
INFERRING LISP PROCRAMS FROM EXAMPLES

A p r o g r a m is described which infers certain recursive LISP

p rog rams f r o m single example input-output pairs Synthesized

p r o g r a m s may recur in more than one argument, and may involve

the synthesis of a u x i l i a r y functions An actual user session with

the p r o g r a m , called E X A M P L E , is presented, and the operation

of the p r o g r a m and its important heuristics are outlined.

ACKNOWLEDGEMENTS

T h e authors wish to thank Richard Waldinger and Doug Lenat

f o r the f ru i t s of several valuable discussions held early in the

course of this work We are also grateful for the editorial

assistance of A v r a C o h n , which made possible the preparation of

th i s d ra f t T h i s research was supported m part by the Advanced

Research Projects Agency under contract D A H C 15-73-C-CM35

and in part by the State of Cal i forn ia through a Cal i fornia State

G r a d u a t e Fel lowship

SECTION I - INTRODUCTION

A common aspect of many defini t ions of automatic programming

is the goal of fac i l i ta t ing program specification In this paper, we

consider the specif ication of programs by examples. To describe a

pa r t i cu la r p rogram by example, the user supplies only a sample

i n p u t and output T h e computer then infers a plausible

cand ida te p rogram

T h e induc t i ve inference of programs from input-output examples

has also been explored by Lickl ider [1973] and Hardy [1974]

M o r e general ly, this inference task is related to the problems of

p r o g r a m inference f rom traces [Biermann. 1973] and grammatical

in ference [Fe ldman, Crps. Horn ing and Reder, 1969, Horning,

1969; B ie rmann and Feldman. 1972, Blum and Blum, 1973]

T h i s paper describes a program, called E X A M P L E , that infers

recurs ive L I S P funct ions f rom single input-output pairs. Given

E X A M P L E is able to infer a class of functions which perform

cer ta in l ist-to list transformations. In particular, each recursive

f u n c t i o n in this class steps through the input list f rom left to r ight,

p r o d u c i n g part of the output at each step Consider, for example,

the pa i r

T h e ou tpu t is produced in three steps A recursive subfunction

produces the sublists I, 2, and 3 in successive steps and the main

f u n c t i o n appends them together

Let us br ie f l y out l ine the way this function is synthesized First.

E X A M P L E determines which part of the output is produced in

the f i rs t step of recursion In the above example, sublist I is

p roduced in the the first step It is assumed that this subhst is

p roduced by a subfunction E X A M P L E thus attempts to

synthesize the subfunct ion, generating a new input-output

spec i f i ca t ion wh ich describes this subgoal The arguments A and

(B C D) are chosen as input T h e subfunction specified by

may now be synthesized by call ing the E X A M P L E program

recurs ive ly Return ing to the synthesis of the main funct ion, we

f i n d three remain ing steps 1) The recursive call of the mam

f u n c t i o n is f o i m r d , 2) the resulting code is embedded in either a

C O N S or A P P E N D expression so as to properly conjoin the

o u t p u t f r o m each recursive step, and 3) terminating conditions are

selected

We w i l l say that an output has been realized when a function has

been synthesized which satisfies the given input-output

spec i f icat ion Unfo i tunate ly , not all syntheses which simply

real ize the output wi l l be found acceptable to the user To see

w h y . we consider a t r i v i a l synthesis scheme which can realize any

o u t p u t by break ing the input arguments down into their

c o n s t i t u e n t atoms and recombining these atoms mechanically to

f o r m the desired output

U s i n g this scheme, the funct ion specified by

may be synthesized t r iv ia l ly as

260

A B S T R A C T

Dav id E Shaw

W i l l i a m R. Swartout

C. Cordel l Green

A r t i f i c i a l In te l l igence Laboratory
Depa r tmen t of Compute r Science

S tan fo rd Un ivers i ty
S tan fo rd , Ca l i f o rn i a

T h e user probab ly intended, though, to specify a function which

f i n d s al l combinat ions of two elements f rom an input list of any

l eng th . T h e above synthesis is implausible since it performs this

f u n c t i o n only for lists of four elements As we wi l l see,

E X A M P L E formulates subgoals in a manner which guards

against impld i tMble synthesis of this sort.

A discussion of the types of synthesis tasks for which example

spec i f icat ion is appropr iate, of the problems associated with

spec i f ica t ion by example, and of the relationship between this and

o the r methods of program specification appears in Green, et

al.[197-11

S E C T I O N 2 - A N A C T U A L SESSION

Let us now examine an actual session in which the E X A M P L E

p r o g r a m synthesizes several user-specified LISP functions.

M a t e r i a l typed by the user appears in lower case and is preceded

by an asterisk (*). Responses by E X A M P L E are in upper case,

w h i l e our comments appear in italics. T h e session begins when

the user types "exampleO" to init iate the specification process.

261

A n u m b e r of other input-output pairs are included in the

a p p e n d i x , along w i th the corresponding programs synthesized by

E X A M P L E It should be noted that E X A M P L E can not

synthesize funct ions invo lv ing counting operations or numerical

compar isons (a funct ion that sorts a list of integers by value, for

examp le) Fur ther , all terminat ion checks are nul l tests which can

r e t u r n on ly the value N I L . Thus , for example, the function

w h i c h re turns the last element of a list,

(A B C D> -» D

can not be synthesized, since an equality test and the ability to

r e t u r n a n o n - N I L atom would be required. A function which

f i n d s the f i rs t ha!j of a list, which might be specified by

also fa l ls outside the class of functions synthesized by example.

We have t r ied only to convey a feeling for some of the programs

s t i l l beyond the reach of E X A M P L E A more precise

charac ter iza t ion of the class of functions attacked by the current

p r o g r a m is f ound in sections 4.2 and 4.3.

S E C T I O N 3 - H O W I T W O R K S : A N O V E R V I E W

T h e p r o g r a m f irst determines whether a simple nonrecursive

rea l i za t ion of the target output is possible The programming

constructs avai lab le for nonrecursive synthesis wi l l be described in

section 4.1.

If the ou tpu t can not be realized using available nonrecursive

constructs, a synthesis i nvo l v ing recursive constructs is attempted.

T h e recursive L I S P functions synthesized by E X A M P L E produce

some par t of the output du r ing the or ig inal top-level evaluation

a n d the remainder du r i ng subsequent recursive calls. Considering

t he speci f icat ion

f o r example , we see that the in i t ia l value segment

Is p roduced d u r i n g the first recursive step, while the remainder of

the ou tpu t .

B B B C C C)

is p roduced by subsequent recursive calls We wi l l refer to the

i n i t i a l l y produced output segment as the head of the output. T h e

r e m a i n i n g segment wi l l be called the recurrate

A f t e r the d i v i d i n g point between head and recurrate is found,

E X A M P L E attempts to synthesize the code that produces the

head in the same way it attempted the original (user-specified)

goa l . T h i s subgoal is again specified wi th an input-output pair,

w i t h the head appear ing as the output:

(W e ignore for now the question of specifying the input part of

the head real izat ion subgoal)

In o rde r to d is t inguish the head f rom the recurrate, E X A M P L E

d i v i d e s the output into equal-length groups of adjacent elements

By way of i l lus t rat ion, we consider a simple variant of C O M B 2 :

E X A M P L E div ides the output into groups of two elements, as

ind ica ted above

Successive groups are then compared using a template-matching

p rocedure T h i s procedure searches for the first major group

w h i c h is substant ial ly d i f ferent in some way from its predecessors,

con jec tu r i ng a head-recurrate separation just before this change

C o m p a r i n g successive groups, E X A M P L E discovers a major

change aftei the th i rd group, and postulates the fol lowing

separat ion

In the case of some input-output pairs, the serial comparison

p rocedure must in fact proceed backward through the output list

s t ructure. S imple heuristics are used to select a scanning direction

fo r the ou tpu t T h i s direction determination is used in several

later stages of synthesis T h e procedures for grouping, matching,

a n d detet m i n i n g scanning direction are discussed in section 4.3.

E X A M P L E is now able to reduce the synthesis task to several

s imp le r subgoals T h e head and recurrate must each be realized,

and the result ing blocks of code combined in an appropriate way.

a long w i t h code for terminat ing conditions In order to specify

the head-trealization subgoal in input-output form, a new set of

i n p u t arguments must be formulated Arguments used in

spec i fy ing the subtask must again be carefully chosen to avoid the

poss ib i l i t y of implausible synthesis. Sti l l , some of the arguments

w h i c h f o r m the inpu t of the parent goal may be broken down in

spec i fy ing inpu t for the subgoal. For example, the ini t ia l goal of

rea l i z i ng

(A B A C A D B C B D C D) from (A B C D)

spawns the subgoal of realizing

T h e heurist ics used to break down parent input arguments are

discussed in section 4 4

262

O n c e new arguments have been generated, E X A M P L E attacks

t he head-rea l izat ion subtask exactly as it d id the original problem.

If head real izat ion itself requires a recursive synthesis, of course, a

separate a u x i l i a r y Junction must be synthesized In this case, a

cal l to the a u x i l i a r y funct ion (wi th appropriate arguments)

appears as the head realization code

T h e prob lems of recurrate realization are different E X A M P L E

synthesizes only recursive calls whose arguments are the tails

(C D R , C D D R , etc.) o f the or ig inal lambda-varubles. The

n u m b e r of C D R s w i t h i n which the or ig inal arguments are

embedded is postulated using certain clues invo lv ing the

p r o p a g a t i o n of argument elements to the recurrate.

If the head and recurrate are successfully realized, they are

con jo i ned using either C O N S or A P P E N D If the original

o u t p u t was interpreted in the forward direction, the head

rea l iza t ion appears as the first argument of the joining function,

w h i l e in the case of backward scanning, the recurrate realization

appears f irst T h e resulting body of code is embedded in a

C O N D i t i o n a l statement, fo l lowing a set of termination checks.

Each te rm ina i i un fo rm involves a null-check on some tail of a

cu r ren t argument , w i th the value N I L returned if the result is

pos i t i ve

S E C T I O N 4 H O W I T W O R K S : T H E W H O L E S T O R Y

4 1 N O N R E C U R S 1 V E S Y N T H E S I S

In the current version of E X A M P L E , nonrecursive synthesis is

a l lowed only if the output can be realized simply from the current

i n p u t arguments wi thout decomposing those arguments No

constructs wh ich break down the arguments (such as C A R or

C D R , for example) are considered at this stage The effect of this

l i m i t a t i o n is to prevent the synthesis of an implausible function,

w h i c h m i g h t be generated by breaking down each argument into

its p r i m i t i v e components and combining them mechanically to

real ize the ou tpu t

At present, E X A M P L E allows nonrecursive synthesis only i f the

o u t p u t can be realized w i th a composition of the functions CONS

and L I S T over the input arguments. More precisely, the class of

f unc t i ons wh i ch may be synthesized without recursion is the

u n i o n o f

Because of these restrictions on nonrecursive synthesis, most user-

speci f ied funct ions of interest are not synthesized at this stage. As

we w j l l see, the importnt funct ion of nonrecursive synthesis is the

He re , each "argra i l " represents some composition of the funct ion

C D R over some input argument "Join-funct ion" may be either

C O N S or A P P E N D T h e "head-realmng-code" is either some

nonrecurs ive ly synthesized expression or a call to an aux i l i a ry

f u n c t i o n " funct ion-name A UX 1" wi th appropriate arguments.

T h e f o r m of the rectnsive argument list will be discussed later

F ina l l y , we note that the order of the "head realizing-code" and

the recursive call may be interchanged

4.3 S E G M E N T I N G I N T O H E A D A N D R E C U R R A T E

Recurs ive real izat ion requires correct identif ication of the head

a n d recurrate of the output We recall that a template-matching

p rocedure is used to locate the first major change in successive

g roups of elements. In the present version of E X A M P L E , each

g r o u p in i t ia l l y consists of a single element If such a grouping

does not al low head-recurrate separation in the template-matching

stage, the size of the groups ts increased

We now examine the template-matching procedure in detail.

E X A M P L E l o i m s a template by comparing the first two groups

appea r i ng in the output . Consider C O M B 2

In th is case, the two-element groups (A B) and (A C) are

compared to f o r m a template (A x). where x stands for the

d i f f e r i n g elements wh ich appear in the two instances. (The f irst

head-recurra te segmentation postulated by E X A M P L E is in fact

an inaccurate guess based on the use of single-element groups, the

correct segmentation discussed here is found upon subsequent

scann ing w i th two-element groups.)

In genera l , all atoms appearing in corresponding positions are

compared for equal i ty If the two atoms are the same, that atom

appears in the template Otherwise, a unique variable x,

represent ing the unequal atoms, appears A description of the

re la t i onsh ip between the two d i f fer ing atoms is associated with x

T h u s , the C O M B 2 template indicates that C, the second instance

of x in the output , is the immediate successor in the input list of

B. the f i rst instance A template for the function

analyzed w i th a g roup size of one. is comprised of a single

v a r i a b l e and the associated informat ion that the second instance

of th is var iab le is the double-successor of the first

263

T h e template is then used to predict the th i rd group of elements,

assuming the same relationship between the second and th i rd

g roups as was observed between the first and second. To predict

the t h i r d g roup appear ing in C O M B 2 , for example, the successor

of C is instant iated for the template variable x. The resulting

ins tant ia ted template, (A D), in fact agrees with the th i rd group

appea r i ng in the output. Th i s template, though, does not

correct ly predict the fou r th group from the th i rd E X A M P L E

t h u s correctly d iv ides the head from the recurrate after the th i rd

g r o u p For somp funct ion specifications, no major change is

detected using these heunstics. In this case, the first group of

elements is taken to be the head, and the remaining groups the

recurrate. T h e two in i t ia l (one element) groups of

F. (A B C D) ->((F AXF BXF CXF D)).

fo r example , yield the template (F x), which allows prediction of

a l l g roups Separat ion after (F A) is thus assumed. Whi le the

head-recurrate separation methods employed by E X A M P L E work

reasonably well, it must be emphasized that tney are not

un ive rsa l l y effective A larger class of functions might be

synthesized using better heuristics for this critical decision

It was noted in section 3 that the output must sometimes be

scanned backward (f rom r ight to left) in order to effect the proper

head-recurrate separation E X A M P L E chooses a scanning

d i rec t i on by not ing whether elements from the front of the input

list propagate toward the front or the back of the output If they

tend to appear in the end of the output, E X A M P L E assumes that

the head w i l l be found at the end of the output list. In this case,

a reverse scanning direct ion is used to distinguish the head and

recurrate. In section 4 6, we wi l l see other effects of the decision to

scan backward

4 4 S U B G O A L R E A L I Z I N G T H E H E A D

Let us review the work E X A M P L E has done so far. A scanning

d i rec t i on has been chosen heuristically and noted for later

reference. Ad jacent groups of elements have been scanned in the

chosen d i rect ion and compared using a template-matching

procedure. By locating the site of the first major change, that

pa r t of the output generated dur ing the first step of recursion (the

head) has been dist inguished from the part produced dur ing all

successive recursive calls (the recurrate) If no major change was

apparent , a defaul t separation point has been assumed Finally,

those atoms appear ing only in the head have been distinguished.

E X A M P L E must now attempt to synthesize code which wil l

generate the head when evaluated with the arguments of the top-

level func t ion call We impl ic i t ly assume that evaluations of this

same code d u r i n g al l subsequent recursive calls wil l produce the

recurrate. As mentioned before, the head realization subgoal is

speci f ied w i th an input-output pan , just as the user specified the

o r i g i n a l task T h e target output, of couise, is the head itself

Select ion of an appropr iate input argument list for the head

rea l iza t ion subgoal is less t r i v ia l

In cer ta in cases, the or ig ina l input list is a reasonable choice of

i n p u t for the subgoal For example, consider the fol lowing input-

o u t p u t pa i r

H e r e the head is exactly the same as the original input argument

(A B C D) A t r i v ia l nonrecursive realization of the head thus

results when

is specif ied as the subgoal For a first attempt at head

rea l i za t ion , E X A M P L E always tries this first method, in which

the i npu t for the subgoal is the same as the original input For

some problems, though, the or ig inal arguments must be broken

d o w n in some manner in order to realize the head In this case,

E X A M P L E fails to accomplish the first subgoal, and creates a

new subgoal whose input arguments are subparts of the or iginal

a rguments To i l lustrate, the first subgoal generated in t ry ing to

real ize the head of C O M B 2 it to synthesize a subfunction

sat is fy ing the input-output relation

T h i s ou tpu t , however, can not be realized f rom the input

(A B C D) EX A M P L E thus generates the new subgoal

w h i c h w i l l eventual ly result in the successful synthesis of a two-

a rgumen t a u x i l i a r y funct ion

EX A M P L E generates this new subgoal by decomposing the

o r i g i n a l input , (A B C D), according to a simple heuristic, First,

we note that certain atoms f rom the input list may appear in the

head but not in the recurrate These atoms, called head

diitinguishers, appear as arguments for the head lealization

subgoal . Here A is a head dist inguishes since it appears in the

head, (A B A C A D), but not m the recurrate, (B C B D C D),

A is thus chosen as an argument Second, the remainder of the

o r i g i n a l argument after removing the head distinguisher is

i nc luded unless none of its atoms are found in the head We

remark in passing that i f E X A M P L E broke down the or ig inal

a rgument completely into its constituent atoms, head realization

w o u l d always succeed (nonrecursively) A complete decomposition

of th is sort, though, is in general dangerous, admitt ing the

poss ib i l i ty of implausible synthesis Th i s danger is the mot ivat ion

f o r selective i npu t decomposit ion

Be fo re con t i nu ing our discussion of the synthesis of the main

f u n c t i o n C O M B2, let us summarize the synthesis of its

sub f unc t ion T h e or ig ina l goal of synthesizing a funct ion

speci f ied by

spawns the head realization subgoal

T e m p l a t e m a u h n i g wi th single-element groups separates the head

o f th is subgcul output , (A B), f rom the recurrate, (A C A D)

E X A M P L E t h r n decomposes the argument (B C D) into B and

(C D), d iscard ing (C D), whose atoms fa i l to appear in the head.

264

E X A M P L E must thus determine the number of CDRs with in

w h i c h each reursive argument should be embedded Th is

n u m b e r is assumed equal to the number of atoms from the

b e g i n n i n g of that argument which fai l to appear in the recurrate

U n f o r t u n a t e l y , this method fails for many input-output pairs in

w h i c h the atoms of the input do not all propagate to the output.

C e r t a i n weak heuristics are used to allow synthesis of some such

func t ions , but the problem is not entirely solved

O n c e the recursive call has been synthesized, E X A M P L E can

check its decision about head-recurrate segmentation by querying

the user In the case of the above function F O O , for example,

the user is asked if the proposed recursive call in fact realizes the

recurra te

" D O E S F O O [F , (B C D)) - «F B)<F C)(F D))>"

(T h e user specif ipd identi f iers are substituted for the formal

var iab les used in the actual recursive call) A negative response is

taken as evidence of faul ty segmentation of head and recurrate,

o f ten leading to a revised conjecture regarding scanning group

size

4.6 C O N J O I N I N G T H E H E A D A N D R E C U R R A T E

N o w that the head and recurrate have been realized, E X A M P L E

con jo ins the two result ing pieces of code using either C O N S or

A P P E N D . If the output was analyzed using a forward scanning

d i r ec t i on , the head realizing code appears as the first argument of

the j o i n i n g f u n r t i o n , since the head must have been found at the

b e g i n n i n g of the output If reverse scanning was used, the head

must be at the end of the output, and the head realization

appears as the second argument

Severa l factors are considered in deciding whether CONS or

A P P E N D should be used tor conjunction In the case of

b a c k w a r d scanning, A P P E N D is always chosen The joining

f u n c t i o n w i l l also be A P P E N D whenever the head contains more

t h a n one element In accoidance with usual human programming

pract ice, however, C O N S is used in the case of a single-element

head found by forward scanning E X A M P L E adjusts the

ou te rmost list structure of the head to allow the use of the

a p p r o p r i a t e j o i n i n g funct ion

4 7 S Y N T H E S I Z I N G T E R M I N A T I N G C O N D I T I O N S

We saw in section 4 1 that all terminat ing conditions synthesized

by E X A M P L E rest a tai l of some argument, returning N I L if a

N U L L ta i l is encountered T h e number of CDRs involved in

each ta i l depends on the number of CDRs used in the recursive

cal l on that argument T h u s C O M B 2 , which is synthesized using

C D R recurs ion, embodies the single nul l check

It must be acknowledged that this heuristic yields incorrect

t e r m i n a t i n g condit ions for some functions which are o:herwise

w i t h i n the target class o f E X A M P L E

T h e resu l t ing block of code is embedded in a function def in i t ion

cal l w i t h the user specified name and list of lambda variables.

T h e resul t ing funct ion is then defined for system use and

eva lua ted w i t h the user-specified input list I f this evaluation in

fact yields the user-specified output, the function is presented to

the user fo r ver i f icat ion and further user testing

S E C T I O N b - C O N C L U S I O N

T h e E X A M P L E program was written in I N T E R L I S P by Dav id

S h a w and was revised by Wi l l i am Swat tout. A number of

E X A M P L E sessions have been observed dur ing the past year,

b u t no f o r m a l study has yet been conducted of the programs users

actual ly specify or of the way in which such programs are

spec i f ied. It seems to us that such further study of actual program

speci f icat ion wou ld be valuable at this point

T h e exact role input-output examples wi l l play in faci l i tat ing

p r o g r a m specif icat ion is not yet clear We believe, however, that

the capacity for specification by examples may be a useful

componen t of fu tu re automatic programming systems

We conclude w i t h several other LISP functions synthesized by the

E X A M P L E program T h e shorthand notation

< func t ion name> <input list> -» <output>

w i l l represent the user specification of a function <function name>

w h i c h returns the value <output> when evaluated wi th the

a rguments on * input list>.

266

REFERENCES

Biermann, A W, and Feldman, J A. "On the Synthesis of
Finite-State Machines from Samples of Their Behavior," IEEE
Transactions on Computers, Vol C-21, No 6, June 1972, pp b92-
597. (also "On the Synthesis of Finite-State Acceptors," Memo
A IM-114 . Art i f ic ia l Intelligence Laboratory, Computer Science
Department, Stanford University, Stanford. California, Apr i l
1970).

B lum, L., and Blum, M, "Inductive Inference A Recursion
Theoretic Approach", Information and Control, to appear (Also
Memorandum ERL M386, Electronics Research Laboratory,
College of Engineering, University of California, Berkeley,
Cal i forn ia, August 1973).

Feldman, Jerome A., Cips, J, Horning, J. J., Reder, S.,
"Grammatical Complexity and Inference," Memo AIM-89,
Technical Report No. CS 125, Artif icial Intelligence Laboratory,
Computer Science Department, Stanford University, Stanford,
Cal i forn ia, June 1969

Green, C C, Waldmger, R J., Barstow, D. R, Elschlager, R.,
Lenat, D B, McCune. B P. Shaw. D E., and Steinberg, L. I,
"Progress Report on Program-Understanding Systems," Memo
A IM-240 , Report STAN-CS-74-444, Artificial Intelligence
Laboratory, Computer Science Department, Stanford University,
Stanford, California, August 1974.

Hardy, Steven. "Automatic Induction of LISP Functions," AISB
Summer Conference, University of Sussex, Brighton, England,
July 1974, pp 50-62

Horn ing . James Jay. "A Study of Grammatical Inference." Ph.D.
thesis. Memo AIM-98, Report STAN-CS-69-139. Artif icial
Intelligence Labotatory, Computer Science Department, Stanford
University, Stanford, California, August 1969

L ick l ide i , J C R., in "Automatic Composition of Functions from
Modules. Project M A C Progress Report X July 1972 - July 1973,
Section I I I E l . Project MAC, Massachusetts Institute of
Technology. Cambridge, Massachusetts, pp 151-156

267

