KNOWLEDGE AND REASONING IN PROGRAM SYNTHESIS

Zohar Manna
Applied Mathematics Department
Weizmann Institute of Science
Rehovot, Israel

and

Richard Waldinger
Artificial Intelligence Center
Stanford Research Institute

Menlo Park. California

Abstract

Prograin synthesis is the construction of a
computer program from given specifications. An
automatic program synthesis system must combine
reasoning and programming ability with a good
deal of knowledge about the subject matter of
the program. This ability and knowledge must be
manifested both procedurally (by programs) and
structurally (by choice of representation).

We describe some of the reasoning and pro-
gramming capabilities of a projected synthesis
system. Special attention is paid to the intro-
duction of conditional tests, loops, and Instruc-
tions with side effects in the program being con-

structed. The ability to satisfy several inter-
acting goals simultaneously proves to be import-
ant in many contexts. The modification of an

already existing program to solve a somewhat
different problem has been found to be a powerful
approach.

Some of these techniques have already been
implemented, some are in the course of implementa-
tion, while others seem equivalent to well-known
unsolved problems in artificial Intelligence.

| Introduction

In this paper we describe some of the knowl-
edge and the reasoning ability that a computer
system must have in order to construct computer
programs automatically. We believe that such a
system needs to embody a relatively small class
of reasoning and programming tactics combined
with a great deal of knowledge about the world.
These tactics and this knowledge are expressed

both procedurally (i.e., explicitly in the
description of a problem-solving process) and
structurally (i.e., implicitly in the choice of
representation). We consider the ability to

reason as central to the program synthesis process,

and most of this paper is concerned with the
incorporation of common-sense reasoning techniques

Into a program synthesis system. However, symbolic
reasoning alone will not suffice to synthesize
complex programs; therefore other techniques are
necessary as well, such as

The construction of "almost correct" programs
that must be debugged (cf. Sussman [1973]).

*The modification of an existing program to
perform a somewhat different task (cf. Balzer
[1972]).

4« The use of "visual" representations to reduce
the need for deduction (cf. Bundy [1973]),

We regard program synthesis as a part of
artificial intelligence. Many of the abilities
we require of a program synthesizer, such as the
ability to represent knowledge or to draw common-
sense conclusions from facts, we would also expect
from a natural language understanding system or
a robot problem solver. These general problems
have been under study by researchers for many
years, and we do not expect that they will all be
solved in the near future. However, we still
prefer to address those problems rather than
restrict ourselves to a more limited program
synthesis system without those abilities.

Thus, although implementation of some of the
techniques in this paper has already been com-
pleted, others require further development before
a complete implementation will be possible. We
imagine the knowledge and reasoning tactics of
the system to be expressed in a PLAINER-type
language (Hewitt [1972]); our own implementation
is in the QLISP language (Reboh and Sacerdotl

[1973]). Further details on the implementation
are discussed in Section III-A.

Part Il of the paper gives the basic tech-
niques of reasoning for program synthesis. They

include the formation of conditional tests and
loops, the satisfaction of several simultaneous
goals, and the handling of instructions with
side effects. In Part 11l we give some of the
historical background of automatic program
synthesis, and we compare this work with other
recent efforts.

A longer version of this paper (to appear
in the Artificial Intelligence Journal) will apply
the techniques of Part Il to synthesize two
"pattern matching" programs of some complexity.

11 - Fundamental Reasoning
In this section we will describe some of
the reasoning and programming tactics that are
basic to the operation of our proposed synthe-
sizer. These tactics are not specific to one
particular domain; they apply to any programming
problem. In this class of tactics, we include

the formation of program branches and loops and
the handling of statements with side effects.

A, Specifications and Tactics Language

We must first say something about how pro-

gramming problems are to be specified. In this
discussion we consider only correct and exact
specifications In an artificial language. Thus,

288



we will not discuss input-putput examples (cf.
Green et al. [19743, Hardy [1974]), traces (cf.
Blermann et al. [1973]), or natural language

descriptions as methods for specifying programs;
nor will we consider interactive specification of
programs (cf. Balzer [1972]). Neither are we
limiting ourselves to the first-order predicate
calculus (cf. Kowalski [19743). Instead, we try
to Introduce specification constructs that allow
the natural and intuitive description of program-
ming problems. We therefore include constructs
such as

Find x such that P(x)
and the ellipsis notation, e.g.,

A[13, Af2J, ... , A{n3
Furthermore, we introduce new constructs that are
specific to certain subject domains. For instance,
In the domain of sets we use

[xj P(x)}
for "the set of all x such that P(x)". As we
introduce an example we will describe features
of the language that apply to that example. Since
the specification language is extendible, we can

introduce new constructs at any time.

We use a separate language to express the
system's knowledge and reasoning tactics. In the
paper, these will be expressed in the form of
rules written in English. In our implementation,
the same rules are represented as programs in the
QLISP programming language. When a problem or
goal is presented to the system, the appropriate
rules are summoned by "pattern-directed function
invocation" (Hewitt [19723). In other words, the
form of the goal determines which rules are ap-
plied.

In the following two sections we will use a
single example, the synthesis of the set-theoretic
union program, to illustrate the formation both of
conditionals and of loops. The problem here is
to compute the union of two finite sets, where
sets are represented as lists with no repeated
rifiments.

Given two sets, s and t, we want to express

unjon(s t) = {x|xés or xet}
in a LISP-1ike language. We expect the output
i the synthesized program to be a set itself,
Thus

union{({A B) (B C)) (A B Q).
¥e do not regard the expression [x X€L Or x€t]
itaelf as a proper program: the operator
{ ...} 1s a construct in our specification
language but not in our LISP-like programming
language. We assume that the programming language
does have the following functiong:

head{£) = the first element of the list £,

Thus head{((A B C D))} = A,

tail (L) = the list of all but the first
element of the 1list £.
Thus tail((A B C D)) = (B C D).+
add(x s)= the set consisting of the element x

and the elements of the set s.

Thus add(A (B C D)) (A B CD)

whereas add(B (B C D)) = (B C D).

ig true 1if 3 is the empty list, and
false otherwise.

=

empty (=)

Our task is to transform the specifications for
union into an equivalent algorithm in this pro-
gramming language.

289

We assume the system has some basic knowledge
about esets, such as the following rules:

(1) x € 8 15 false if empty(s).

(2) s is equal to add(head(s) tail(s))
if ~empty(s)

(3) x ¢ madd(m t) is eguivalent to (x = =
or x-E*t)‘

(4) {xlx (4 a} is equal to 8.

(5) {x{x=a or Q(x)} is equal to

add(a{x|Q() ]
We BlsSo assume that the system knows 8 considerable
amount of propositional logic, which we will not
mention expliicitly.

Before proceeding with our example we must
discuss the formation of conditional expressions.
B.

Formation of Conditional Expressions

In addition to the above constructs, we
assume that our programming language contains
conditional expressions of the form

(if p then q else r) r if p is false

q otherwise.

is a technique for

-

The conditional expression
dealing with uncertainty. In constructing a
program, we want to know if condition p is true
or not, but in fact p may be true on some
occasions and false on others, depending on
value of the argument. The human programmer
faced with this problem is likely to resort to
"hypothetical reasoning”": he will assume p is
false and write a program r that solves his problem

the

in that case; then he will assume p la true and
write a program g that works in that case; he
will then put the two programs together into a

single program
(if p then q else r).
Conceptually he has solved his problem by splitting

his world into two worlds: the case in which p is
true and the case in which p Is false. In each
of these worlds, uncertainty is reduced. Note

that we must be careful
which we are splitting the world is computable

in our programming language; otherwise, the
conditional expression we construct also will not
be computable (cf. Luckham and Buchanan [1974])

that the condition p on

We can now proceed with the synthesis of the
union function. Our specifications were

union(s t) = {x|x € s or x e tj.
We begin to transform these specifications using

our rules. Rule (1) applies to the subexpression
X e S, generating a subgoal, empty(s). We cannot
prove s in empty - this depends on the Input -

and therefore this is an occasion for a hypo-

thetical world split. (We know that empty(s) is
a computable condition because empty is a primi-
tive in our language.) In the case in which s is
empty, the expression

tx X€sBorxe€t)
therefore reduces to

[x! false or x € t},
or, by propositional logic,

{xrx L4 t].
Now rule (4) reduces this to t, which is one of
the inputs to our program and therefore is itself

¢Since sets are represented as lists, head
and tall may be applied to sets as well as lists
Their value then depends on our actual choice of

representation.



an acceptable program segment in our language -

In the other world—the case in which s is
not empty—we cannot solve the problem without
resorting to the recursive loop formation
mechanism, which is the subject of the next
section. However, we know at this point that the
program will have the form

union{s t) = 11 empty(s)

then t
else

where the else clause will be whatever program seg-
ment we construct for the case in which s is not
empty.

C. Formation of Loops

The term
recursion;
discuss

"loop" includes both iteration and
however, in this paper we will only
recursive loops (cf. Manna and Waldlnger
[1971]). Intuitively, we form a recursive call
when, in the course of working on our problem, we
generate a subgoal that is identical in form to
our top-level goal. For instance, suppose our
top-level goal is to construct the program
reverse(l), that reverses the elements of the list
| (e.g., reverse(A (B C) D) = (D (B C) A)). If
in the course of constructing this program we
generate the subgoal of reversing the elements of
the list tall(t), we can use the program we are
constructing to satisfy this subgoal. In other
words we can Introduce a recursive call

reverse(t*il(J&)) to solve the subsidiary problem. We

must always check that a recursive call doesn't
lead to an Infinite recursion. No such infinite
loop can occur here because the Input tall(l) is

"shorter" than the original input /.

ket use see how this technigue applies to our
union example. Continuing where we left off in
the discussion of conditionals, we attempt to
expand the expression
X|{x € 8 or x E t}
in the case in which s is not empty.
(2) to the subexpression s,
expressjon to
x1x € add(head(s) tail(s)) or x ¢ t].
This is transformed by rule (3) into
fxlx = head(s) or x € tail{(s) or x ¢ tl.
Using rule (5) thig reduces to
add(head(s) {x Tx € tall(s) or x ¢ t]).
1f we observe that
{x'x t tall(s) or » € t]
is5 an instance of the top-level subgoal,
reduce 1t to
union(teil{s) t).

Applying rule
we Ccan expand our

we CAD

Again, this recursive cull lesads to no infinite
loops, mince tail(s) 18 shorter thsan 8. Our
completed union program is now
union(s t) = if empty(sa)
then t
else sdd(hesd(s) union{(tailis)
t)).

As presented In this section, the
technique can only be applied
generated that is a special
goal. We shall see in the next section how this
restriction can be relaxed.

l) Generalization of Specifications

loop formation
If a subgoal is
case of the top-level

When proving a theorem by mathematical in-
duction, it is often necessary to strengthen the

290

theorem in order for the induction to "go
through." Even though we have an apparently
more difficult theorem to prove, the proof is
facilitated because we have a stronger Induction
hypothesis. For example, in proving theorems
about LISP programs, the theorem prover of Boyer

and Moore [1973] often automatically generalizes
the statement of the theorem In the course of a
proof by induction.

A similar phenomenon occurs in
of a recursive program. It
to strengthen the specifications of a program in
order for that program to be useful in recursive
calls. We believe that this ability to strengthen
specifications is an essential part of the syn-
thesis process, as many of our examples will show.

the synthesis
Is often necessary

For sxample, suppose we want to construct a
program to reverse a list. A good recursive
program 1is

reverse({) = revii ())

where
££X(t m) = {f emptx(l)
then m
else rev(teil (L)head (L) 'm).
Here

{) 15 the empty list
x‘L 18 the list formed by inserting x
before the first element of the
list £ (e.g., A- (B C D) =
(A BCD)).
Note that rev(f{ m) reverses the list L and appends
it onto the list m, e.g.,
rev(({A BC) (DE)) = (CBADE).
This is a good way to compute reverse:
very primitive LISP functions and its
is such that

It uses
recursion
It can be compiled without use of
a Btack. However, wrlting such a program entalia
writing the function rev, which is apparently
more general and difficult to compute than
reverse Itself, since it must reverse Its first
argument as a subtask. The synthesis of this
reverse function involves generalizing the
original specifications of reverse into the
specifications of rev.

Tne averse function

level goal be generalized
lower level goal. Another way to strengthen the
specifications is to propose additional require-
ments for the program being constructed. For
Instance, suppose In the course of the synthesis
of a function f(x), we generate a subgoal of the
form P(f(a)), where f(a) Is a particular recursive
call. Instead of proving P(f(a», it may be

easier to strengthen the specifications for f(x)
so as to also satisfy P(f(x)) for all x. This
step may require that we actually modify portions
of the program f that have already been synthe-
sized in order to satisfy the new specification

P. The recursive call to the modified program
will then be sure to satisfy P(f(a)). This pro-
cess is illustrated in more detail during the
synthesis of the pattern matcher in the full
sion of this paper.

requires that the top-
in order to match the

ver-

The same recursion-introduction mechanism
has been found Independently by Burstall and
Darlington (1975).



E. Conjunctive Goals

The problem of solving conjunctive goals |Is
the problem of synthesizing a program that satis-
fies several constraints simultaneously. The
general form for this problem is

Find z such that P(z) and Q(z)

The conjunctive goals problem is difficult
because, even if we have methods for solving the
goa lIs

Find z such that P(z)
and

Find z such that Q(z)
independently, the two solutions may not merge
together nicely into a single solution. Moreover,

there seems to be no way of solving
goal problem in general; a method that works on
one such problem may be irrelevant to another.

We will illustrate one instance of the con-
junctive goals problem: the solution of two
simultaneous linear equations. Although this
problem is not itself a program synthesis problem,
1t could be rephrased as a synthesis problem.
Moreover the difficulties involved and the tech-
nique to be applied extend also to many real

synthesis problems, such as the pattern-matcher

synthesis of the full paper. Suppose our problem
is the following:
Find ‘Czl. zz'f" such that
221 = zz + 1 and
2 = + 2.
2.2 z
Suppose further that although we can solve single

linear equations with ease, we have no built-in
package for solving sets of equations simul-
taneously. We may try first to find a solution

to each equation separately. Solving the first
equation, we might come up with

<:zl' zz'}* = (].]‘}.
whereas solving the second equation might give

<z , z > = <2 2>,
1 2

There is no way of combining these two solutions.
Furthermore, it doesn't help matters to reverse
the order in which we approach the two subgoals.
Whet is necessary is to make the solution of the
first goal as general as possible, so that some
special case of the solution might satisfy the
second goal as well. For instance, a "general"
solution to the first equation might be

<1l + w, 1 + 2w> for any w.
This solution is a generalization of our earlier
solution <1,1>., The problem Is how to find a
special case of the general solution that also
solves the second equation. In other words, we
must find a w such that

2¢() + 2w) = (1 + w) + 2
This strategy leads us to a solution.

Of course the method of generalization does

not apply to al1 conjunctive goal problems For
instance, the synthesis of an integer square-
root program has specifications

Find z such that
z is an integer and

(.

z2 x and

(z + 112 s
where x 2 0.

the conjunctive

291

solution
into the

The above approach of finding a genera1
to one of the condJdunets and plugging it
others is not effective in this case.

F. Side Effects

Up to now we have been considering programs
[.ISP-like language: these programs return n
effect no change in any data sirueture.
In the next two sections we wi11 consider the
synthesis of programs with "side effects" that
modify the state of the world.

in a
value but

may

sort
value
X),

For instance, a LISP-like program to
two variables x and y would return as its
a list of two numbers, either (x y) or (y
without altering the contents of x and vy. On
the other hand, a program with side effects to

sort x and y might change the contents of x and vy.

a program with side
we provide a speci-

In order to Indicate that
effects is to be constructed,
fication of form

Achieve P.

This construct means that
changed so as to make P true.
specify a program

Achieve x

is to be
instance,

the world

For 1f we

y,

we intend that the program actually change the
value of x or y, say by an assignment statement.
However, if we specify

Find x such that x Y,

the program constructed would return the value of

y, but would not change the value of x or y.
Many of the techniques we used In the syn-
thesis of IJSP-like programs also apply to the
construction of programs with side effects. In
particular, we can use pattern-directed function
invocation to retrieve tactical knowledge. The

synthesis of the program In the following example
has the same flavor as our earlier union example,
but Involves the introduction of side effects.

The program sort(x y) to be constructed is to
sort the values of two variables x and vy For sim-
plicity we will use the statement interchange(x Yy)
to exchange the values of x and y, Instead
of the wusual sequence of assignment statements.
Our specification will be simply

Achieve x & y.
Strictly speaking, we should Include
fication the additional requirement that the set
of values of x and y after the sort should be
the same as before the sort. However, we will
consider such compound goals until section H, and
we can achieve the same effect by reouiring that
the interchange statement be the only instruction
with side effects that appears in the program

in the speci-

not

is to see
theorem,
a pro-

In achieving a goal
is already true. (If a goal is a
instance, we do not need to construct
to achieve it.) We cannot prove xty, but we
it as a basis for a hypothetical world
This split corresponds to a conditional
expression in the program being constructed. In
flowchart notation the conditional expression s
written as a program branch:

The first step
if
for
gram
can use
split.

it



At point 2 our goal is already achieved. At

point 3 we know that ~(x3y), t.e., x>y. To
achieve x<y, it suffices to establish x<y, but
this may be achieved by executing interchange(x V)

Thus we have x<y in both worlds, and the
final program is therefore:

interchange (x vy}

gt

This example introduced no difficulties that
our LISP-like program synthesis techniques could
not handle. However, in genersl, programs with
side effects muat be given special treatment
because of the necessity for representing changes
in the world. It is important to be able to
determine whether s given assertion 1is always
true at a given point {in a program. To this end
we study the relationship between aseertions and
program constructs in the next section.

C. Assertions and PrgEysm Constructs

Suppose a program contains an assignment

statement 1 i

X + Y

31
and we wish to determine if x<3 at point 2. In
order to do this it suffices to check if what we
know at point 1 implies that y<3. In general, to

determine an assertion of form P(x) at point 2,
check P(y) at point 1. We will say that the
assertion P(y) is the result of "passing back" the
assertion P(x) from point 2 to point 1. (This is
precisely the process outlined by Floyd [1967]

and Hoare [1969] - see also Manna [1974] - in
references to program verification.)

Furthermore, if our program contains the

instruction
i1

interchange {x vy)

292

and we wish to establish x<y at point we must check
if ysx at point 1. In general, an assertion of
form P{(x y) results in an sssertion of form

P{y x) when passed back over interchange(x y).

Suppose the program being constructed contains
a branch

To determine 1f an assertion Q is true at point 2,
it suffices to check whether

Q ir P
(i.e., PO Q) 1s true at point !, In order to
determine if R i3 true at point 3, it suffices
to check whether

R if ..P
(it.e., P 2 R) is true at point 1.

Suppose two control paths join in the program
being congtructed.

3

Thus to aqetermine il assertion P is true gt point
3, it is sufficient to check that P be true at
both point 1 and point 2.

Assertions may be passed back over complex
programs. For instance, let us pass the assertion
y<2 back over the program sort{x y) which we
constructed in the previous section.

y RN zift x Sy
x &z if ~{x < vy}

F

—_—— a2

Yy %2 —— —* 2 interchange (x y)

4 — — y g2

5 I A ;

By comhining the methods that we have jusrt
introduced for passing assertions back over pro-
gram constructs, we can see that in order to
entablish y>z at point 5, 1t is necessary to
check that {(y<z 1f x*y) and (x<z if ~(x“y)) are
true at point 1.

Often the specification of a program will
require the simultaneous satisfaction of more than
one goal. As in the case of conjunctive goals in
MSP-like programs, the special interest of this
problem lies in the inter-relatedness of the
goals. The techniques of this section will now be
applied to handle the interaction between goals.



H. Simultaneous Goals

A simultaneous goal problem has the form
Achieve P and Q.
Sometimes P and Q will be independent conditions, so
that we can achieve P and Q simply by achieving
P and then achieving Q. For example, if our goal
is
Achieve x = 2 and y = 3,
the two goals x=2 and y=3 are completely independent
In this section, however, we will be concerned
with the more complex case in which P and Q inter-
act .. In such a case we may make P false in the
course of achieving Q.

Consider for example the problem of sorting
three variables x,y, and z. We will assume
that the only instruction we can use is the sub-
routine sort(u v), described in the previous
section, which sorts two variables. Our goal is
then

Achieve x<y and y<z
We know that the program sort(u v) will achieve a
goal of form u' v. If we apply the straightforward
technique of achieving the conjunct x<y first, and
then the conjunct y<z, we obtain the program

sort(x y)

sd;?(y z)

However, this program has a bug in that sorting vy
and z may disrupt the relation x<y: if z is
initially the smallest of the three, in inter-
changing y and z we make y less than x. Reversing

the order
useless in

in which the conjuncts are achieved is
this case.

There are a number of ways in which this prob-
lem may be resolved. One of them involves the
notion of program modification, (cf. Sussman
[1973]) The general strategy is as follows: to
achieve P and Q simultaneously, first write a
program to achieve P; then modify that program
to achieve Q as well. The essence of this strategy,
then, lies in a technique of program modification.

Let us see how this stretegy applies to the
simple sort problem. The specification 1is

Achieve x>y and y<z.
It 18 easy to achieve x>y, the program sort(x y)
will do that immediately. We must now modify the
program sort(x y) to achieve y<z without disturbing
the reletion xy we have just achieved. In other
words, we would like to "protect” the relation
X“y. We have seen that simply achieving v<z after
achieving x“y 1s impossible without disturbing the
protected relation. Therefore we will pass the goal
y’z back to the beginning of the program sort(x y)
and try to achieve it there, where there are no
protected relations.

we have seen in the previous section that the
goal y=z passed back before the program sort(x y)
results in two goals :
(1) ysSz 1f xsy
and
(11) x<z 1f ~{xsy).
Both of these goals must be achieved before applying

sort(x y). We can achieve (1) by applying
sort(y z). (This will achieve ySz whether or not
x*y.) Our program so far is thus

293

sort (y 2)
21
sort {x vy)
1
We still need to achieve goal (ii) at point 2;
we can achieve this goal simply by inserting the
instruction sort(x z) at that point. This in-

sertion is seen not to violate any protected
relation. Our final program is thus

sort(y 2)

sort(x z)

sort{x y)

If the subgoals are pursued in a different order,
different variations on this program are obtained

The program modification strategy seems to

be a fairly general approach to the simultaneous
goal problem. It also is a powerful program
synthesis technique in general. An expanded

treatment of this strategy is contained in

Waldinger [1975].

This concludes the presentation of our basic
program synthesis techniques. In the longer
version of this paper we show how these same
techniques work together in the synthesis of some
more complex examples.

[11. DISCUSSION

A. Implementation

Implementation of the
in this paper is underway. Some of them have
already been implemented. Others will require
further development before an implementation will
be possible.

techniques presented

We imagine the rules, used to represent
reasoning tactics, to be expressed as programs in
a PLANNER-type language. Our own implementation
is in QLISP (Reboh and Sacerdoti [1973]). Rules
are summoned by pattern-directed function invo-
cation .

World-splitting has been implemented using
the context mechanism of QLISP, which was intro-
duced in QA4 (Rulifson et al [1972]). The
control-structure necessary for the hypothetical
worlds, which involves an actual splitting of
the control path as well as the assertlonal data
base, is expressed using the multiple environments
(Bobrow and Wegbreit [1973]) of INTERLISP
(Teltelman [1974]) Although the world-splitting
has been implemented, we have yet to experiment
with the various strategies for controlling it.

The existing system is capable of producing
simple programs such as the union function, the
program to sort three variables from Part I, or



the loop-free segments of the pattern-matcher from
the full version of this paper.

The generalization of specifications
(Sections II-D) is a difficult technique to
apply without its going astray. We will develop
heuristics to regulate it in the course of the
implementation. Similarly, our approach to con-

junctive goals (Section 11-E) needs further

explication.

B. Historical Context and Contemporary Research

Early work in program synthesis (e.g. Simon
[1963], Green [1969], Waldinger and Lee[1969]).
was limited by the problem-solving capabilities
of the respective formalisms involved (the General
Problem Solver in the case of Simon, resolution
theorem proving in the case of the others). Our
paper on loop formation (Manna and Waldinger
was set in a theorem-proving framework, and paid
little attention to the implementation problems.

It is typical of contemporary program syn-
thesis work not to attempt to restrict itself
to a formalism; systems are more likely to write
programs the way a human programmer would write

them. For example, the recent work of Sussman
[1973] is modelled after the debugging process.
Rather than trying to produce a correct program
at once, Sussman's system rashly goes ahead and
writes incorrect programs which it then proceeds
to debug. The work reported in Green et al.
[1974] attempts to model a very experienced
programmer, relying on knowledge more than reason-

ing in producing a program.

The work
more heavily than

reported here emphasizes reasoning
the papers of Sussman and Green.
For instance, in our synthesis of the pattern-
matcher we assume no knowledge about pattern-
matching itself. Of course we do assume extensive
knowledge of lists, substitutions, and other
aspects of the subject domain.

Although Sussman's debugging approach has
influenced our treatment of program modification
and the handling of simultaneous goals, we tend
to rely more on logical methods than Sussman.
Furthermore, Sussman deals only with programs that
manipulate blocks on a table; therefore he has not
been forced to deal with problems that are more
crucial in conventional programming, such as the

formation of conditionals and loops.

The work of Buchanan and Luckham [1974] (see
also Luckham and Buchanan [19741) is <closest to
ours in the problems it addresses. However, there
are differences in detail between our approach and
theirs:

The Buchanan-Luckham specification language
is first-order predicate calculus; ours allows a
variety of other notations. Their method of
forming conditionals involves an auxiliary stack;
ours uses contexts and the Bobrow-Wegbrelt control

structures. In the Buchanan-Luckham system the
loops in the program are iterative, and are
specified in advance by the user as "iterative
rules, whereas in our system the (recursive)
loops are introduced by the system itself when it
recognises a relationship between the top-level
goal and a subgoal- The treatment of programs with

11971])

side effects
Buchanan-Luckham system,

is also quite different in the
in which a model of the

world is maintained and updated, and assertions
are removed when they are found to contradict

other assertions in the model. Our use of con-
texts allows the system to recall past states of

the world and avoids the
ining when a model is inconsistent. It

tricky problem of determ-
should be

added that the implementation of the Buchanan-
Luckham system is considerably more advanced than
ours.
C. Conclusions and Future Work

We hope we have managed to convey in this
paper the promise of program synthesis, without
giving the false impression that automatic syn-
thesis is likely to be immidately practical. A
computer system that can replace the human pro-
grammer will very likely be able to pass the rest
of the Turing test as well.

Some of the approaches to program synthesis
that we feel will be most fruitful in the future
have been given little emphasis in this paper
because they are not yet fully developed. For

example, the technique of program modification,
which occupied only one small part of the current
paper, we feel to be central to future program
synthesis work The retention of previously con-
structed programs is a powerful way to acquire
and store knowledge Furthermore program optimi-
zation (cf. Darlington and Burstall [1973]) and

program debugging are just special cases of pro-
gram modification
Another technique that we believe will be

valuable is the use of more visual or graphic-
representations, that convey more of the properties
of the object being discussed in a single structure.
A mathematician will often informally use a diagram
instead of a symbolic representation to help him-
self find a proof. The theorem-proving systems of
Gelernter [1963] (in geometry) and Bundy [1973]

(in algebra), for example, use diagram-like nota-
tions to facilitate proofs. We suspect that pro-
gram synthesis would also benefit from such nota-
tions .

Acknowledgements

We wish to thank Robert
Dershowitz, Bertram Raphael,
for giving detailed critical
script. We would also like to thank Peter Deutsch,
Richard Fikes, Akira Fusaoka, Cordell Green and
his students, Irene Greif, Carl Hewitt, Shmuel
Katz, David Luckham, Earl Sacerdoti, and Ben
Wegbrelt for conversations that aided in formulating
the ideas in this paper. The set-theoretic
expression handler is based on the work of Jan
Derksen. We would also like to thank Linda Katuna,
Claire Collins and Hanna Zies for typing many ver-

Boyer, Nachum
and Georgia Sutherland
readings of the manu-

sions of this manuscript.
This research was primarily sponsored by the
National Science Foundation under grants GJ-36146

and GK-35493.

294



References

Balzer, R.M. "Automatic Programming," Instltute
Technical Memo, University of Southern
California/ln formation Sciences Institute,
Los Angeles, California, (September 1972).

Biermann, A.W., R. Baum, R. Krishnaswamy and
F.E. Petry, "Automatic Program Synthesis
Reports," Computer and Information Sciences
Technical Report TR-73-6, Ohio State
University, Columbus, Ohio (October 1973).

Bobrow, D.G. and B. Wegbreit, "A Model for Control
Structures for Artificial |Intelligence
Programming Languages," Adv. Papers 3d. Intl.
Conf, of Artificial Intelligence, Stanford
University, Stanford, California, 246-253,
(August 1973).

Boyer, R.S. and J S Moore, "Proving Theorems
about LISP Functions," Adv. Papers 3d. Intl.
Conf. on Artificial Intelligence, Stanford
University, Stanford, California, 486-493,
(August 1973).

Buchanan, JR. and D.C. Luckham, "On Automating
the Construction of Programs," Memo, Stanford
Artificial |Intelligence Project, Stanford,
California, (March 1974).

Bundy, A., "Doing Arithmetic with Diagrams," Adv.
Papers 3d. Intl. Conf. on Artificial Intelli-
gence, Stanford University, Stanford, Califor-
nia, (August 1973), 130-138.

Burstall, R.M. and J. Darlington, "Some Trans-
formations for Developing Recursive Programs,"

Conference on
California,

International
Los Angeles,

Proceedings
Reliable Software,

482-492, (April 1975)

Darlington, J. and R.M. Burstall, "A System
which Automatically Improves Programs,"
Adv. Papers 3d. Intl. Conf. on Artificial
Intelligence, Stanford University, Stanford,
California, 479-485, (August 1973).

Floyd, R.W.,
Proc. of a Symposium
Vol. 19, (J. T. Schwartz,

19-32, (1967).

"Assigning Meanings to Programs,:
In Applied Mathematics,
ed.); Am. Math. Soc.,

"Realization of a Geometry-Theorem
in Computers and Thought,

Gelemter, H.,
Proving Machine,"

McGraw-Hill, 134-152, (1963).

Green, C.C., "Application of Theorem Proving to
Problem Solving," Proc. Intl. Joint Conf. on
Artificial Intelligence, Washington, D.C,
219-239, (May 1969).

Green, C.C., R. J. Waldinger, DR. Barstow, R.
Elschlager, D.B. Lenat, B.P. McCune, D.E. Shaw,
and L.lI. Steinberg, "Progress Report on
Program-Understanding Systems," Memo, Stanford
Artificial Intelligence Project, Stanford,
California, (August 1974).

Hardy, S , "Automatic Induction of LISP Functions,
AISB Summer Conf., Univ. of Sussex, Brighton,
England, 50-62, (July 1974).

295

Hewitt, C., "Description and Theoretical Analysis
(Using Schemata) of PIANNER: A Language lor
Proving Theorems and Manipulating Models in a
Robot," Al Memo No. 251, Project MAC, M.I.T.,
Cambridge, Massachusetts (April 1972).

Hoare, C.A.R., "An Axiomatic Basis for Computer
Programming," C. ACM, Vol. 12, No. 10, 576-580,
583, (October 1969).

Kowalskl, R., "Logic for Problem Solving," Memo
No. 75, Department of Computational Logic,

University of Edinburgh, Edinburgh.

Luckham, D. and J.R, Buchanan, "Automatic Genera-
tion of Programs Containing Conditional State-
ments," Memo, Stanford Artificial Intelligence
Project, Stanford, California, (March 1974).

Manna, Z,, Mathematical Theory of Computation,
McGraw-Hill, (1974).

Manna, Z. and R. Waldinger, "Toward Automatic
Program Synthesis," Comm. ACM, Vol. 14, No. 3,
151-165, (March 1971).

McCarthy, J., "Towards a Mathematical Science of
Computation," Proc. |FIP Congress 62, North
Holland, Amsterdam, 21-28, (1962).

Reboh, R. and E. Sacerdoti, "A Preliminary QLISP
Manual," Tech. Note 81, Artificial Intelligence
Center, Stanford Research Institute, Menlo
Park, California (August 1973).

Robinson, J.A., "A Machine-Oriented Logic Based
on the Resolution Principle,"” J. ACM, Vol. 12,
No. 1, 23-41 (January 1965).

Rulifson, J.F., J.A. Derksen, and R.J. Waldinger,
"QA4: A Procedural Calculus for Intuitive
Reasoning," Tech. Note 73, Artificial
Intelligence Group, Stanford Research Institute,
Menlo Park, California, (november 1972).

Simon, H.A., "Experiments with a Heuristic Computer,"
J. ACM, Vol. 10, No. 4, 493-506, (October 1963).

Sussman, G.J., "A Computational Model of SKkill
Acquisition," Ph.D. Thesis, Artificial
Intelligence Laboratory, M.I.T , Cambridge,
Massachusetts, (August 1973).

Teitelman, W., INTERLISP Reference Manual, Xerox,
Palo Alto, California, (1974).

Waldinger, R.J., and R.C.T. Lee, "PROW: A Step
Toward Automatic Program Writing," Proc. Intl
Joint Conf. on Artificial Intelligence,
Washington, D.C, 241-252, (May 1969).

Waldinger, R.J., "Achieving Several Goals Simul-

taneously," Technical Note, Artificial
Intelligence Center, Stanford Research
Institute, Menlo Park, California (to appear).



