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Abstract
This paper describes the results of Thus the appeal of the heuristic search,
applying the formal heurisitic search an attempt to combine a sufficiently
algorithm to the game of chess, and the powerful search mechanism with a
impact of this work on the theory of knowledgable heuristic.
heuristic search. It is not that the

application of the heuristic search can by
itself solve the problems at the heart of
the computer chess, but that representing
these problems within the formalism of the
heuristic search will further their common
solution. A separate search heuristic is
proposed that does offer a common solution
to the problems of quiescence, sacrifices,
and plan oriented play.

Introduction

The purpose of this paper s to
describe the results of applying the
formal heuristic search algorithm to the
game of chess, and discuss the impact of
this work on the theory of heuristic
search. We hope to demonstrate that a
symbiotic relationship exists between the
two areas in that the problems encountered
when playing computer chess can be better
solved within the formalism of the
heuristic search and that the theory of
heuristic search can be furthered by
gaining insight from this very complex
application.

Computer chess has b-en dominated by
programs using the alpha-beta minimax
search (Greenblatt ) and more recently by
programs using an exhaustive search
(Northwestern, Kiassa, Tech 11). The
trend of successful programs has thus been
to a more brute force approach rather than
developing more formal solutions to the
difficult problems that arise. Approaches
using more sophisticated representation
and utilization of chess knowledge such as

have been unable to
with programs wusing

technique. The actual
new approaches is hampered
that a chess program hangs by
its weakest link, and poor play may not be
the fault of the new approach. However,
approaches that attempt to use more
sophisticated heuristics in preference to
a general tree search are more susceptible
to occasional serious errors in play. It
is by no means clear that in chess the
tradeoff of search effort for accuracy in
evaluation can be consistently made
without significant loss of precision.

Zobrist and Berliner
perform competitively
the alpha-beta
assessment of
by the fact
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The heuristic search approach has not
proven itself competitively superior to
the alpha-beta technique either
winning, drawing, and losing games with
Columbia, Northwestern, and Tech I
respectively. This substantiates the
current feeling in the Al community that
search strategy itself plays a lower order
role than other modules of the system.

of this
since they
mechanism
the heart
namely,

However, certain
approach are worthy of study
may prove to provide a better
for dealing with the problems at
of the computer chess dilemma;
quiescence checking, sacrifices, and plan
oriented ©play. We will specify the means
by which the heuristic search can express
these problems, and propose a common
solution, whereas the current minimax
paradigm seems roadblocked.

aspects

Definitions

The heuristic search makes use of the
following functions defined over the set
of legal board configurations referred to
as nodes,

g(n) - the number of moves from the root
to the node n.

h(n) = the minimum number of moves from
node n to a goal.

f(n) = h(n)+g(n) The minimum number of
moves from the root to a goal via
node n.

Since some of these functions are not
known during the actual search we must
estimate them. The estimating function is
denoted by a o Thus, the estimating
function of h(n) is denoted fi(n) and is
typically referred to as the "heuristic"
or the board evaluation function. A goal

is a winning position.

At each step of the heuristic search
most promising line of play, the one
the best f wvalue, is expanded. In
way the heuristic h orders the

the
with
this
search.

The heuristic search for tree
proceeds as follows.

a game



1) Initialize the search tree to the
current board referred to as the root.

2) Select a node for expansion by
following the {-pointers to a tip node
p. Halt if p is a terminal node.

3) Expand P, linking all sons into the
search tree.

4) calculate fi and g for each son, use
these to calculate f.

5) Back up the values of the
setting the f-pointer for
along the path to p.

6) go to (2) .

The algorithm terminates in step (2) or

"best" son,
each node

when time or space constraints are
exhausted, in which case the move is
made to the 1st level son with the best

fi value.

"Best" is defined as either the maximum or
minimum value depending on its level in
the search tree. In step (5) the
information obtained at the tip nodes is

backed up into the search tree where it

can be compared to other Ilines of play.
Most theoretical work dealing with
the heuristic search deals with the effect
of restrictions on the heuristic and their
resulting impact on the search. For
example, if fi(n)<h(n) for all nodes n then
the search is guaranteed to find the
minimal cost goal. By applying
restrictions that allow for error in the

heurstic we can determine
how the heuristic search behaves under
conditions of error (Harris ' ). When
dealing with chess we are forced to use an
error prone heuristic or else no search
would be necessary. Thus, it is critical

theoretically

that the search technique remain stable,
even when misled by the heuristic. It is
shown that the accuracy of the search
degrades at worst only linearly with the
error in the heuristic.
The Search Heuristic 3

We begin our discussion of the

problems of quiescence, sacrifices, and

plan oriented play by introducing another
forward estimating function called 3. As
we will argue later, the notion of a
separate search heuristic, one that helps
guide the search independent of the fi
evaluator, has application in problem
domains other than chess. We will argue
the need to order the search on the basis
of information other than that represented
by g or fi. The order of expansions will
now be determined by f=g+h+3.

For example, in tactical positions
the fi estimator is of little use in
searching for the best line of play since
the notions fi typically measures, such as

material advantage and pawn structure,
become temporarily unimportant relative to
an effective tactical threat. The 3
estimator tries to forecast the tactical
line and bias the search in this
direction. Note that we are not saying
that 3 can accurately estimate the results

of the tactics -- if this could be done we
would simply put the result directly in fi.
We assume only that d will be
oversensitive and signal when tactics
might prevail. In these cases we leave it

to the search to investigate and verify
the 3 prediction. We hope to simply bias
the search in the proper direction.

The need to separate fi & 3 is clear

from our use of h to select actual moves
to be made on the board. In this way 3
guides the search, but does not directly
affece move decisions, unless the d
prediction is manifested by an improvedh
after a successful search of the tactical
line. Thus we associate moves with high fi
as being "good moves to make", and moves
with high 3 as being "good moves to
investigate further."
Quiescence Checking

In order to accurately predict
tactical lines 3 must be sensitive to much
more than overt captures and checks, it
must consider pins, forks, discovered
attacks, back rank attacks, pawn
promotion, and other phenomena likely to
bring about an abrupt change in piece
advantage. In this sense the 3 measure is
a quiescence check par excellence. When 3

esciiuace can be
since there are no

is near zero then the h
considered accurate

pending tactical threats. In this way the
"horizon effect" (Berliner ) can be
avoided by stopping the search when all
tip nodes of the search tree are quiet, in

which case the search tree is said to
have terminated.

Thus we are using the same estimator
that finds tactical lines to define
guiescence in a much more sophisticated

manner than others (Greenblatt ) have
suggested. Typically only overt captures
and checks are included in a quiescence
check, 3 includes these even to the degree
of signaling high values 1 ply after the
check or capture to force continued
evaluation of a forced line. But 3 also

includes the tactical ploys that often
precede sudden fluctuations in fi.
We must consider the problem that

with this loose definition of quiescence,
the tree may never terminate. In this
regard we note that 3 features are not
additive; that is, they do not cancel out.
I f both players have roughly equally
promising threats, the 3 function musu not
sum to zero, as this board is anything but

a quiet situation that can be accurately

rated. By computing separate d values for
each of the two players we can avoid this
problem and can also define tree
termination in a way that is more likely
to occur. By separating each player's

threats we can dynamically rate a board as
stable when the son with the best fi value
has one sided threats that would only
improve the rating. Using the same
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Introduction

The purpose of this paper is to
describe the results of applying the
formal heuristic search algorithm to the
game of chess, and discuss the impact of
this work on the theory of heuristic
search. We hope to demonstrate that a
symbiotic relationship exists between the
two areas in that the problems encountered
when playing computer chess can be better
solved within the formalism of the
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gaining insight from this very complex
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Computer chess has b'en dominated by
programs using the alpha-beta minimax
search (Greenblatt ) and more recently by
programs using an exhaustive search
(Northwestern, Kiassa, Tech I1). The
trend of successful programs has thus been
to a more brute force approach rather than
developing more formal solutions to the
difficult problems that arise. Approaches

using more sophisticated representation
and utilization of chess knowledge such as
Zobrist and Berliner have been unable to
perform competitively with programs using
the alpha-beta technique. The actual
assessment of new approaches is hampered
by the fact that a chess program hangs by
its weakest link, and poor play may not be
the fault of the new approach. However,
approaches that attempt to use more
sophisticated heuristics in preference to
a general tree search are more susceptible
to occasional serious errors in play. It
is by no means clear that in chess the
tradeoff of search effort for accuracy in
evaluation can be consiSwently made
without significant loss of precision.
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The heuristic search approach has not

proven itself competitively superior to
the alpha-beta technique either

winning, drawing, and losing games with
Columbia, Northwestern, and Tech Il
respectively. This substantiates the
current feeling in the Al community that
search strategy itself plays a lower order
role than other modules of the system.

However, certain aspects of this
approach are worthy of study since they
may prove to provide a better mechanism
for dealing with the problems at the heart
of the computer chess dilemma; namely,
quiescence checking, sacrifices, and plan
oriented play. We will specify the means
by which the heuristic search can express
these problems, and propose a common
solution, whereas the current minimax
paradigm seems roadblocked.

Definitions

The heuristic search makes use of the
following functions defined over the set
of legal board configurations referred to
as nodes.

g(n) = the number of moves from the root
to the node n.

h(n) - the minimum number of moves from
node n to a goal.

f(n) = h(n)+g(n) The minimum number of
moves from the root to a goal via
node n.

Since some of these functions are not
known during the actual search we must
estimate them. The estimating function is
denoted by a o Thus, the estimating
function of h(n) is denoted fi(n) and is
typically referred to as the "heuristic"
or the board evaluation function. A goal

is a winning position.

At each step of the heuristic search
most promising line of ©play, the one
the best f value, is expanded. In
way the heuristic orders the

the

with
this
search.

fi

The heuristic search for tree

proceeds as follows.

a game



1) Initialize the search tree to the
current board referred to as the root.

2) Select a node for expansion by
following the f-pointers to a tip node
p. Halt if p is a terminal node.

3) Expand P, linking all sons into the
search tree.

4) calculate fi and g for each son, use
these to calculate f.

5) Back up the values of the "best" son,
setting the ?-pointer for each node
along the path to p.

6) go to (2) .

The algorithm terminates in step (2) or
when time or space constraints are
exhausted, in which case the move is
made to the 1st level son with the best
fi value.

"Best" is defined as either the maximum or

minimum value depending on its level in

the search tree. In step (5) the
information obtained at the tip nodes is
backed up into the search tree where it
can be compared to other lines of play.
Most theoretical work dealing with
the heuristic search deals with the effect
of restrictions on the heuristic and their
resulting impact on the search. For
example, if fi(n)<h(n) for all nodes n then
the search is guaranteed to find the
minimal cost goal. By applying
restrictions that allow for error in the
heurstic we can determine theoretically
how the heuristic search behaves under
conditions of error (Harris ' ). When
dealing with chess we are forced to use an

error prone heuristic or else no search
would be necessary. Thus, it is critical
that the search technique remain stable,
even when misled by the heuristic. It is
shown that the accuracy of the search
degrades at worst only linearly with the
error in the heuristic.
The Search Heuristic 3

We begin our discussion of the
problems of quiescence, sacrifices, and
plan oriented play by introducing another
forward estimating function called 3. As
we will argue later, the notion of a
separate search heuristic, one that helps
guide the search independent of the f
evaluator, has application in problem
domains other than chess. We will argue
the need to order the search on the basis
of information other than that represented
by g or fi. The order of expansions will
now be determined by f=g+fi+d.

For example, in tactical positions
the fi estimator is of little use in
searching for the best line of play since
the notions fi typically measures, such as
material advantage and pawn structure,
become temporarily unimportant relative to
an effective tactical threat. The 3
estimator tries to forecast the tactical
line and bias the search in this
direction. Note that we are not saying
that 3 can accurately estimate the results
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of the this could be done we
result directly infi.
that 3 will be
signal when tactics
these cases we leave it
investigate and verify
We hope to simply bias
proper direction.

tactics if
would simply put the
We assume only

oversensitive and
might prevail. In
to the search to
the 3 prediction.
the search in the

& d is clear
actual moves

The
our

need to separate fi
use of fi to select
be made on the board. In this way 3
guides the search, but does not directly
affece move decisions, unless the d
prediction is manifested by an improved fi
after a successful search of the tactical
line. Thus we associate moves with high fi
as being ''good moves to make", and moves
with high 3 as being "good moves to
investigate further."

from
to

Quiescence Checking

In order to accurately predict
tactical lines 3 must be sensitive to much
more than overt captures and checks, it
must consider pins, forks, discovered
attacks, back rank attacks, pawn
promotion, and other phenomena likely to
bring about an abrupt change in piece
advantage. In this sense the 3 measure is
a quiescence check par excellence. When d
is near zero then the fi estimate can be
considered accurate since there are no
pending tactical threats. In this way the
"horizon effect" (Berliner ) can be

avoided by stopping the search when all
tip nodes of the search tree are quiet, in
which case the search tree is said to
have terminated.

Thus
that finds
quiescence
manner than

we are using the same estimator

tactical lines to define
in a much more sophisticated

others (Greenblatt ) have
suggested. Typically only overt captures
and checks are included in a quiescence
check, 3 includes these even to the degree
of signaling high values 1 ply after the
check or capture to force continued
evaluation of a forced line. But 3 also
includes the tactical ploys that often
precede sudden fluctuations in fi.

We
with this
the tree
regard we
additive;
| f both

must
loose

consider the problem that
definition of quiescence,
may never terminate. In this
note that 3 features are not
that is, they do not cancel out.
players have roughly equally
promising threats, the 3 function must not
sum to zero, as this board is anything but
a quiet situation that can be accurately
rated. By computing separate 3 values for
each of the two players we can avoid this
problem and can also define tree
termination in a way that is more Ilikely
to occur. By separating each player's
threats we can dynamically rate a board as
stable when the son with the best fi value
has one sided threats that would only
improve the rating. Using the same



philosophy as alpha-beta cutoffs we can
backup the quiet rating when-ever
one-sided attacks won't change the
ordering even if they were to prove
successful. In this way the root can
eventually be rated as quiet even though
many tip nodes of the search tree are not.
This definition also makes sense from a
search point of view since we would not
wish to waste time searching a line of
play whose outcome would not change the
order of our ratings, while there remain
nodes is the search tree whose ratings are
unstable.

Quiescence checking in the heuristic
search environment is on a scale relative
to the entire search tree. The nodes with
high 3 will be expanded first until they
become quiet relative to other sections of
the tree. In fact, one could view the
search process as attempting to
monotonically reduce the backup 3 value of
the root until it becomes close to zero;
meaning that the dynamic rating of the
root is accurate. If the value does not
reach zero before it is time to move then
the situation is too complex for accurate
play, but we can at least make a
reasonable move based on the information
gained in reducing the 3 value of the root

as much as possible.

In the alpha-beta minimax environment
the queiscence check must be made
independent of other factors in the tree,
making relative comparison impossible.
The decision must be made at the point of
maximum ply whether or not to continue the
expansion. Since the algorithm is
recursive there is no information about
other areas in the tree. As such, the

decision must be made on absolute grounds,

requiring a conservative approach to make
the algorithm terminate within the time
constraint in all cases. Thus, most
quiescence checks in the alph-beta
environment do not include all the factors
necessary to determine whether a board is

really quiet.
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Critical Sacrifices

Another flaw of computer chess play
is the inability to find or adequately
defend from effective sacrifices. We will
show how the search heuristic 3 can be
used in solving this problem also. The
following two boards are extreme examples
of sacrificial play, but as such clearly
demonstrate the problems computers face
when required to search these lines of
play. Board | is a famous 19-ply mating
sequence described in Berliner-., that
begins with a queen sacrifice. The line
is 1. Q-R5ch, NxQ 2. PxPch, K-N3, 3.
B-B2ch, K-N4, 4. R~B5ch, K-N3 5.
R-B6ch, K-N4 6. R-N6ch, K-R5 7. R-K4ch,
N-BS, 8. RxNch, K-R4, 9. P-N3, any 10.
R-R4mate.

Board |

We are faced with the problem of
finding such moves when they are
successful, but also avoiding such moves
when they are not. This latter concern is
even more important since a program could
play good chess without the ability to
make 19-ply mates, but not if it
continually enters such sacrifices when
they are not successful.

The sacrificial move might be defined
as a good move to investigate, but one to
avoid making until its full effects are
searched out. In the proposed scheme this
would be a move with an incremental loss
in fi representing the sacrificed piece,
and an artificially high 3 to temporarily
overcome the loss in fi. This high d will
bias the search to investigate the line in
spite of the material loss.

Any search, minimax or heuristic,
that uses a single value to compare boards
and make moves, cannot separate the good
from the bad sacrifices. The reasoning is
that a 5-ply minimax search could not find
the mate in a single search simply because
of the depth of the sequence. But, it is
entirely possible to play the mating
sequence using a series of 5-ply searches.
The problem arises in the first search,
where we are forced to decide whether the
gqueen sacrifice is successful or not,
without being allowed to fully explore the



sequence. | f the heuristic rates the
sacrifice as worthwhile then the move will
be made without a thorough investigation.
This of course, is very dangerous as Board
Il exemplifies. Board Il is identical to
Board | except that black's KRP is at R4

instead of R3. The queen sacrifice is not
now successful because of this small
change, since the king can eventually hide
and avoid further checks. The line is: 1.
QxPch, NxQ 2. PxPch, K-N3 3. any,
K-R3 ending the checks. Surely it must be

a sensitive heuristic to be sure of the
outcome of a queen sacrifice in situations

such as these. Since the stakes are so
high, most programs will play it safe and
will avoid the sacrifice. This is a result
of the minimax forcing a premature
decision without allowing a thorough
investigation of the sequence.

Board |1

The only way to avoid this two-sided

dilemma is to separate the search
ordering from the move ordering. Once we
have allowed this distinction we could
explore the queen sacrifice more deeply.
| f the sacrifice is successful this will
be manifested by an improved h value.

Until the fi value of the sacrifice is
rated as the best in the search tree we
will not be tempted to make the move, but
this does not restrain the search from

investigating it further. Once again, the

notion of a separate search heuristic, to
guide the search to areas of the move tree
that need further investigation before

they can be accurately assessed, makes for

a clean solution to this very difficult
problem. For as long as move decisions
and search criteria are based on a single
value, sacrificial lines of play like
those exemplified above cannot be
accurately solved.

Clearly some tuning of the d
heuristic is required to avoid
investigating every seemingly interesting
possible sacrifice. This is done by
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requiring substantial mobilization of
attacking pieces combined with limited
mobility of the attacked piece before the
drating will suggest the further
consideration of a sacrifice. Both of
these conditions exist in the above
situation and would allow for the
sacrificial line to be searched even
beyond the 8th move which is not a check

for white.

Plan Oriented Play

Computer chess programs are most
often criticized because of their lack of
using a plan to guide their play. The
program may know to develop its pieces and
castle early, thus playing the opening
fairly well, only to flounder early in the
midgame waiting for something to happen.

Against human opponents the game changes

rapidly enough so that the program must
react to threats and can formulate short
range attacks so the lack of a plan is not

always apparent. When two computers play
each other the probability of stagnation
increases markedly.

Nowhere, however, is the lack of a
plan more critical than in endgame play.

In these cases a winning pawn advantage

can be lost simply because a long range
plan is needed to promote it. Let us
consider some examples of such endgames
and how the heuristic search environment
provides a means of using long range
goals. Our concern here is not the very
difficult problem of suggesting what plans
are worthy of consideration in a given
situation, but the difficulties that occur

when we try to accurately measure the

effectiveness of a given plan.

A board suggested by Berliner is
shown in Board |11. In this case the
white king must simply flank the black
pawn wall to support the advance of the
white pawn at BG. In this case the plan
itself is quite clear, but the manner in
which it musu be carried out is hard for a
computer to find. The problem appears
difficult to a computer program because

the white king must first
the desired position supporting the
advance of the pawn at BG6. We can expect
that most chess heuristics will rate the
moves K-K3 or P-B7 initially better than
the required K-B2. Given this error in

move away from



the heuristic how
heuristic searches

would the minimax and

react?

Berliner

gives a detailed scenario
for the minimax. The move P-B7 will soor
lose the pawn so the rating drops
accordingly. But the rating for the move
K-K3 increases as the king progresses
directly towards its goal. The rating for

K-B2 will be relatively low since the
distance from the Kking and its goal is
widened. At the bottom of the 5~ply

search tree the minimax will compare the
relative closeness of the king to the
passed pawn obtained by K-B2. The choice
is quite clear and the minimax backs up a
descendant of K-K3 not realizing the
futility of the move.

How then can the heuristic search,
operating with the same error prone
heuristic, find the winning move? It
should not be surprising that the
heuristic search can solve the problem
since it has long been used to solve
similar -puzzles such as the 9-puzzle
(Nilsson ). It is just for situations
such as this in which the heuristic search
has been most successful. The search
scenario proceeds as follows.

The moves P-B7 and
undoubtedly be expanded first
their high ratings relative to
fact the move K-B2 would
unexpanded for quite some time until all
other moves demonstrate their lack of
merit. Soon P-B7 will lose the pawn and
be rated below K-B2. However, the
descendants of K-K3 will at first improve
as the Kking progresses. When the Kking
reaches KB4 the king will be forced to
retreat. retreat. This retreat plus the
buildup of g values for these lines will
soon diminish their ratings until the
point that K-B2 is expanded.

K-K3 will
because of
K-B2. In

remain

there was one
and were it not for "getting
hump" of the pawn wall, the
would be easily found by any

In the previous example
obvious plan
over the
solution
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search technique. A similar problem
arises when there are multiple plans that
could apply in a situation and the best
plan requires more moves to become
effective.

Consider the situation in Board 1V.
Here, Black could formulate 2 plans to
exploit his pawn advantage. He could

aggressively attack the weak white pawn at

R2 by moving K-B3. Black could also try
to <create a passed pawn in two ways by
moving either K-Q3 or K-B4. The first two

moves lead to a draw, but thit is not
evident for 6 ply. The 3rd plan wins, but
is not clearly evident for about 15 ply.
Thus a program that searches 5 ply on all
3 lines will be unable to distinguish the
good plan and is likely to draw the
position.

o \\Q
\ |

N

B
7.

\z:

7

When searching with multiple plans in
mind is is not enough to rate by simply
taking the best value obtained by any
plan. This would tend to bias the search
towards the plan that has the most
immediate payoff. This, of course, can
prove to be short sighted, often ignoring
the better plan For example, if we are

required to rate Board |V using only one

value, then we are forced to determine
statically which plan is best. When this
determination is in error, as will often
be the case, the search would be biased
away from investigating the best plan. It
is actually necessary to keep separate
ratings of each plan and either perform
the search sequentially for each plan or
perform it in parallel using the multiple
heuristic values. The former case would
seem prohibitive with regard to time. The
latter case would require backing up
multiple information for each plan. This
would severely hinder the ability to make

alpha-beta cutoffs since the cutoff would

have to occur for all plans. On the other
hand, the heuristic search could simply
continue the expansion of both plans

taking into account the g factors so that
small "humps" to be crossed, and a bias in
d to investigate all plans to the deptl.



necessary to accurately assess their
potential.

Thus, as plan oriented play is
introduced into computer chess, it is
clear that part of its implementation must
be in biasing the search deep enough to
accurately measure the success of the

plan. The search heuristic d is one means
by which this can be carried out.

Impact upon the General Heuristic Search

We have seer the utility of the
search heuristic a* in chess. The use of
this heuristic came about because the most
effective order of expansion differed from
the order determined by the g+fi measure.
That is, some nodes were expanded, not
because of high g+fi ratings, but because
their fi rating could not be accurately
measured. In these cases the search
itself must be used to help accurately
rate the node.

Considerations such as
appear in the literature of
search, although in a
terminology. In applying the heuristic
search to solve the Traveling Salesman
Problem, Pol uses fi with two factors
that are really search heuristics. Both
of these factors tend to more effectively
order the sequence of expansions. Since
they are based on search «criteria (depth
in the tree) and not based on the node
itself, we could label them as part of the
search heuristic d.

this already
the heuristic
different

This
distinguish

us to
relating

relabeding allows
the heuristic factors
to the node itself, fi, and those relating
to the search process 3. Once this is
done we can standardize the definition of
ftobef=g+fi+3 and recognize that
this "biasing of ?" is an important aspect
of the algorithm itself and will be
necessary in many problem domains where
high performance is required.

One spinoff of work
performance chess program has been this
recognition of the need for a separate
search heuristic. There are other
insights to the general technique of
heuristic searches that can be gained from
high performance chess. We use the
formalism of the heuristic search to
abstract the ideas of chess programmers
and, if possible, apply them in other
search domains.

on a high

Berliner's
which he

is
in

An example of this
"Refutation Description",
reduces the search space by passing
information up the tree. It is applied in
chess when a certain line of play thought
to be good, ends in a catastrophe. At
this point details of the catastrophe,
such as the attacker, attack path,
attackee, and flight path are passed back
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up the tree. From this point only moves
that avoid the catastrophe are considered.

If we describe this technique in the
terminology of the heuristic search, we
can try to apply it to other problem
domains. Whenever the heuristic rises
suddenly (gets worse) after the expansion

of a node, then we have detected some sort

of catastrophe; since the path was
considered to be the best we had, or we
wouldn't have been expanding it. If we
can now isolate the reason for this sudden
rise in fi, this information could be used
to reduce the search space.

Hopefully, continued work on high
performance problem solving systems such
as chess will continue to contribute
searching techniques that can be applied

effectively across problem domains.
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