
PLANNER-BESM-6 SYSTEM: IMPLEMENTATION METHODS

V l a d i m i r N. P i l e h i k o v

Moscow U n i v e r s i t y
Department of Computation Mathematics and Cybernetics

Moscow, USSR

A b s t r a c t

This paper describee some new methods
used in PLANNER-BESM-6 system f o r the im
ple m e n t a t i o n o f PLANNER. B a c k t r a c k i n g i s
implemented w i t h a s i n g l e stack and no
copying o f a c t i v a t i o n frames i s needed.
L i s t s are represented as a r r a y s of p o i n
t e r s ; the garbage c o l l e c t o r f o r t h i s r e
p r e s e n t a t i o n r e q u i r e s no a d d i t i o n a l memo
r y . R e s t r i c t i o n s o n v a r i a b l e values are
accomplished by u s i n g 'semi-defined f

s t r u c t u r e s . These methods have enabled to
achieve the h i g h e f f i c i e n c y o f t h e system
work.

Together w i t h the well-known t e c h n i
ques (c o o r d i n a t e s in data base o r g a n i z a
t i o n [3.4] , context number f o r f a i l -
p o i n t s [5] and so on) PLANNER-BESM-6 sys
tem uses some new methods. This paper
b r i e f l y describes t h r e e o f such methods.
B a c k t r a c k i n g i s implemented w i t h a s i n g l e
stack and w i t h o u t copying i n f o r m a t i o n i n
the s t a c k . L i s t s are represented as a r
rays o f p o i n t e r s which c o n t a i n the l e n g t h
o f l i s t s ; the garbage c o l l e c t i o n used f o r
t h i s r e p r e s e n t a t i o n r e q u i r e s n o a d d i t i o n
a l space. R e s t r i c t i o n s o n v a r i a b l e values
are accomplished w i t h s t r u c t u r e s t h a t are
not f u l l y d e f i n e d .

1 • I n t r o d u c t i o n

Newer programming languages [1 , 2] i n
tended f o r use i n A r t i f i c i a l I n t e l l i g e n c e
research have i n t r o d u c e d many new f a c i l i
t i e s t h a t make much more easy the const
r u c t i o n o f s o p h i s t i c a t e d A I systems. The
r e f o r e p r a c t i c a l implementation o f these
languages and c r e a t i n g e f f i c i e n t methods
f o r t h i s are the necessary and i m p o r t a n t
tasks f o r A I progress.

Among the new languages PLANNER [3]
has gained the widest p o p u l a r i t y . PLANNER
was the f i r B t language i n t r o d u c i n g a ma
j o r i t y o f the new concepts and methods.
Now PLANNER a t t r a c t s much a t t e n t i o n : many
papers propose methods o f i t s t r a n s l a t i
on, t h e r e are some p r a c t i c a l implementa
t i o n s o f i t and others are being c r e a t e d .

PLANNER-BESM-6 system i s an i n t e r p r e
t e r . I n some im p o r t a n t aspects t h i s sys
tem d i f f e r s from o t h e r PLANNER systems.
The system has been designed to be an e f
f i c i e n t p r a c t i c a l t o o l , s o the e f f i c i e n c y
o f the language implementation, which i s
the heel o f A c h i l l e s f o r PLANNER, has be
en given more a t t e n t i o n r a t h e r than
aiming t o implement a l l w i t h o u t exception
f e a t u r e s o f PLANNER. Some f e a t u r e s which
are not t h e main w i t h i n the language but
r e q u i r e the s u p e r f l u o u s memory and time
f o r t h e i r implementation have not been
i n t r o d u c e d i n t o the i n p u t language o f
t h i s system. For example the i n p u t langu
age uses o n l y r e c u r s i v e and backtrack r e
gimes and p r o h i b i t s a c t o r s ' u t i l i z a t i o n
i n matching p a t t e r n s . This has enabled t o
use methods t h a t i n c r e a s e the e f f i c i e n c y
of the system work.

2. Implementation of b a c k t r a c k i n g

There are some schemes f o r implemen-
t i n g backtrack c o n t r o l . For example t h e
paper [5] proposes a scheme w i t h two
s t a c k s . But t h i s scheme r e q u i r e s m u l t i p l e
t r a n s f e r s of i n f o r m a t i o n from one stack
to another. The scheme of [6 } uses one
stack and i s intended f o r implementation
o f v a r i o u s c o n t r o l regimes. This general
scheme has been used to implement langu
age POPLER 1.5 [7] which has s o p h i s t i c a
t e d c o n t r o l s t r u c t u r e . However, being
adapted only t o b a c k t r a c k i n g , t h i s scheme
spends the s u p e r f l u o u s space and time be
cause i t r e q u i r e s m u l t i p l e copies o f ac
t i v a t i o n frames.

PLANNER-BESM-6 system uses a l s o one
sta c k f o r keeping frames o f a c t i v a t i o n s
but no copying i s needed, so t h i s scheme
r e q u i r e s l e s s memory and time than t h e
above schemes. The scheme is as f o l l o w e s
[81 .

There i s a l i s t c a l l e d ' a r c h i v e ' t h a t
r o u g h l y corresponds t o ' f a i l i s t ' o f sche
me [6] . A r c h i v e saves i n f o r m a t i o n on
changes of v a r i a b l e b i n d i n g , data base
and so on, made by the program. For each
changed o b j e c t a r c h i v e keeps i t s l o c a t i o n
i n memory and i t s previous s t a t e . Using
t h i s the system w i l l r e s t o r e the p r e v i
ous s t a t e s o f the o b j e c t s when a f a i l u r e
occurs w i t h i n t h e program.

Stack contains i n f o r m a t i o n needed f o r
f u n c t i o n s ' e l a b o r a t i o n . Upon e n t r y to a
f u n c t i o n c e r t a i n storage, c a l l e d a frame
o f t h e f u n c t i o n a c t i v a t i o n , i s a l l o c a t e d
in t h e end of s t a c k . Any frame occupies

575

always one continuous piece of stack spa
ce. The head of a frame contains activa
tion name, a pointer Ar to archive and
links of this frame: a pointer I (see be
low), a pointer AL which specifies the
variable bindings accessible within this
frame, a pointer CL to the calling frame,
and return address Rt to the caller (thus
a continuation point is saved in the cal
led frame). A frame may also contain i n
formation on exit actions of the activa
tion. Another space of a frame holds tem
porary intermediate results and local va
riables' bindings, if any, of the functi
on. During the whole activation the size
of i t s frame is constant (while the con
tents of frame may vary), so the size is
fixed on activation entry and then does
not vary.

I f a function hasn't set any f a i l -
point during i t s elaboration and if the
function exits, then the frame of this
function is removed out of stack, i.e. a
pointer s to the end of stack w i l l
again point to a cell upper this frame.
If during an activation a failpoint has
been set, then the activation frame is
retained in stack. In this case the poin
ter s is not changed. A consequence of
this is that the frame of active function
is not always located in the end of stack.
For this reason there is another pointer
r which always points to the frame of
function that is active now. The active
function uses this pointer in order to
access i t s own frame. When & new frame is
created, the value of r becomes a link
CL, and then r begins to point to the
head of the new frame; later, when the
function exits, CL w i l l be transfered to
r. Therefore without failpoints the poin
ters s and r are changed synchronous
ly, which corresponds to normal recursive
regime.

When a function has to set a f a i l -
point, it allocated information on this
failpoint in the last cell of i t s frame
and then fixes a pointer f to this cell
(the third stack pointer - f - always
points to a cell of the last existing
failpoint). This information consists of
address PP of the previous failpoint cell
and 'reaction address' RA that is an
address of the interpreter instractions
which w i l l perform certain actions when a
failure returns control to this failpoint.
Pig. 1 shows the contents of the frame
for [AMONG (4 IJCAI (USSR TBILISI) 1975)]
in the moment when this function has set
a failpoint before returning the f i r s t
selected value - 4.

It is possible by comparing the poin
ters r and f to determine whether or
not a function has set a failpoint and
hence to determine whether or not a frame
of the function should be retained in
stack. If on a function exit then
the function has a failpoint so the poin
ter s is not changed, otherwise s va
ries. Pig. 2 shows the states of stack
and pointers e, r and f at different

moments of the elaboration of a function
P which calls functions G, H and I in
turn, the function G setting a failpoint
and I calling a function J which genera
tes a failure: a) G exits; b) H exits;
c) J generates a failure; d) control is
returned to G.

When a f a i l u r e occurs, the inter p r e
t e r cleans stack up to the frame which
keeps the last f a i l D o i n t (the value of f
is transfered to s) and then returns
control to the reaction on f a i l u r e w i t h i n
t h i s f a i l p o i n t . Since information on the
f a i l p o i n t is located in a frame of a c t i
vation that has set the f a i l p o i n t , the
reaction gets an access to a l l informa
t i o n o f t h i s frame, i n p a r t i c u l a r t o i n
formation needed for redoing the elabora
t i o n of the function. Using t h i s informa
t i o n the reaction restores the pointer r t
restores access environment with l i n k CL,
and then with scanning archive it resto
res previous values of variables, pre
vious state of data base and so on. Due
to these actions the state of execution
is restored. The further actions of r e
action are d i f f e r e n t f o r d i f f e r e n t func
tio n s . For example, function AMONG w i l l
chop the next element o f f the l i s t stored
in i t s frame and then w i l l return t h i s

576

element as new r e s u l t . But i f the l i s t i s
empty then the f u n c t i o n w i l l destroy i t s
f a i l p o i n t (address PF w i l l be tranefered
t o pointer f) and f a i l u r e w i l l propagate
upper.

An a d d i t i o n is necessary to the des
cribed scheme. Let us consider the elabo
r a t i o n of [AND e1 e2 e3 e4] . This func
t i o n c a l l s i t s arguments i n t u r n u n t i l
f a l s e occurs- AHD sets no f a i l p o i n t so it
cannot catch a f a i l u r e on i t s own. How
ever i t s arguments may set f a i l p o i n t s and
generate a f a i l u r e . Hence AND cannot ma
nage t r a n s f e r s of c o n t r o l among i t s argu
ments. For example, l e t e1 sets a f a i l -
point and e3 generates a f a i l u r e that r e
turns c o n t r o l to e1. If the repeated com
putation of e1 succeeds then c o n t r o l is
returned to AND again, but t h i s f u n c t i o n
w i l l not know that i t should c a l l e2 and
not e4.

This mistake i s easily r e c t i f i e d .
When a f u n c t i o n c a l l s another f u n c t i o n ,
the c a l l i n g one gives some information
(a pointer I) to the c a l l e d one to keep
i t . When the lower f u n c t i o n f i n i s h e s i t
returns t h i s pointer together w i t h i t s
r e s u l t . As a r u l e , I is a p o i n t e r to the
l i s t of arguments followed the argument
evaluated now. The returned pointer i n
forms the c a l l i n g f u n c t i o n which argument
should be evaluated at the next step.
Hence the correct work of the c a l l i n g
f u n c t i o n is not broken by t r a n s f e r i n g
c o n t r o l from one argument to another.

A l l functions of PLANNER f o r back
track regime, in p a r t i c u l a r non-local go
to and f a i l u r e s d i r e c t e d to a p o i n t , were
implemented w i t h i n the bounds of the des
cribed scheme.

3- L i s t representation

I n PLANNER the main operations on
l i s t s are more complex than, f o r example,
those i n LISP, There are scanning l i s t s
from both the ends, s e l e c t i n g any element
or sequent from l i s t , matching l i s t - p a t
t e r ns. The usual l i s t representation (as
in LISP systems) is not e f f e c t i v e f o r
elaborating these operations. For example
a match of l i s t s requires easy determi
ning the l i s t lengths but i t i s impos
s i b l e w i t h t h i s representation. On the
other hand, the operation cons, e f f i c i
e n t l y implemented w i t h t h i s representa
t i o n , i s not t y p i c a l f o r PLANNER. More
over the usual l i s t representation leads
to s c a t t e r i n g l i s t c e l l s a l l over the me
mory, which is inconvinient f o r the pa
ging of v i r t u a l memory used i n PLANNER-
BESM-6 system.

I n view of t h i s , PLANNER-BESM-6 sys
tem uses a d i f f e r e n t l i s t representation,
namely, a l i s t i s represented as an array
of pointers (see Fig. 1). A pointer to a
l i s t consists o f three parte: the i n i t i a l
address of array, the length of array and
a type i n d i c a t o r (each data type has i t s

own i n d i c a t o r) . A l i s t length used t n a
pointer makes easy to match patterns and
to scan l i s t s from the end. Successive
l o c a t i o n of l i s t elements makes easy to
select any element or sefment. Due to
such representation l i s t s and tuples are
not d i s t i n g u i s h e d . I n a d d i t i o n , t h i s r e
presentation p a r t i a l l y (on the highest
l e v e l) l o c a l i z e s l i s t c e l l s i n memory.

A pointer to integer is the same i n
teger w i t h f i x e d exponent which is also
an i n d i c a t o r of type 'integer'. Pointers
to other data types consist of two parts,
v i z . , type i n d i c a t o r s and references to
property c e l l s of data. Free space of
these pointers is used f o r various aims,
f o r example t o l i s t a l l labels of f u n c t i
on PROG.

The l i s t representation described r e
quires the free space of l i s t memory to
be one continuous sequent. The i n t e r p r e
t e r f i l l s t h i s space from bottom t o top,
hence the garbage c o l l e c t o r must pack r e
levant pointers and move them down, modi
f y i n g references of these p o i n t e r s . Mul
t i p l e references to insi d e of l i s t s make
d i f f i c u l t i e s f o r t h i s moving and f o r r e
ference changing, so the garbage c o l l e c
t i o n used i n FLANNER-BESM-6 system takes
three stages. But t h i s garbage c o l l e c t i o n
is simple and doesn't require a d d i t i o n a l
space, and t h i s d i f f e r s it from other me
thods of garbage c o l l e c t i o n w i t h packing.

The f i r s t stage i s t o mark c e l l s of
l i s t s needed f o r the f u r t h e r runnig of
program. This is performed as in IaSP
systems, besides the t o t a l amount of
marked c e l l s is counted.

The second stage is l i n e a r scanning
l i s t space from top to bottom and chang
i n g a l l references down (i . e . references
to c e l l s w i t h l a r g e r addresses). This
changing is performed as follows.

Let a current examined c e l l a is
marked and also contains a reference to
c e l l b (b > a ; i n t h i s stage a l l r e f e
rences up are ignored). Then the garbage
c o l l e c t o r interchanges both the r e f e r e n
ces of c e l l a and b, and if t h i s r e f e r e n
ce to c e l l b is the f i r s t one from top
then both the c e l l s a and b is marked by
'+' (t h i s marker is d i s t i n c t from the
marker used i n the f i r s t stage). Then
c e l l a+1 w i l l be examined.

If a current examined c e l l b contains
the marker '+' then at t h i s moment the
c e l l b contains also the i n i t i a l address
of l i s t of c e l l s a1 a?, ... , an
(a i<a. + 1, a < b) which have had
the references to c e l l b before. At t h i s
moment address b' which should be as
signed to p o i n t e r of c e l l b i s known: b'
i s defined by the t o t a l amount and the
amount of already examained marked c e l l s .
So the garbage c o l l e c t o r in scanning the
chain of c e l l s a , ... , a„, a- puts the
address b1 i n t o them. The l a s t c e l l &1 of
t h i s chain is marked and contains the r e -

577

ference that has before been placed in
cell bt so this reference ie transfered
to cell b, marker • + • is removed out of
cells a1 and b, and then the contents of
cell b is treated on common base.

In PLANNER-BESM-6 system the l i s t
space is placed in the bottom of memory,
hence a l l references from other spaces to
this space are references down. In order
to avoid scanning other spaces in the se
cond stage, a l l references of those spa
ces to the l i s t space are treated in the
f i r s t stage as described above.

The third stage of the garbage col
lection is linear scanning the l i s t space
from bottom to top, moving a l l marked
pointers (to the space bottom) and chang
ing a l l references up. This stage is s i
milar to the previous stage but each re
ference up is moved to new location f i r s t
and then i t s new address is used.

4. Restrictions on variables

Matching two patterns is used in
function MATCH or during theorems' invo
cation. One of problems here is the im
plementation of restrictions on variable
values. When a pattern matches another
pattern some variables get no values but
their future values are constrained. For
example on elaboration of [MATCH *X *Y]
(prefix '*' means 'to assign value to va
riable') no variable gets a value but
their future values w i l l be equal. An
other type of restrictions appears in
matching a variable with a l i s t which
contains variables. For example on elabo
ration of [MATCH * I (*Y A .Y)] the fu
ture value of X w i l l be a l i s t with three
elements, the second of which is atom A,
two others are equal and are the future
value of Y (prefix '.' means 'to get va
lue of variable').

Since the input language of PLANNER-
BESM-6 eystem prohibits actors' u t i l i z a
tion in matching two patterns, restric
tions on variable values may be of the
above types only. This restrictions are
implemented in such manner.

New data type 'semi-defined structu
re' is introduced. This is a structure a
part of which is not defined, namely, a
inner (not accessible to users) variable
without a value or a l i s t some elements
of which are semi-defined structures. If
a variable gets no a f u l l y defined ('re
al ') value in matching then ite value
(SD-value) w i l l be a semi-defined struc
ture. This SD- value is constructed with
the pattern which has been confronted to
the variable: a l l variables of the pat
tern are substituted by their values, in
particular by SD-values, wherever pos
sible; the rest of variables get refe
rences to some inner unassigned variables
as values, and then these references are
inserted into the pattern. Thus any va
riable has a value always but SD-value is

not accessible to users.

In matching SD-value behaves as well
as 'real' value: object confronted to a
variable with SD-value must match SD-va
lue. A consequence of this is that a va
riable may get only the 'real' value that
matches the existing SD-value. In general
case, any new restriction on variable va
lue is immediately checked on compatibi
l i t y with the existing SD-value, and i f
they do not conflict then their 'inter
section' w i l l be the new SD-value of the
variable. This check often allows to de
fine the f u l l value of variable in proper
time* For example this takes place for
[MATCH (*X .X) ((*YA) (B *Z))} .

Cross-references among 'real1 variab
les are accomplished by SD-values since
in general case each inner variable is
referenced by some semi-defined structu
res. I f a semi-defined structure is f i l
led in f u l l y or partially then a l l or so
me inner variables referenced by this
structure get values, and hence some
other semi-defined structures are also
f i l l e d in ful l y or partially. Since
cross-references among 'real' variables
are accomplished indirectly, through i n
ner variables the existence of which
doesn't depend on the existence of 'real'
variables (but depends on amount of refe
rences to them), so it is not necessary
to retain 'real' variables in memory only
because of the program has defined links
among other 'real' variable by those. So
when a theorem has set no failpoints then
i t s frame ie removed out of stack even if
there are cross-references among global
variables through i t s local variables,
because the existing inner variables are
holding this links.

References

1. Bobrow D., Raphael B. New Programming
Languages for AI Research. ACM Com-

puting; Surveys, v.6, No.3, 1974 abrin v., Serebriakov V., Yufa V.
LORD - AI Programming System. VII
Symposium on Cybernetics, T b i l i s i ,
USSR, 1974

3. Hewitt C. Description and Theoretical
Analysis (using schemata) of PLANNER.
MIT AI Lab., Cambridge, Mass., 1972

4. Baumgart B. MICRO-PLANNER Alternate
Reference Manual. Stanford AI Lab*,
Stanford, Calif., 1972

5. Smith D., Enea H. Backtracking in
MLISP2. Proc. IJCAI-73. Stanford

6. Bobrow D., Wegbreit B. A Model and
Stack Implementation of Multiple En
vironments. CACM. v.16, No.10, 1973

7. Davies D. POPLER 1.5 Reference Manual.
University of Edinburg, Edinburg,
Scotland, 1973*

8. Pilshikov V. Backtracking i n PLANNER-
BESM-6 System, i n Symbol Informati-
on Processing, v.2. Computing Center,
Ad&demy 6f Sciences, Moscow, 1975

578

