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A b s t r a c t 

This paper describee some new methods 
used in PLANNER-BESM-6 system f o r the im
ple m e n t a t i o n o f PLANNER. B a c k t r a c k i n g i s 
implemented w i t h a s i n g l e stack and no 
copying o f a c t i v a t i o n frames i s needed. 
L i s t s are represented as a r r a y s of p o i n 
t e r s ; the garbage c o l l e c t o r f o r t h i s r e 
p r e s e n t a t i o n r e q u i r e s no a d d i t i o n a l memo
r y . R e s t r i c t i o n s o n v a r i a b l e values are 
accomplished by u s i n g 'semi-defined f 

s t r u c t u r e s . These methods have enabled to 
achieve the h i g h e f f i c i e n c y o f t h e system 
work. 

Together w i t h the well-known t e c h n i 
ques ( c o o r d i n a t e s in data base o r g a n i z a 
t i o n [3.4] , context number f o r f a i l -
p o i n t s [ 5 ] and so on) PLANNER-BESM-6 sys
tem uses some new methods. This paper 
b r i e f l y describes t h r e e o f such methods. 
B a c k t r a c k i n g i s implemented w i t h a s i n g l e 
stack and w i t h o u t copying i n f o r m a t i o n i n 
the s t a c k . L i s t s are represented as a r 
rays o f p o i n t e r s which c o n t a i n the l e n g t h 
o f l i s t s ; the garbage c o l l e c t i o n used f o r 
t h i s r e p r e s e n t a t i o n r e q u i r e s n o a d d i t i o n 
a l space. R e s t r i c t i o n s o n v a r i a b l e values 
are accomplished w i t h s t r u c t u r e s t h a t are 
not f u l l y d e f i n e d . 

1 • I n t r o d u c t i o n 

Newer programming languages [ 1 , 2 ] i n 
tended f o r use i n A r t i f i c i a l I n t e l l i g e n c e 
research have i n t r o d u c e d many new f a c i l i 
t i e s t h a t make much more easy the const
r u c t i o n o f s o p h i s t i c a t e d A I systems. The
r e f o r e p r a c t i c a l implementation o f these 
languages and c r e a t i n g e f f i c i e n t methods 
f o r t h i s are the necessary and i m p o r t a n t 
tasks f o r A I progress. 

Among the new languages PLANNER [ 3] 
has gained the widest p o p u l a r i t y . PLANNER 
was the f i r B t language i n t r o d u c i n g a ma
j o r i t y o f the new concepts and methods. 
Now PLANNER a t t r a c t s much a t t e n t i o n : many 
papers propose methods o f i t s t r a n s l a t i 
on, t h e r e are some p r a c t i c a l implementa
t i o n s o f i t and others are being c r e a t e d . 

PLANNER-BESM-6 system i s an i n t e r p r e 
t e r . I n some im p o r t a n t aspects t h i s sys
tem d i f f e r s from o t h e r PLANNER systems. 
The system has been designed to be an e f 
f i c i e n t p r a c t i c a l t o o l , s o the e f f i c i e n c y 
o f the language implementation, which i s 
the heel o f A c h i l l e s f o r PLANNER, has be
en given more a t t e n t i o n r a t h e r than 
aiming t o implement a l l w i t h o u t exception 
f e a t u r e s o f PLANNER. Some f e a t u r e s which 
are not t h e main w i t h i n the language but 
r e q u i r e the s u p e r f l u o u s memory and time 
f o r t h e i r implementation have not been 
i n t r o d u c e d i n t o the i n p u t language o f 
t h i s system. For example the i n p u t langu
age uses o n l y r e c u r s i v e and backtrack r e 
gimes and p r o h i b i t s a c t o r s ' u t i l i z a t i o n 
i n matching p a t t e r n s . This has enabled t o 
use methods t h a t i n c r e a s e the e f f i c i e n c y 
of the system work. 

2. Implementation of b a c k t r a c k i n g 

There are some schemes f o r implemen-
t i n g backtrack c o n t r o l . For example t h e 
paper [ 5 ] proposes a scheme w i t h two 
s t a c k s . But t h i s scheme r e q u i r e s m u l t i p l e 
t r a n s f e r s of i n f o r m a t i o n from one stack 
to another. The scheme of [ 6 } uses one 
stack and i s intended f o r implementation 
o f v a r i o u s c o n t r o l regimes. This general 
scheme has been used to implement langu
age POPLER 1.5 [ 7 ] which has s o p h i s t i c a 
t e d c o n t r o l s t r u c t u r e . However, being 
adapted only t o b a c k t r a c k i n g , t h i s scheme 
spends the s u p e r f l u o u s space and time be
cause i t r e q u i r e s m u l t i p l e copies o f ac
t i v a t i o n frames. 

PLANNER-BESM-6 system uses a l s o one 
sta c k f o r keeping frames o f a c t i v a t i o n s 
but no copying i s needed, so t h i s scheme 
r e q u i r e s l e s s memory and time than t h e 
above schemes. The scheme is as f o l l o w e s 
[81 . 

There i s a l i s t c a l l e d ' a r c h i v e ' t h a t 
r o u g h l y corresponds t o ' f a i l i s t ' o f sche
me [ 6 ] . A r c h i v e saves i n f o r m a t i o n on 
changes of v a r i a b l e b i n d i n g , data base 
and so on, made by the program. For each 
changed o b j e c t a r c h i v e keeps i t s l o c a t i o n 
i n memory and i t s previous s t a t e . Using 
t h i s the system w i l l r e s t o r e the p r e v i 
ous s t a t e s o f the o b j e c t s when a f a i l u r e 
occurs w i t h i n t h e program. 

Stack contains i n f o r m a t i o n needed f o r 
f u n c t i o n s ' e l a b o r a t i o n . Upon e n t r y to a 
f u n c t i o n c e r t a i n storage, c a l l e d a frame 
o f t h e f u n c t i o n a c t i v a t i o n , i s a l l o c a t e d 
in t h e end of s t a c k . Any frame occupies 
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always one continuous piece of stack spa
ce. The head of a frame contains activa
tion name, a pointer Ar to archive and 
links of this frame: a pointer I (see be
low), a pointer AL which specifies the 
variable bindings accessible within this 
frame, a pointer CL to the calling frame, 
and return address Rt to the caller (thus 
a continuation point is saved in the cal
led frame). A frame may also contain i n 
formation on exit actions of the activa
tion. Another space of a frame holds tem
porary intermediate results and local va
riables' bindings, if any, of the functi
on. During the whole activation the size 
of i t s frame is constant (while the con
tents of frame may vary), so the size is 
fixed on activation entry and then does 
not vary. 

I f a function hasn't set any f a i l -
point during i t s elaboration and if the 
function exits, then the frame of this 
function is removed out of stack, i.e. a 
pointer s to the end of stack w i l l 
again point to a cell upper this frame. 
If during an activation a failpoint has 
been set, then the activation frame is 
retained in stack. In this case the poin
ter s is not changed. A consequence of 
this is that the frame of active function 
is not always located in the end of stack. 
For this reason there is another pointer 
r which always points to the frame of 
function that is active now. The active 
function uses this pointer in order to 
access i t s own frame. When & new frame is 
created, the value of r becomes a link 
CL, and then r begins to point to the 
head of the new frame; later, when the 
function exits, CL w i l l be transfered to 
r. Therefore without failpoints the poin
ters s and r are changed synchronous
ly, which corresponds to normal recursive 
regime. 

When a function has to set a f a i l -
point, it allocated information on this 
failpoint in the last cell of i t s frame 
and then fixes a pointer f to this cell 
(the third stack pointer - f - always 
points to a cell of the last existing 
failpoint). This information consists of 
address PP of the previous failpoint cell 
and 'reaction address' RA that is an 
address of the interpreter instractions 
which w i l l perform certain actions when a 
failure returns control to this failpoint. 
Pig. 1 shows the contents of the frame 
for [AMONG (4 IJCAI (USSR TBILISI) 1975)] 
in the moment when this function has set 
a failpoint before returning the f i r s t 
selected value - 4. 

It is possible by comparing the poin
ters r and f to determine whether or 
not a function has set a failpoint and 
hence to determine whether or not a frame 
of the function should be retained in 
stack. If on a function exit then 
the function has a failpoint so the poin
ter s is not changed, otherwise s va
ries. Pig. 2 shows the states of stack 
and pointers e, r and f at different 

moments of the elaboration of a function 
P which calls functions G, H and I in 
turn, the function G setting a failpoint 
and I calling a function J which genera
tes a failure: a) G exits; b) H exits; 
c) J generates a failure; d) control is 
returned to G. 

When a f a i l u r e occurs, the inter p r e 
t e r cleans stack up to the frame which 
keeps the last f a i l D o i n t (the value of f 
is transfered to s) and then returns 
control to the reaction on f a i l u r e w i t h i n 
t h i s f a i l p o i n t . Since information on the 
f a i l p o i n t is located in a frame of a c t i 
vation that has set the f a i l p o i n t , the 
reaction gets an access to a l l informa
t i o n o f t h i s frame, i n p a r t i c u l a r t o i n 
formation needed for redoing the elabora
t i o n of the function. Using t h i s informa
t i o n the reaction restores the pointer r t 
restores access environment with l i n k CL, 
and then with scanning archive it resto
res previous values of variables, pre
vious state of data base and so on. Due 
to these actions the state of execution 
is restored. The further actions of r e 
action are d i f f e r e n t f o r d i f f e r e n t func
tio n s . For example, function AMONG w i l l 
chop the next element o f f the l i s t stored 
in i t s frame and then w i l l return t h i s 

576 



element as new r e s u l t . But i f the l i s t i s 
empty then the f u n c t i o n w i l l destroy i t s 
f a i l p o i n t (address PF w i l l be tranefered 
t o pointer f ) and f a i l u r e w i l l propagate 
upper. 

An a d d i t i o n is necessary to the des
cribed scheme. Let us consider the elabo
r a t i o n of [AND e1 e2 e3 e4 ] . This func
t i o n c a l l s i t s arguments i n t u r n u n t i l 
f a l s e occurs- AHD sets no f a i l p o i n t so it 
cannot catch a f a i l u r e on i t s own. How
ever i t s arguments may set f a i l p o i n t s and 
generate a f a i l u r e . Hence AND cannot ma
nage t r a n s f e r s of c o n t r o l among i t s argu
ments. For example, l e t e1 sets a f a i l -
point and e3 generates a f a i l u r e that r e 
turns c o n t r o l to e1. If the repeated com
putation of e1 succeeds then c o n t r o l is 
returned to AND again, but t h i s f u n c t i o n 
w i l l not know that i t should c a l l e2 and 
not e4. 

This mistake i s easily r e c t i f i e d . 
When a f u n c t i o n c a l l s another f u n c t i o n , 
the c a l l i n g one gives some information 
(a pointer I) to the c a l l e d one to keep 
i t . When the lower f u n c t i o n f i n i s h e s i t 
returns t h i s pointer together w i t h i t s 
r e s u l t . As a r u l e , I is a p o i n t e r to the 
l i s t of arguments followed the argument 
evaluated now. The returned pointer i n 
forms the c a l l i n g f u n c t i o n which argument 
should be evaluated at the next step. 
Hence the correct work of the c a l l i n g 
f u n c t i o n is not broken by t r a n s f e r i n g 
c o n t r o l from one argument to another. 

A l l functions of PLANNER f o r back
track regime, in p a r t i c u l a r non-local go
to and f a i l u r e s d i r e c t e d to a p o i n t , were 
implemented w i t h i n the bounds of the des
cribed scheme. 

3- L i s t representation 

I n PLANNER the main operations on 
l i s t s are more complex than, f o r example, 
those i n LISP, There are scanning l i s t s 
from both the ends, s e l e c t i n g any element 
or sequent from l i s t , matching l i s t - p a t 
t e r ns. The usual l i s t representation (as 
in LISP systems) is not e f f e c t i v e f o r 
elaborating these operations. For example 
a match of l i s t s requires easy determi
ning the l i s t lengths but i t i s impos
s i b l e w i t h t h i s representation. On the 
other hand, the operation cons, e f f i c i 
e n t l y implemented w i t h t h i s representa
t i o n , i s not t y p i c a l f o r PLANNER. More
over the usual l i s t representation leads 
to s c a t t e r i n g l i s t c e l l s a l l over the me
mory, which is inconvinient f o r the pa
ging of v i r t u a l memory used i n PLANNER-
BESM-6 system. 

I n view of t h i s , PLANNER-BESM-6 sys
tem uses a d i f f e r e n t l i s t representation, 
namely, a l i s t i s represented as an array 
of pointers (see Fig. 1). A pointer to a 
l i s t consists o f three parte: the i n i t i a l 
address of array, the length of array and 
a type i n d i c a t o r (each data type has i t s 

own i n d i c a t o r ) . A l i s t length used t n a 
pointer makes easy to match patterns and 
to scan l i s t s from the end. Successive 
l o c a t i o n of l i s t elements makes easy to 
select any element or sefment. Due to 
such representation l i s t s and tuples are 
not d i s t i n g u i s h e d . I n a d d i t i o n , t h i s r e 
presentation p a r t i a l l y (on the highest 
l e v e l ) l o c a l i z e s l i s t c e l l s i n memory. 

A pointer to integer is the same i n 
teger w i t h f i x e d exponent which is also 
an i n d i c a t o r of type 'integer'. Pointers 
to other data types consist of two parts, 
v i z . , type i n d i c a t o r s and references to 
property c e l l s of data. Free space of 
these pointers is used f o r various aims, 
f o r example t o l i s t a l l labels of f u n c t i 
on PROG. 

The l i s t representation described r e 
quires the free space of l i s t memory to 
be one continuous sequent. The i n t e r p r e 
t e r f i l l s t h i s space from bottom t o top, 
hence the garbage c o l l e c t o r must pack r e 
levant pointers and move them down, modi
f y i n g references of these p o i n t e r s . Mul
t i p l e references to insi d e of l i s t s make 
d i f f i c u l t i e s f o r t h i s moving and f o r r e 
ference changing, so the garbage c o l l e c 
t i o n used i n FLANNER-BESM-6 system takes 
three stages. But t h i s garbage c o l l e c t i o n 
is simple and doesn't require a d d i t i o n a l 
space, and t h i s d i f f e r s it from other me
thods of garbage c o l l e c t i o n w i t h packing. 

The f i r s t stage i s t o mark c e l l s of 
l i s t s needed f o r the f u r t h e r runnig of 
program. This is performed as in IaSP 
systems, besides the t o t a l amount of 
marked c e l l s is counted. 

The second stage is l i n e a r scanning 
l i s t space from top to bottom and chang
i n g a l l references down ( i . e . references 
to c e l l s w i t h l a r g e r addresses). This 
changing is performed as follows. 

Let a current examined c e l l a is 
marked and also contains a reference to 
c e l l b ( b > a ; i n t h i s stage a l l r e f e 
rences up are ignored). Then the garbage 
c o l l e c t o r interchanges both the r e f e r e n 
ces of c e l l a and b, and if t h i s r e f e r e n 
ce to c e l l b is the f i r s t one from top 
then both the c e l l s a and b is marked by 
'+' ( t h i s marker is d i s t i n c t from the 
marker used i n the f i r s t stage). Then 
c e l l a+1 w i l l be examined. 

If a current examined c e l l b contains 
the marker '+' then at t h i s moment the 
c e l l b contains also the i n i t i a l address 
of l i s t of c e l l s a1 a?, ... , an 
( a i<a. + 1, a < b ) which have had 
the references to c e l l b before. At t h i s 
moment address b' which should be as
signed to p o i n t e r of c e l l b i s known: b' 
i s defined by the t o t a l amount and the 
amount of already examained marked c e l l s . 
So the garbage c o l l e c t o r in scanning the 
chain of c e l l s a , ... , a„, a- puts the 
address b1 i n t o them. The l a s t c e l l &1 of 
t h i s chain is marked and contains the r e -
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ference that has before been placed in 
cell bt so this reference ie transfered 
to cell b, marker • + • is removed out of 
cells a1 and b, and then the contents of 
cell b is treated on common base. 

In PLANNER-BESM-6 system the l i s t 
space is placed in the bottom of memory, 
hence a l l references from other spaces to 
this space are references down. In order 
to avoid scanning other spaces in the se
cond stage, a l l references of those spa
ces to the l i s t space are treated in the 
f i r s t stage as described above. 

The third stage of the garbage col
lection is linear scanning the l i s t space 
from bottom to top, moving a l l marked 
pointers (to the space bottom) and chang
ing a l l references up. This stage is s i 
milar to the previous stage but each re
ference up is moved to new location f i r s t 
and then i t s new address is used. 

4. Restrictions on variables 

Matching two patterns is used in 
function MATCH or during theorems' invo
cation. One of problems here is the im
plementation of restrictions on variable 
values. When a pattern matches another 
pattern some variables get no values but 
their future values are constrained. For 
example on elaboration of [MATCH *X *Y] 
(prefix '*' means 'to assign value to va
riable') no variable gets a value but 
their future values w i l l be equal. An
other type of restrictions appears in 
matching a variable with a l i s t which 
contains variables. For example on elabo
ration of [MATCH * I (*Y A .Y)] the fu
ture value of X w i l l be a l i s t with three 
elements, the second of which is atom A, 
two others are equal and are the future 
value of Y (prefix '.' means 'to get va
lue of variable'). 

Since the input language of PLANNER-
BESM-6 eystem prohibits actors' u t i l i z a 
tion in matching two patterns, restric
tions on variable values may be of the 
above types only. This restrictions are 
implemented in such manner. 

New data type 'semi-defined structu
re' is introduced. This is a structure a 
part of which is not defined, namely, a 
inner (not accessible to users) variable 
without a value or a l i s t some elements 
of which are semi-defined structures. If 
a variable gets no a f u l l y defined ('re
al ') value in matching then ite value 
(SD-value) w i l l be a semi-defined struc
ture. This SD- value is constructed with 
the pattern which has been confronted to 
the variable: a l l variables of the pat
tern are substituted by their values, in 
particular by SD-values, wherever pos
sible; the rest of variables get refe
rences to some inner unassigned variables 
as values, and then these references are 
inserted into the pattern. Thus any va
riable has a value always but SD-value is 

not accessible to users. 

In matching SD-value behaves as well 
as 'real' value: object confronted to a 
variable with SD-value must match SD-va
lue. A consequence of this is that a va
riable may get only the 'real' value that 
matches the existing SD-value. In general 
case, any new restriction on variable va
lue is immediately checked on compatibi
l i t y with the existing SD-value, and i f 
they do not conflict then their 'inter
section' w i l l be the new SD-value of the 
variable. This check often allows to de
fine the f u l l value of variable in proper 
time* For example this takes place for 
[MATCH (*X .X) ((*YA) (B *Z))} . 

Cross-references among 'real1 variab
les are accomplished by SD-values since 
in general case each inner variable is 
referenced by some semi-defined structu
res. I f a semi-defined structure is f i l 
led in f u l l y or partially then a l l or so
me inner variables referenced by this 
structure get values, and hence some 
other semi-defined structures are also 
f i l l e d in ful l y or partially. Since 
cross-references among 'real' variables 
are accomplished indirectly, through i n 
ner variables the existence of which 
doesn't depend on the existence of 'real' 
variables (but depends on amount of refe
rences to them), so it is not necessary 
to retain 'real' variables in memory only 
because of the program has defined links 
among other 'real' variable by those. So 
when a theorem has set no failpoints then 
i t s frame ie removed out of stack even if 
there are cross-references among global 
variables through i t s local variables, 
because the existing inner variables are 
holding this links. 
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