paradigm was supported by the problem-solving protocols
of the subjects. Its validation indicates that managers use a few
basic processes to try to understand problem situations. Thus, if

the system provides capabilities to support these basic processes it
will be useful for a wide range of management problems. Moreo
ver, if problem-solving processes are found to be stable over a wide
range of managers or if they can be identified for a set of managers
then the design of the system can be based upon them.

This brief description does not do justice to the paradigm. It is
included here to support the generality of our results.

5. Preferred Answering Strategies

Our basic contention underlying answer generation was that
people appreciate brevity and tire of repetition. If they have faith
in the system and it analyzes their requests carefully there should
be tittle need to specify the question in the response. If data is
asked for, it should be presented without any explanation. If the
question is "Who is our largest customer?" the answer should be
"Sears", not "Our largest customer is Sears". Defaults and as
sumptions made by the system should, however, be stated along
with the answer on the principle that the user should know all the
information used in generating the answer.

In some cases, a request can be answered in a number of ways.
Some of these are preferable to others because they lead to system
efficiency or because they support the user's problem-solving
process better. The following sub-sections provide examples of
prefered answering strategies.

5.1 Yes-No Questions

The system should respond to questions of the type:
"Do you have sales figures?"

"Can you show me overhead cost?"
by attempting to provide the data mentioned.

Questions of the type:

"Is transportation cost included in overhead?"
should be replied to with either a "yes" or with information about
where transportation cost is really included. In general* the system
should try to indicate the correct state of affairs rather than re
spond to such questions with merely a "no". (See also Winograd
[9].)

In some cases, additional information should also be included
with a "yes" answer. For example:

Was actual expense in plant 4 higher than budget?"
If it was, the system should anticipate the following "By how
much?" and provide the variance.

5.2 Identity Questions After Yes-No Questions

Yes-no questions asking whether entities with given properties
exist are often followed by questions asking for their identities.

"Did any plants exceed their production budget in 1973?"
"Which ones?"

Since this is a common sequence, also reported by Woods [8] , it
seems desirable to check the properties of all the relevant entities in
answering the yes-no questions, not stopping after the first positive
instance, and to maintain the list of positive instances in a special
register to answer the identity question.

5.3 Fuzzy Discriminating Functions

Some subjects asked yes-no questions, testing the existence of a

845

sub-problem, that required the system to make a judgement:

"Were profit margin* maintained in 1973?"

"Did unit coats increase significantly last year?"

Such questions are identified by "fuzzy" words such as

"maintained", "changed" and "same". Since the system cannot

provide the judgement needed to answer these questions, it should

provide the data and ask the subject to draw his own conclusions.

5.4 Free Standing Noun Groups
The SOPHIE system [1] has a default that if s user types in a

noun group which is a "measurement" he is assumed to want its

value. Some of the subjects tended to drop the "what is" before a

request for a data item and type just the noun group, optionally

followed by preposition groups. The default does, therefore, seem

to make good sense.

5.5 Definitions

.Every entity known to the system should have a prepared

definition and description that should be printed out if it is asked

for or if the user makes an incorrect request related to It. In fact,

there probably should be a definition and special messages to

respond to different ways in which a request regarding that entity

can be misphrased.

6. System Characteristics

It is time now to reconsider the system requirements described

above in light of our assessment of the state of the art. In general,

most of the facilities required can be provided with sufficient power

and generality. Some of them are difficult to provide but, on the

balance, there seems to be adequate capability to build a system

that wil l be very useful.

Of all the facilities requested by the subjects data retrieval was

the most popular. This is relatively straightforward to provide.

The major difficulty is the matching of noun groups used to specify

data with data names known to the system. This is discussed in

detail in Mslhotra [4].

Formatting the answers and aligning the figures in tables with

the decimal points one below the other and with commas after

every three positions to indicate significance was found to be very

important to the subjects' problem-solving process. Some subjects

also wanted to change the number of significant digits in the an

swer. These facilities were neglected in the prototype system but

are not difficult to provide.

Some subjects wanted to examine sets of data such as the profit

and loss statement and the balance sheet and could, as an extreme

example, ask for the general ledger. Retrieving and presenting

these named sets of data also does not present any significant

technical problems.

Some subjects wished to set a series of specifications to be used

for all the succeeding requests until reset. For example, "Provide

the following data for plant 2." Such a facility can be implemented

by storing the specifications in special registers that are checked

during the process of creating specifications for data retrieval. It

seems desirable, however, to print out these specifications each

time they are used since the user may forget he has set them and

misinterpret the answers. As mentioned earlier, there seems to be a

need for a simple command language for users who would use the

system for a few, fixed types of data retrieval. Such s facility can

be provided easily and efficiently and would considerably reduce

the burden of typing in long requests.

The system should provide at least the following functions:

"percentage", "average", "maximum", "minimum", "increase",

"sum", "difference", "change", "variance" (both accounting and

statistical), and "distribution". Functional capabilities are fairly

straightforward to provide and the system design should lean to

wards prolixity rather than parsimony.

One of the more significant results of the experiment was the

importance of models to the problem-solving process. Not only did

subjects ask for models as naturally as they asked for data, but

most of them wanted to define new models and ask what-if ques

tions that require models to answer them. It is very difficult, bow-

ever to provide conversational motel-building facilities. The ability

to describe them in English sentences and have the system set up

appropriate internal structures is related to the general problem of

having computer systems learn from information presented to

them. Besides, the knowledge required to build models is very

complex and it is difficult to describe models in single sentences.

Learning from natural language input and the comprehension of a

number of connected sentences is somewhat beyond the current

state of the art.

Since it does not seem feasible to provide model building facili

ties in natural English, the system should attempt to provide them

in some other manner. We suggest that whenever the user attempts

to define a model the system should invoke a special modelling

sub-system. This sub-system would initiate s structured interaction

with the user during which it would ask questions and the user

would supply the information needed to build the model. The

sub-system would, of course, make extensive use of system knowl

edge to frame the questions. In this manner, the user would have

access to a fairly powerful model-building facility rather than a

rudimentary, conversational model-building system.

What-if questions ask for the value of a target variable given

hypothetical values for contributing parameters and states of na

ture. Such questions can only be answered if a model exists with

the target variable as output and the specified parameters and

states of nature as inputs. The response generator to what-if ques

tions should, therefore, start by looking for an appropriate model.

If such a model can be found, the inputs should be picked up from

the sentence or supplied by defaults and the answer created. If ,

however, a model cannot be found, the user should be told so and,

if he wishes, led into the mode) building sub-system.

The ability to answer yes-no questions and identity questions is

extremely important to the success of a managerial question-

answering system. Indeed, yes-no questions were the third most

popular syntactic type in the sentences obtained from users. Such

questions are difficult to answer because special pieces of knowl

edge are required to understand them. In the sentences:

"Who is our largest customer?"

"Is Sears our largest customer?"

The word "largest" acquires a special meaning, namely "the one

who bought the most from us". The utility of such a piece of

846

knowledge is restricted to a narrow range of requests and a number
of such pieces are required. Nevertheless, it seems possible and
necessary to provide adequate facilities in these areas.

The analysis presented above and in more detail in Malhotra [4]
shows that it is now possible to implement a system that mirrors the
complexity of the managerial problem-solving process and allows
both new and experienced users to work easily and naturally with
it. Powerful technology in natural language processing and knowl
edge representation and processing now exists and is being
strengthened further. The next logical step seems to be to imple
ment such a system for a real situation and learn from an analysis
of the use that managers make of it. This is probably the most
effective way to make progress in responsive support systems for
managers.

7. Implementation Issues

Since our main result is that an English language support sys

tem for managers is feasible and one of the obvious directions for

future research is to implement such a system, we should touch

briefly on implementation issues. First, since the amount of knowl

edge required, although tractable, is large such a system should be

built for specific, limited problem domains. There may, thus, be a

support system for budgeting, another for controlling production

costs and so on.

Second, such a system would resemble a service rather than a

product It would have to be brought up especially for each problem

area and it would change and grow with the managers and their

jobs and their understanding of the problem domain. A

knowledge-based system implies continuous modification. It seems

best, at this stage, however, to relegate the function of adding

knowledge to the system to an intermittent, background, system

maintenance phase. The process of adding to the system will be

extremely important to its success, however.

Third, our investigation assumed a simple data base structured

in the form of arrays. Real world data bases are, however, very

complex, consisting of sequential, indexed sequential, random,

inverted and chained files. The retrieval mechanisms from such

fields will need to be very sophisticated and use knowledge about

the structure of the files. Furthermore, certain kinds of questions

cannot be answered from an inappropriately structured data base

without a record by record search of the entire data base. These

questions must be considered inappropriate for the data base and

should receive an "error" response.

Bibliography

1. Burton, R R, "Semantically Centered Parsing System for
Mixed Initiative C A I Systems", presented at the Twelfth
Annual Meeting of the Association for Computational Lin
guistics, Amherst, Mass.. July 26-27, 1974.

2. Celce-Murcia, M . , "Paradigms for Sentence Recognition.", in
System Development Corporation final report No. HRT-
15092/7909.

3. Fillmore, C. T., "The Case for Case.", in "Universals in
Linguistic Theory", Bach, E., and Harms R., (ed) . Holt,
Rinehart and Winston, 1968.

4. Malhotra, A., "Design Requirements for a Knowledge-Based
English Language System for Management: An Experimental
Analysis.", Ph.D. Thesis, Sloan School of Management,
M I T , Cambridge, Mass., February 1975.

5. Parzen, E., "Modern Probability Theory and its Applica
tions", John Wiley. New York, N Y . , 1960.

6. Teitelman, W. t "Automatic Programmering: The
Programmer's Assistant.", FJCC, December 1972.

7. Watt W. C, "Habiubt l i ty" , American Documentation, Vol
ume 19, No. 3, July 1968.

8. Woods, W. A., Kaplan, R. M , and Nash-Webber B., "The
Lunar Sciences Natural Language System: Final Report",
Bolt, Beranek and Newman, Cambridge, Mass., June 15,
1972.

9. Winograd, T.. "Understanding Natural Language.", Academic
Press, New York. 1972.

847

