SYNTHESIS OF LISP FUNCTIONS FROM EXAMPIES

Steven
University of Sussex,

Abstract

A system, called GAP, which automatically
produces LISP functions from example computations
is described. GAP uses a knowledge of LISP
programming to inductively infer the LISP funct-
ion 'obviously' intended by a given ‘iopair' (i.e.
a single input to be presented to the function
and the output which must result). The system

is written in POPCORN (a CONNIVER-like extension
of POP2) and represents its knowledge of LISP
procedurally.

Acknowledgements

The research reported herein was carried
out with the support of the Science Research
Council.

| would like to thank Pat Hayes, Richard
Bornat and, especially, Mike Brady for their
constant advice and guidance.

Section Une - Introduction

Despite the fact that there are infinitely
many functional extensions of the imput-output
(*iopair*): (AB C D) =%= ((a) (B) (C) (D)) (1)
there 18 only one function that would be regarded
by LISP programmers as the 'obviously' intended
one, viz: (A B -—— Z) =)= ((a) (B) --- (Z)).

This paper describes a program, called GAP
(Generalizing Autamatic Programmer), which
attempts to model the LISP programmer to the
axtent of producing this function. When
presented with iopair (1) GAP produces the LISP
function:

(LAMBDA (X}
(COND ({ATOM X) NIL)
(T (CONS (LIST (CAR X)) (SELF CIR X))))}))

(The LISP sgystem used by GAP acts as if all
LAMBDA expressionsa were implicitly labelled
*SELF!).

GAP can be distinguished from those
automatic programmers which deduce the wanted
program from the given description. These
reflect a popular approach to automatic program-
ming and have, theoretically, a number of advan-
tages over GAP. A deductive system can, in
principle, produce a correct program - one guar-
anteed to meet its specification. Furthermore,
such a system can, if it contains a complete
proof system, produce any program which can be
described to it. If the description language
uaed is general say, first order predicate cal-
culus - then the automatic programmer will be
general. Unfortunately, most theorem provers
are not very powerful and this limits the size
o f program which can be written. This disadvan-
tage can be overcome, to an extent, by allowing
the proof system to employ knowledge in the form

240

Falmer,

Hardy

Brighton, Sussex

of 'control' statements which embody an under-
standing of how to achieve proofs in the domain of
program writing. A more important criticism of
deductive automatic programming is that the wanted
program must be completely specified. This can be
as difficult, and as error prone, as actually
writing the wanted program- For example, the
function intended by iopair (1) is described
the first order predicate calculus as:

LISTIFY (NIL) = NIL

LISTIFY (CONS(X,Y)) =
CONS (CONS(X,NIL), LISTIFY(Y))

in

and this is barely simpler than the corresponding
LISP function.

GAP is written in POPCORN (5) an extension of
POP2 (3) that provides some of the features of
CONNIVER (9). The program contains a number of
heuristic routines embodying knowledge about
various program achemas for LISP expressions.
GAP is presented with an iopair these routines
examine it for 'cues' which suggest hypotheses
about the form of the wanted expression. If an
hypothesis seems particularly promising it is
examined in great detail by a deductive LISP
system which attempts to verify and complete it.

When

The cue seeking routines are stored in the
POPCORN data base, making the addition of new
heuristics extremely easy as the remainder of the
program need not be altered. It can be seen that
the detailed flow of control will depend on minor
vagaries of the data base controlling routines.

The complete program occupies less than 35K
words of core on a PDP-10. It takes two or three
seconds of CPU time to code the example given
earlier.

In Section Two | explain how GAP works,
illustrated by a few simple examples; in Section
Three there is a brief discussion of the LISP
system and in conclusion | point out some short-
comings of the program and describe ways it could
be improved.

Section Two - GAP at Work

The LISP expressions that GAP is capable of
producing can be described by a number of program
schemas. The type of recursive function to which
GAP devotes most attention, called a ¢ LISTFN > ,
can be represented as:

(LAMBDA (X)
(COND (<TESTS X > NIL)
(T (APPEND <FORM X »
(SELF < PARTOF X >)
<FORM X ?))))

This schema i1s completed by replacing the
terms < SOMETHING X > by an expression of the appro-
priate type. (TESTS X) denctea a Boolean expres-
sion, < FORM X > denotes any expression that GAP can
write, and { PARTOF X > denotes an expression synth-
esised from the primitive LISP selector functions,
CAR and CDR, applied to X.

The various types of expression that GAP can
write can be informally described by a 'grammar!?,
The most genaral type is '"WORM'; this denotes an
expression where the output is formed from the in-
put atoms with no reference to the identity of any
particular atoms in the input. This type of expr-
ession can be described:

<BOILD X >
(¢ LISTFN >X)
(¢ TREEFY >X)
((<CFLATFN > X)
(LIST € FORM XD ——--¢FORM 1>)

{FORM X 2 1

. -
-

- e *a
I F |

1

The notation used 1s meant purely as an expl-
anatory device - it 'defines' gn abstract, rather
than concrete, syntax for the expressions GAP
writes.

An expression of type BUILD is synthesised
from the functions CONS, LIST, APPEND, CAR AND CDR
applied to X or NIL. For example, (APPEND X (CDR
x)g is of type BUILD,

A CLISTFN D is a function with a list as input
and output. The function shown 1n the introduct-
ion is a (LISTFN) , though optimised for efficiency
and appearance.

A { TREEFN ? takes and returns a tree;
iopair;
((A (B) CYD) =>= ((AA(BB)CC)DD)

(which GAP easily handles) would be coded as a
< TREEFN).

the

The final possibility for an expression of
type FORM is an application of a { FLATFN> to a
tree to return o list - for example:

((A (B)C)D) & Q7 =>- (AQBQCQDQ)
{LISTFN)s embody an essentially iterative

process, as they are only singly recursive.

{ TREEFNS)s and € FLATFN)8 call themselves twice.

An expression of type BUILD can be described:

{BUILD X> :: = {CONS<BUILD XO<BUILD X>)
s+ = (L1IST< BUILD X»--~¢BUILD X>)
:: = {APPENDCBUILD X»-—BUILD X0)
:: = <€SELECT X>
{SELECT X > :: = NIL] (QUOTE < ATOM >)< PARTOF X >

< PARTOF X D> :: = X
:: = (CAR< PARTOF X>)
s (CDR < PARTOF X))

Once GAP has decided that an iopair is of type
BUILD the expression is found by exhaustive search
- though ordered to favour expressions using
APPEND.

241

The expression to replace { TESTS X2 in the
expansion of a <LISTFN> can be described:

CTESTS X2 :: =<PRED X >
e (OR < PRED X2 ——-<¢PRED X»)
<PRED X > :: (ATOM < PARTOF X 2)

i

The expression actually chosen is completely dete-
rmined by the recursion line of the function - the
test is designed to prevent it causing an error.
NIL, the 'boundary condition’ imposed upon the
schema is then a reasonable final value for the
schema.

Whenever an iopair is coded as a { FLATFN),
it could have been coded as (<LISTFN . (FLATTEN X)).
This would be slightly unnatural and so we include
an appropriate combined schema. The only remain-
ing undescribed schema is < TREEFN):

<CTREEFN, :: = (LAMBDA (X)
(COND ((NULL X) NIL)
(TCTREELINE X>))))
(APPEND<TREETERM X»>(SELF (CDR X)))

(APPEND (SELF{CDR X))<TREETERM X»)
(COND(ATOM(CAR X)) BUILD X)
(T(LIST(SELF(CAR X}))))

The schemas described are simplified in that
they are presented as if GAP could write only
expressions involving one variable, when in fact,
any number can be used.

{ TREELINE X)::

n

<TREETERM X)>::

Howv the schemas are used

It would be possible to represent these
schemas explicitly within the computer and GAP
could write functions by enumerating possible
expressions until one was found which included
the given iopair, and, even though the schemas
are not explicitly stored, GAP can effectively do
this, using the LISP system described in Section
Three. Whilst this method of program writing is
appropriate on problems with small search spaces
- for example, expressions of type PARICF - it
becomes incredibly slow as the complexity of the
problem rises. The cue-seeking routines suggest
likely replacements for parts of the FCRM schema
(the most general) and 30 cut the search space.
The heuristics used are best explained by
following GAP's progress as it writes several
functions.

When GAP is presented with an iopair it tries
to find an expression which, when evaluated with
an alist built up from the inputs to the iopair,
produces the output of the iopair. This expres-
sion is then converted to a function and printed
to the user. When given the iopair:

(ABCD) === ((A) B (C) (D)) &G tries to
find an expression evaluating to ((A) (B) (C) (D))
with the alist ((X.(A B C D))). Initially all
that is known of the expression is that it is of
type FORM - the most general type. Oe cue
noticed in this case is that the length of the
output is an integral number of times the length
of an input. (In this case, equal to that of the
only input.) This would be the case if the expr-
ession were an application of a < LISTFN) where
the expressions FORM X > are replaced by (LIST
<FOWI X>——<FOm X>) and where the expression

<PARTOF X> is replaced by (CDR |). Such a*LISTFN>
is called a CDR-loop. One of the hypotheses sug-
gested by the cue seeking routine is:

(APPEND(LIST< FORM X>) (SELF(CDR X))(LIST))

Other heuristic routines, described
with this hypothesis and
ailed examination.

later, concur
it is selected for det-
The expression is optimised to;

(CONS < FORM X> (SELF(CDR X)))

and GAP tries to make :

(LAMBDA (X) (CONS < FORM X > (SELF (CDR X))))X)
evaluate to ((A(B)(C)(D)). For this to be so
<FORM X>must evaluate to (A). GAP solves this
subsidiary problem by a call on the POPCORN data
base - and hence a possible recursive call of GAP

itself. If the wanted expression is not already
known the iopair: (A B C D) => = (A) is examined
and one routine decides it is of type BUILD. It

does this by counting the atoms
getting the list (1 0 0 0) (meaning 'A' occurred
once and 'B', 'C' and 'D' not at all). The routine
expects that if the expression being coded calls a
recursive function then there should be some pat-
tern in this list. It can't find any and so the
expression is coded by the routine responsible for
producing expressions of type BUILD, which produces

(LIST(CAR X)).

in the output,

GAP deduces that the hypothesised recursion
line would 'explain' the output if (SELF NIL) eva-
luated to NIL - this suggests that < TESTS X>
evaluates to 'T" when X is NIL. However, GAP
'knows' that the terminating condition of many
iterative loops -<LISTFN>s embody an essentially
iterative process (8) - is such that one more
iteration would have caused an error.

To apply tills knowledge GAP finds the 'mini-
mumrvalue of X if the recursion line is not to
cause an error. In this case X must be a pair -
since both CAR and CDR are applied to it - and so
an appropriate TEST is (ATOM X). GAP inserts this
into the <LISTFN> schema and checks that (SELF NIL)
does actually evaluate to NIL. This type of red-
undancy provides a useful consistency check.

Had we given GAF the iopair:

(ABCD)=>={{a) (B) () (D) (B)
(c) (m) (€)Y (D) (D))

then one of the cues noted would have been that the
length of the output is proportional to N#(N+1)/2,
where N is the length of an input. This can happen
when a CDR-loop function calls another as a sub-
routine. For this iopair, therefore, one of the
hypotheses generated is that the first four elem-
ents of the output should be split off and an exp-
ression evaluating to that segment be found to
replace the first <FORM X > in the < [ISTFtO schema.
Once this has been done the expression is completed
in a similar way to the last example.

A common method of problem solving is find
some hoinomorphicmapping of the problem, with a
smaller search space, which can be easily solved
to provide a plan for the solution of the main
problem. This technique has been used by a number
of researchers, notable (1,6,2,11). GAP applies

242

this method of problem solution when {resented

with an iopair with more than one input. Many
functions of multiple inputs produce their output
by interleaving their inputs in some way. |If,

therefore, GAP finds for each element of the out-
put from which inputs they have drawn atoms, it
may be able to recognise some pattern in the resu-
Iting ‘'origin list'. Consider the iopair:

(ABCD) & Qn=>= (ABQBCQCDQ)

Representing the two inputs by X and Y gives the
origin list:

() (X) (v) (x) (x) (¥) x) (x) (Y))

It is trivial to recognise the repeated ({(X) (1)
{Y)) in this list, and this suggests the recursion
line hypothesis:

{APPEND (LIST < FORM X) <FORM X”> <FORM Y))

(SELF < PARTOF X)< PARTOF ¥>))

Once this hypothesis has been selected for
detailed examination { PARTOF Y > is replaced by Y
-~ the value of Y is atomic and so neither CAR nor
CDR can be applied to it. The validation of this
hypothesis is more complicated than the earlier
example as the recursion atep for X is not known.
The LISP system, using e simple matcher, deduces
that: (LIST <FORM X)><FORM X)>< FORM Y)) must
evaluate to (A B Q) and can therefore be replaced
by: (LIST (CAR X) (CAR (CDR X)) Y)

Whilst anti-evaluating (as this part of the
validation process is called) the recursive call
of the hypothesised function, all that is known of
the value of X is that it is part of (A B C D).
However, it is easily found that (CAR X) evaluates
to B. X can then only be the CDR of (A B C D) and
so < PARTOF X”is replaced by (CDR X)}.

To complete the hypothesis < TESTS X) is
replaced by:

(OR (ATOM X) (ATOM (CDR X)))

and after final optimisation GAP produces the
function:
(LAMBDA (X Y)
(COND ((OR (AT X) (ATOM{(CDR X)))NIL)
(T (CONS(CAR X)
(CONS (CAR (CIR X))
(CONS Y(SELF (CDR X) Y)))))))

The technique used in the last example - looking
for patterns in an origin list - can be extended
by regarding multiple occurrences of the same
outputs as a single occurrence. For example, the
modified origin list for the iopair;:

(ABCD)&: Qe=>=(ABCDQBCDQCDQDQ)

is (@) (¥) (x) (y) x) (¥) xX) (¥))

The repeated({X) (Y)) in this list suggests
splitting of either the first five or the last two
elements of the output and finding ansppropriaste
expression and so one of the recursicn line hypo-
theses made is:

(APPEND (APPEND X (LIST Y))} (SELF <PARTOF X2 Y))

The cues described so far have to generate a
number of hypotheses as they cannot distinguish
whether atoms from the 'front' of the inputs occur
at the front or back (or both) of the output. If
we give GAP an iopair with one input, of length
four, and an output of length eight then three

be generated by the
These hypo-

recursion line hypotheses will
cue first described in this section.
theses can be represented:

(APPEND (LIST<FORM X)><FORM X>) (SELF (CDR X)))
(APPEND(LIST<FORM X>) (SELF(CDR X)) (LIST<FORM X>))
(APPEND (SELF (CDR X)) (LIST<FORM X’ < FORM X>))

(However, these hypotheses are not generated
simultaneously; not until the most likely altern-
ative (the first) is rejected are the other poss-
ibilities suggested.)

GAP needs a cheap way oi" rejecting the incor-
rect hypotheses. One way of doing this is to
replace the atoms in the output by numbers repres-
enting which element of an input they came from.
The ‘'number list' for the iopair:

(ABCD)=> (ARABBCCDD)

is (1 1 7?7 2 3 3 44). As the 'average atom in
the inputs to the recursive call of the function is
higher than the average atom in the original

inputs the average for that segment of the output
allegedly due to the recursive call of the function
should be higher than that for the whole output -

if this is not so the hypothesis is rejected. This
heuristic will reject the two incorrect hypotheses
above.

Additional information can be found by suppo-

sing that the wanted function recurs on the CDR of
some input and otherwise refers only to the CAR of
that input. If this is so it might be possible to
split the output into three segments the outer
ones containing no atoms from the CDR of the
relevant input, and the inner segment, hopefully
due to the recursive call of the function, contain-
ing none from the CAR. Of course, there will
usually be several possible splittings. For the
iopair: (A B C D) & "Q" ->= (DQCQBQAQ)
the routine embodying this heuristic will suggest:

(DQ CQ@BQ), (AQ) and N1L(D QCQB),
QAQ))

When used in conjunction with other routines,
this heuristic, despite its simple-mindedness,
makes a valuable contribution to the selection of
the correct hypothesis.

NIL,

It is clear that we can extend the principle
of trying to find which segment of the output of
o {LISTFN> is due to its recursive call by guessing
which atoms it might contain. Consider the iopair:

(ABCDEF¥)=>=(ABRBRCDDEFF)

1f we count the atoms in the output we get the
atomcount list (1 2 1 2 1 ?2) - meaning 'A' occurred
once, 'B! twice and so on. The repeated {1 ?2) in
this list sugpests that the segment due to the
recursive call might have the atomcount list
(00121 2). GAP uses a simplc matcher to find
such a segment and gets (C DD EF F). The two
outer segments, (A B B) and NIL, suggest replace-
ments for the terms < FORM X2 in the<LISTFN, schema
and the length of the repeated atomcount segment
(1 2) suggests the recursion step to use and so
this routine hypothesises the recursion line:

(APPEND (LIST Ecm x;(CA}'{ (CDR X)) (CAR(CDR X)))
(SELF (CDR(CDR X))))

243

The reader will
cue-seeking routines appear redundant;

have noticed that many of the
several

can (and do) suggest the same hypothesis. This
redundancy provides the basis of the approach
taken to hypothesis generation. Part of GAP,

called the 'research director', monitors the

hypothesis generation process. If this sees that
a hypothesis is particularly popular it interrupts,
and tests the promising candidate. Should this be

unsuccessful it allows hypothesis generation to
continue. Some cue-seeking routines notice
failure of their hypotheses and produce fresh
alternatives. Should there be no especially
popular hypothesis, the research director exhorts
the cue-seeking routines to 'try harder'; on
receipt of this message the routines release
hypotheses previously considered to have too
little supporting evidence. This same message
causes the recursion lines:

(APPEND < FORM X > (SELF < PARTOF X)))
(APPEND (SELF< PARTOF X>)XFORM X))

to be hypothesized so that, if desperate, GAP can

search blindly for a solutionJ

For a system like GAP, which attempts to
write functions by associating an iopair with a
particular programming construct, it is natural to
ask what must be done to include a new construct.
The heuristic routines described so far are all
concerned with functions of type<LISTFN> , and |
have deliberately omitted references to the
routines for functions of type <FLATFN> and
<TREEFN> . This reflects the historical develop-
ment of the program - routines for these two types
were added to the working system with only minor
modifications being required.

In one sense, the addition of a new schema is
trivial - we need only add a routine to the data
base which blindly tries the new schema on all
iopairs presented for hypothesis generation. Such
a routine can be added in a matter of minutes -
but unless heuristic routines are added to control
the use of the new schema GAP will get involved in
huge uncontrolled searches (which will, of course,
eventually be successful). As an example of s\ich
a large search, the validation of the hypothesis:

(LAMBDA(X Y)
(COND (NULL X) NIL)
((ATOM X)<BUILD X Y >)
(T (APPEND(SELF (CAR X)) (SELF{CDR X))})))

((A (B) C)D (E)) && Q» => =
(AQBQCQDQEQ)

took over a hundred seconds of CPU time; when a
heuristic was added to GAP which reslised that
< BUILD X Y)could be replaced by (LIST< BUILD

X Y>¢BUILD X Y.} the validation time dropped ta
under six seconds.

for the iopair:

to control the new schema
recognise the concepts of 'treeness', when GAP
decides that the input to an iopair is a tree it
can ignore the < LISTFN > option for< FORM X> . An
extension of the ‘'average' atom heuristic

described earlier determines the choice of
recursion for these two schemas and finally an
extension of the length heuristic replaces the

Other routines added

{BUILD X) in the {FLATFN) schema by an appropriate
(LIST <BUIID X) -~-<{BUILD X) expression.

Section Three - The LISP System

As the reader has seen, the hypotheses made
by GAP take the form of expression schemas. GAP
will usually know to what such an expression is to
evaluate but not necessarily the value of the
variables it contains (since they may be the
unknown inputs to a recursive call).

To assess the validity of such hypotheses GAP
uses a special purpose LISP theorem prover. At
it's simplest this takes a LISP expression and it's
alleged value and deduces the values of variables
contained in the expression. | call this 'anti-
evaluation ' to emphasize the contrast with the
deduction performed during LISP evaluation.

A LISP interpreter embodies the rules for the
evaluation of LISP in a way that allows a tightly
controlled deduction. This suggests the possibil-
ity of an 'anti-interpreter' which, when applied
to an expression and its value returns possible
sets of variable bindings. A LISP function,
normally regarded as a program to compute some
result from some arguments, could be viewed as an
anti-LISP function to compute the arguments from
the result:

There are a number of problems with the
inversion of computable functions (7)- In general
there can be any number - perhaps infinite, perhaps
zero - of possible inputs that map onto a given
output. (Anti-evaluation is a partial relation,
not a total function.) If an expression to be
anti-evaluated contains conditional expressions
the anti-interpreter must search to find which
alternatives could have been taken. (The condit-
ional expression in LISP can be thought of as a
non-deterministic statement (1) in anti-LISP.)

An additional problem is that information about a
variable's value i3 built up gradually during anti-
evaluation - :n normal evaluation we know the

value completely at all times and can easily
represent it by an item on an ALIST.

GAP'S anti-interpreter must also cope with
incomplete expressions. If it deduces the value
of an expression < SCNETYPE X> it calls upon GAP to
write suitable code; for example if told that
(APPEND X <PARTOF X>) evaluates to(ABCDBCD)
it deduces that one possibility is X = (ABCD),
APARTOF X>= (CDR X).

Because of its crucial role in validating
hypotheses the anti-interpreter should be quick -
even at the cost of incompleteness and inconsis-
tency. The search strategy used, and the repres-
entation for variable values are both quite weak.
They are, however, adequate for GAP's purposes.
(In general, such an approximate 'micro-theory'
(10) will be of much greater practical use than a
complete theory hundreds of times slower).

244

Section Four - Conclusions

A major criticism of GAP is that the way it
forms and represents hypotheses is almost totally
ad-hoc. This has two implications. Firstly, the
unskilled user cannot understand the system's
reasoning and this makes it impossible for him to
contribute to hypothesis formation by supplying
any information other than a single iopair - which
is, of course, insufficient to describe the major-
ity of LISP functions. If GAP used some widely
known language (like LISP or predicate calculus)
to represent all facts and hypotheses a much
richer interaction with the user would be possible.
For example, the system could 'think aloud' with
the user interrupting or answering questions as
necessary.

The second defect is more fundamental. Most
of GAP's knowledge of programming consists of
function schema's and associated cue-seeking
routines. |hese cue-seeking routines, it will be
recalled, assess which schema should be instant-
iated to realise a particular iopair and suggest
likely replacements for the 'slots' of the schema.
Uiis knowledge is 'heavily compiled' into POPCORN
methods so that to add new heuristics or schemas
one must, at least, be able to program in POPCORN.
Furthermore since this knowledge is almost
totally unstructured, as the number of such frag-
ments of knowledge rises so does the difficulty
in avoiding undesirable interactions between
heuristics. For example, after adding < TREEFN > s
and<FLATFN> s to the system | found that
heuristics specific to<LISTFN>s were incorrectly
preventing the new schemas being tried on some
iopairs.

The significance of this can be seen by
considering the current version of GAP's behaviour
on iopairs such as:

ot ((AW)BX)IC Y)(DZ) =3 = wyn
(ACDE)& (BDEF)=2= (ABCDETF)

It could not produce the familiar ASSOC and UNION
functions because these are not instantiations of
known schemas - but there is no way for the user
to tell GAP the appropriate schemas, nor, if he
could, how to use theml

Bibliography

(1) Bruce Anderson, "Programming Languages for
Al - The Role of Non-Determinism" M.Sc.
Thesis Edinburgh 1972-

(2) J-R. Buchanan and D.C. Luckham,"On Automating
the Construction of Programs" Stanford Al
Memo, 1974.

(3) R. M. Bur stall, J.S. Collings and R.J.
Popplestone, "Programming in POPZ* Edinburgh
University Press.

(4) R.O. Duda and P. Hart, "Experiments in the
Recognition of Hand Printed Text" Proc. FJCC
1968 pp.1139-1151 .

(5) Steven Hardy,
CSM-1

The POPCORN Reference Manual=
Essex University 1973.

(0) M.D. Kelly, "Edge Detection in Pictures by
Computer using Planning*, Machine Intelli-
gence, 5 Edinburgh University Press.

(7) John McCarthy, "The Inversion of Functions
defined by Turing Machines", Automata
Studies - Annals of Mathematics Science 1956,
Eds, Shannon, J. McCarthy, Vol.jui Princeton.

"Towards a Mathematical
IFIP 1 963-

(8) John McCarthy,
Science of Computation"” Proc.

(9) D. McDermott and G.J. Sussman, "The CONNIVER
Reference Manual." Al Memo 259, M.I.T.

M. Minsky and S. Papert, "Progress Report on

Artificial Intelligence" Al Memo 252, M.I.T.
Artificial Intelligence Laboratory.
(11) Y. Shirai, "A Context Sensitive Line Finder

for Recognition of Polyhedra"” Artificial
Intelligence, Vol.4. (1973).

Gerald J. Sussman, "A Computational Model of
Skill Acquisition" Ph.D. Thesis, M.I.T. 1974.
(13) R.J. Waldinger,
Automatically using Theorem Proving*
Thesis, Carnegie-Mellon University.

"Constructing Programs
Ph.D.

Appendix - Some Examples

(ABCD) &k Q" =2>=(AQBQCQDQ);
w(LAMBDA (X Y)

(COND{(ATOM X) NIL)

(T (CONS (CAR X) (CONS Y(SELF(CDR X)Y)}))))

[_T.i.me taken was 3.0360 secondf::]

(ABCDEF):=D-
e (LAMBDA (X)
(COND ((OR (ATOM X) (ATOM (CDR X)))NIL)
(T (CONG (CAR X)
(CONS(CAR (CDH X))
(CONS (CAR {CDx X3){SELF(CDR(CDR x)))))))J)

(ABBCDDEFF);

['Iime tazhen was 5.5,2. Secondfg

(ABCDEF)&& Q" ->- (ABBQCDDQETF Q);
s (LAMBDA (X Y)

(COND { (OR (ATOM X){ATOM(CDR X)))NIL)

(T

(CONS (CAR X)

(CONS (CAR (CDIt X))

(CONS (CAR (CDR X)) (CONS Y(SELF(CDR(CDR X)XY))XID)))

[I‘ime taken was L.808 seconds]

(ABCD)=>~(ABCDBCDCDD);
st { LAMBDA (X)
(COND ((ATOM X)NIL) (T (APPEND X (SELF (CDR X))))))

[Time taken was 6.737 seconds]

245

(ABECD) & Qrn=>- ABCDYUBCDQCDQDQ):
we (LAMBDA(X Y)

(COND ((ATOM X)N1L)

(T (APFEND X (CONS Y{SELF{(CDR X)Y))))))

[Time taken was 10.573 secondr}]

((A(B G)D)E) =2 = (E(D(C B)A));
s (LAMBDA (X)
(CONDENULL X¥)N1L)
(T (APPEND {SELF(CDR X))
(L1ST
(COND {ATOM (CAR X)) (CAR X))(T{SELF(CAR X))))))}))

EI‘imc taken was 12.472 seconds]

(A BCD)=>= ({(a)B)(C)D)B)C)DICIDID));
w+(LAMBDA (X)

(COND ((ATOM X)NIL

(7 (APPEND { (LAMBDA (X)

(COND (ATQM X)NIL)

(T§CONS(LIST(CA.R X)) (SELF(CDR X))))))

X

(SELF{CDR X))} })))

[Time taken was 11.5,02 secondsj

(ABCD)=>= (DCBA);
st { LAMBDA (X))
(COND ((ATOM X)INIL)
(T (APPEND (SELF (CDR X))(LIST(CAR X))))))

[Time taken was 3.685 seconds)

(ABCD)& Qu=>=(DQCQHBQAQ);
w(LAMBDA(X Y)

(COND{ (ATOM X)NIL)

(T (APPEND(SELF (CDR X)Y)(LIST{(CAR X)Y)}))}))

[Time taken was L.B63 second:s]

((A(BC)D)E)=>= (A B C DE);
w+ {LAMBDA (X))
{COND ({NULL X)NIL)
((ATOM X)(LIST X))
(T (APPEND (SELF{CAR X})(SELF(CDR X)}})))

[Time taken was L .058 secondzﬂ

((A(B C)D)E) &k Mo =>= (AQBQCQDQERQ);
#+(LAMBDA(X Y)

(COND ((NULL X)NIL)

((ATaM X)) (LIST X Y))

(T (APPEND (SELF (CAR X)Y)(SELF(CDE X)Y)))))

[Time taken was §5.003 seconds]

((A{(B G)DJE) && " >~ ((AQ(B Q C Q)D QJE Q);
¢ (LAMBDA (X Y)
(COND((NULL X)NIL)
(T (APPEND(COND ((ATOM (CAR X)) (LIST(CAR X)Y))
(T(LIST(SELF(CAH X)Y))))
(SELF(CDR XJY¥)))))

[Timc taken was 13,384 Seconds.:]

