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Abstract

This paper describes a context mechanism
for a natural language understanding system.
Since no sentence is ever perceived outside
some context, it is reasonable to inquire into
the nature of context as it affects the inter-
pretation of sentence meaning at a deep concep-
tual level. A theory, called conceptual oyer-
|_ays, is described. This theory (1) defines
C(Ty ,... ,Ty), the context established by the
meaningful sequence of thoughts Ty ..., T (2)
defines I(Tj+ 1, C(Ty ,... Tj)), the high-level
interpretation of Ti+i in the context estab-
lished by Ti,..., Ti; and (3) specifies an eff-
ective algorithm and data structure for com-
puting [(t,K) for arbitrary thought T in con-
text K. In particular, a prototype LISP system,
EX-SPECTRE-1, which solves simple cases of
I(T,.,C(T4)) is described. The system is based
on an expectancy/fulfillment paradigm. Expectan-
cies are spontaneously activated by a pattern-
directed invocation technique. Each expectancy
implicitly references large chunks of common-
sense algorithms. A collection of such implicit-
ly activated algorithms constitutes context,
and the interpretive process is one of identify-
ing future input as steps in these algorithms.
Context switching and uses of I(T,K) in a lang-
uage comprehension system are discussed.

Intfroduction

The goal of this research is to synthesize
a domain-independent theory of how context,
specifically expectancy, influences perception
and interpretation of natural language meaning
stimuli. | want here to examine the specific
problem of interpreting actions in context, and
to describe a general theoretical approach to
its solution, because | believe many of the iss-
ues of this specific problem overlap with the
Issues of most other problems of context.

The statement of the task of interpreting
actions in context can be formulated as follows:
Given a "meaningful" sequence, T....T; , of
syntactically, referentially and conceptually
unambiguous sentences (actually, the sequence
of thoughts underlying them, expressed in some
meaning formalism) , assign a meaning interpre-

* There will be many interesting interrelation-
ships between the present theory and the pro-
cesses by which meaning is extracted from real-
world sentences and perceptions which contain
syntactic, referential and conceptual ambigui-
ties. The assumption made here that sentences
are unambiguous helps separate the influence of
context from the influences of the various other
processes.

143

tation to the 1+1st similarly unambiguous sen-
tence 1n a way which elucidates its relationship
to the context, or situation, established by

Ty .. Tj.

This task engages four issues: (1) What is
a reasonable definition of C(T],... ,Tj), the
context established by T; . . . . Ti? (2) What is

a meaningful definition of I(T,K), the interpre-
tation of sentence T in context K? (3) What is
the role of inference in the contextual inter-
pretive process (and at what point and to what
richness are inferences made)? (4) How do con-
texts begin, switch, end and interact? This
paper concentrates on (1) and (2), describing a
method and a prototype system, EX-SPECTRE-,
for obtaining [(T2,C(T-|)), where T2 describes
some volitional action by an actor who is act-
ing in the context established by T;y.

Specific Goals and Examples

There have been four goals in the first
phase of building this theory and model:

GOAL 1: To elucidate the relationship of actior
Tp to the context C(Ty).
Example: Ty: Pete stole Jake's cattle.
T2: Jake saddled his (Jake's) horse.

GOAL 2: To account for how different contexts
prescribe different interpretations of the
same thought.

Example: Ty,:

John saw the thunder clouds anc
felt the first drops of rain.

T1p: John dived under his jeep.

T2a: John heard a thud and saw the
precious water leaking from his
jeep's radiator.

sz: John dived under his jeep.

T3a: John didn’t want the cops to

see him.
T3b: John dived under his jeep.

GOAL 3: To alter Tq's influence on Tz by pre-
ceding Ty with some Tp.

Example: Tg: Jake asked Pete to steal
(Jake's) cattle to teach
lesson.

Pete stole Jake's cattle.
Jake saddled his horse.

his
Sara a

Ty:
T%:

GOAL 4: To account for how a “"peculiar” T can
be detected and how it can change the influ-
ence nominally exerted by Tj.

Example: Ty: Pete stole Jake's cattle.
Tp: Jake smirked.

It is felt that the specific mechanisms under-
lying these four varieties of binary and ter-
nary interaction will prove to be characteristic
of many other context-related mechanisms. At the
time of writing, EX-SPECTRE-I has met the first



and second goals for restricted examples.

Background

The present theory of conceptual overlays
1s the next step 1n the development of the model
of memory and inference described in (R1) and
(R2), which proposed that a spontaneous, non-
goal-directed substratum of language-indepen-
dent inference is requisite to even the simplest
forms of language comprehension. As will be
evident, the present theory of overlays is in
accord with the philosophy verbalized by Abelson
in (A1) and by Minsky in (MI) that perceptions
and events can be interpreted only within rel-
atively large "themes" (Abelson) or "frameworks"
(Minsky). The theory also relates to the idea of
a "demon", used by Charniak in (Cl), and ties in
closely with the goals of Schmidt's model of per-
sonal causation (S3), which deals with some of
the same issues from the point of view of soc-
ial psychology.

Conceptual Overlays

For the sake of concreteness, acknowledging
the potential loss of generality, it will be
useful to thread the discussion through the de-
tails of one particular example. At least this

will connote the main ideas of the theory. The
example will be the one used earlier:

T,: Pete stole Jake's cattle.

T2: Jake saddled his (Jake's) horse.
The goal 1n this example will be to explain how

Jake s saddling his horse might relate to Pete's
act of theft. The theoretical setting 1s a con-
ceptual memory of the sort described in (RI) and
(R2), which receives as its input meaning graphs
which have been constructed from input sentences
by an autonomous parser of the sort described by
Riesbeck in (R4), and which contains the low-
level inference reflex mentioned above. In order
to communicate some representation-independent
ideas, most problems of meaning representation
will be unabashedly ignored by using English-
like notation. It is assumed that a suitably ex-
pressive system of representation (such as
Schank's Conceptual Dependency (S2)) is used
throughout.

To begin with, we would expect reasonable
interpretations of this example to follow the
lines: "Jake is going after Pete to get his cat-
tle back," or "Jake is going into town to see
the sheriff." These interpretations relate to
this specific T,. Of course, there could have
been a limitless range of other T,'s in place
of this particular one: "Jake sat down and wept"
"Jake took out his rifle," 'Jake smirke-j," "Pete
was arrested next day," "Jake lingered over his
morning coffee in deep thought," "Pete celebrat-

ed," and so forth. The important test of the
theory is that it be able to relate these as
well. The requirement of the theory is therefore

that it provide a format wherein general expect-
ancies can be maintained, providing enough imp-
licit slots so that very diverse subsequent in-
put can fit later. Hence the term "overlay" has
been used to suggest a superimposable piece of

cellulose with boxes drawn on it which say: "If
you see such-and-so occur, here is where it fits
into the laroer scneme of things at the moment."
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Action Overlays

Entities called action overlays are the
vehicles for storing and organizing bundles of
expectancies. An action overlay, A, is a data
structure consisting of five components: (1) a
set of interceptors, 1A, (2) a universe of pot-
ential expectancies, Ea, (3) an expectancy sel-
ector function, S, (4) a set of overlay switch-
ers, WA, and (5) a set of termination handlers!
HA. Fig. 1 shows an action overlay which relates
to acts of theft. Fig. 2 is the corresponding
LISP data structure in use by EX-SPECTRE-1. (Re-
call that, in principle, the English-liko nota-
tion now in use will eventually be replaced by
a formal system.)

Interceptors

The set of interceptors, 1A, specifies con-
ceptual patterns which can trigger the action
overlay. A, of which they are a part. As each
new input, T, arrives in the system (either from
the sentence analyzer directly, or as an infer-
ence from the inference component of the overlay
system), the interceptors of every inactive ac-
tion overlay in the system are compared to T. |If
at least one interceptor is satisfied, the over-
lay becomes active. The process of action over-
lay activation in EX-SPECTRE-1 is therefore a
pattern-directed invocation scheme.

There will be quite a large number of ac-
tion overlays in a full-scale system, each deal-
ing with some relatively narrow situation and
its related expectancies. Because of this, and
since situation descriptions will frequently
overlap, more than one action overlay will gen-
erally be found applicable to a given input,
meaning that several situations are in progress
simultaneously. As will be seen, multiple over-
lays exert their influence concurrently on sub-
sequent inputs.

In the overlay of Fig. 2, only one inter-

ceotor has been included. When the input
(PETE STEAL CATTLE FROM JAKE)

arrives, this overlay is activated in EX-SPECTRE
1. Activation begins by binding X to PETE, Y to
CATTLE, Z to JAKE, and H to the entire pattern
for later reference in the selector function.

Potential Expectancies

Ea, the universe of potential expectancies,
is a set of "what next" describers which enum-
erates at a high descriptive level the universe
of activities which might possible follow the
triggering input without "violating the spirit"
of the overlay (and hence cause a switch to an-
other action overlay). The information in Fig. 2
associated with the feature UNIVERSE comprises
the set of potential expectancies for this theft
overlay. By "violates the spirit" | mean some
subsequent activity which would cause the com-
prehender to be surprised - something which some-
how deviates from what is normally expected af-
ter a theft.



To suggest that the range of possible "what
next" activities can be captured by a relatively
small, enumerable set of expectancies might seem
unrealistic. | do not selieve it is. To be sure,
there is an infinite ange of "what nexts" which
is surely impossible to anticipate directly.

But the obvious phenomenon of comprehension is
that, given any one of the infinitely many sub-
sequent events which might occur or be described
next, we are usually able to say in retrospect
"Yes, that fits here in what | was vaguely ex-
pecting, and here's how: " So rather than
cope with detail, an expectancy should simply
specify the kinds of activities reasonably ex-
pected to follow. Algorithmic knowledge can

fill out the details, as will be shown. An ex-
pectancy simply serves to carve off a manage-
able chunk of relevant world knowledge from
what would otherwise be an enormous, unrestrict-
ed potpourri of "what nexts".

Expectancy Selector Function

The universe of expectancies simply enum-
erates potentials; not all members of EA will
be equally applicable across all situations, and
within a given situation (that is, the particu-
lars of who stole what from whom), some elements
of EA will be more salient than others. Consider
acts of theft of the form (X STEAL Y FROM Z).

X steals Y from 2

INTERCEPTORS P
1 2 will try to learn X's identity
gg;gg?igcggs 2 2 will try to learn X's motive
3 Z will attempt direct physical getback
of ¥ from X
ggiggggﬁgy 4 2 will replace Y with a new one
5 Z will try to regain his self esteem
SWITCHERS 6 :g:ii;ta;tempt a physical retaliation
TERMINATION 7 gg:iiita;tempt a psychological retaliation
HANDLERS B Z2 will communicate the theft to the
authorities

[R— - .
Is Y of high monitary, functional or sentimental
value to ¥?

—

9 X will attempt to evade 2

10 X will attempt to evade the authorities

11 X will try to conceal Y

12 X will try to interfere with 2's attempt
to get Y back physically

13 X will deny the theft

14 X will celebrate the theft

15 X will sell Y to someone else

Is there an X-Z or Z-X power relation?

Is the X-2 relation friendly/unfriendly, formal/informal?
How difficult would it be for Z to replace Y?

How difficult would it be for 2 to get Y back from X?
Does Z know X's and ¥'s identity?

Does 2 believe X viewed the act as one of theft?

Does Z believe X needs the Y he stole?

What are X's and 2's relative wealths?

Wwas Z humiliated by the theft (did others see it)?

X is upsget *=————Pp "ATONEMENT" overlay
2 is happy ¥-—==ww=——=p "PRACTICAL JOKE" overlay

(overlays which might be applicable after
this one terminates)

Figure 1. The action overlay relating to thefts,
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{ { REFERENCE -NAME OVERLAY1)
{VARIABLES X Y Z H)
(INTERCEPTORS (H (X STEAL Y FROM Z)))
(UMIVERSE
LEARN (IDEMTITY X)))
LEARN (MOTIVE-OF X IN H)))
PHYS-GETBACK Y FROM X))
REPLACE Y))
CAUSE (POSCHANGE Z)))
CAUSE (NEGCHANGFE X PHYS-STATE))})
CAUSE (NEGCHANGE X PSYCK-STATE}))
COMMUNICATE H TO AUTHORITY))
EVADE 2))
X EVADE AUTHORITY))
X CONCEAL Y))
X INTERFERE-WITH
(Z PHYS-GETBACK Y FROM X)}))
13 (X DENY H))
(14 (X CELEBRATE))
(15 {X SELL Y TO ANOTHER)))
(SELECTORS SELECTNETY)
{SWITCHERS f(z BE HAPPY) QVERLAY2)
(X BE UPSET)} OVERLAY3))
{TERMINATORS))

NOTE: SELECTNETY points to the struct-
ure shown in Fig. 3.

— e iy Py gy Ny T iy P
et v Sl Pod Pod Pad g P

Figure 2
The LISP data structure for
the theft overlay of Fig. 1.

Within this paradigm there are many specific fac
tors which can assist in the prediction of the
relevance of each potential expectancy in EA.
For example, if Z already knows X's identity,
then his future activities should not be expect-
ed to include the determination of X's identity.
Likewise, such factors as X and Z's relationship
(student-teacher, husband-wife, jailer-inmate,
neighbor-neighbor, etc.), 7's belief about X's
motivation for the theft (if ascertainable), and
the relative value of Y to Z, will all be good
clues for deriding, say, whether Z can be ex-
pected to attempt a physical get-back of Y from
X or a psychological retaliation against X, or
both. If some sort of retaliation seems in order
some notions of degree and kind will be of im-
portance - Jake is less likely to stick his ton-
gue out at Pete than to break down his fence!
Fig. 1 contains a partial list of relevant fac-
tors for the theft overlay which might be reason-
able to include in a larger system."EX-PECTRE-1
contains only a subset of these tests, as shown
in Fig. 3.

The tests of Fig. 3 are made by the expec-
tancy selector function, SA. SA is currently im-
plemented as a "ternary transition network",
serving as a discrimination network. "Ternary"
refers to the characteristic that each node in
the net branches three ways: "yes", "no" and
"don't know". Nodes in the net are memory quer-
ies and each arc has associated with it a set of
saliency setters - assignment statements which
specify estimations of the saliency of various
elements of EA when the arc is followed. All sal-
iency estimations are preset to 0.5 out of 1.0;
the net changes only those for which definite
clues are present one way or another.
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Sa is intended to model the phenomenon
wherein a human comprehender seems to acquire
some very cursory, rough gestalt of the situa-
tion, or in other words, which expectancies in
EA are salient and which are not. SA therefore
imposes only a rough ordering on EA so that
those elements presumed most salient can receive
more attention in subsequent PARTOF searching
to be described. An "incorrect" judgement of
saliency will in principle never preclude com-
prehension; it will simply increase the process-

ing time required to discover relationships lat-
*v. on, and perhaps cause an inability to prefer
one interpretation over another in a case where
there are several competing interpretations. In
a sample run, EX-SPECTRE-1 produced the saliency
vector indicated by the dashed lines in Fig. 3
for the theft example.

The Expectancy Cloud

Having been roughly assessed for saliency,
all members of EA are thrown into a central ex-
pectancy cloud, EC. Each expectancy in EC is
backlinked to its contributing overlay, since
the cloud will generally contain expectancies
from numerous concurrent overlays, and since
final interpretations will need to reference the
contributina overlay.

A person is never fully aware at each mom-
ent exactly what his expectancies are. Apparent-
ly, an expectancy is a subliminal thing. The
cloud, EC, therefore, although explicit and com-
posed of discrete and isolatable expectancies,
is intended to model a component in the human
which is not part of his immediate awareness
from moment to moment, but which in retrospect
generally seems to have contained most of the
necessary information for contextual interpre-
tation.

The expectancies in this cloud define the
context at each moment in the model.

Stepwise Indexed Algorithms

An active expectancy in EC describes some
activity which is anticipated to have some
chance of occurring at some future point. Such
an activity can be characterized by a common-
sense algorithm, or set of algorithms, where an
algorithm is some temporally sequenced, hier-
archical collection of subgoals, or steps. As
one penertates deeper into the hierarchy, steps
become more specific and the alternatives more
numerous. As a basic data structure, the AND/OR
graph provides an effective declarative (as opp-
osed to procedural) method of specifying common-
sense algorithms. (See (NI) for instance).”

Since an expectancy is an anticipated act-
ivity, and since activities can be represented

*DTE: Since the time of first submittal of

this paper, a new formalism for representing
commonsense algorithms has heen developed and
partially implemented. The new formalism ren-
laces the ANDIOR graph, which lacks the struct-
ural constraints needed for representing gen-
eral commonsense algorithms. See (R3).



by algorithms, each expectancy in EC is in fact
no more than a pointer to one or more common-
sense algorithms; hence each expectancy implic-
itly references al assible steps in those
algorithms. [If a subsequent input, T, can be id-
entified as a step in the algorithms referenced
by some expectancy in EC, this identification
will relate T to the current context, K (repre-
sented by EC) thereby providing an interpreta-
tion, I{T,K). This relating of an input as a
step in some activity which has been anticipated
via an action overlay is the central idea of
the theory.

The collection of commonsense algorithms,
the algorithm base, used for the contextual in-
terpretation process is the very same collection
of algorithms the comprehender would use in ac-
tually getting about in the world (first-hand
problem solving). This is a crucial point in my
opinion, since it directly brings the world
model to bear on the process of comprehending
lanquage.

However, the interpretive task is the in-
verse of the executory task; rather than "trans-
late a goal into some plan of action," the task

(S5 is the l15-position saliency vector

{(sl,...,815) which receives assoc-
iated saliencies for each E in UNIVERSE)

(Y INSURED BY 2}

Se=(0.5,...,0.5)

_.1?:1;5‘ Y or DK

- r-‘ — —_—
(MONEYVAL Y HIG}D’-‘{:;Z 0.2

s11:0.8

(Z XNOW (IDENTITY x)))

Y or DK
52:0.8
87:0.7
89:0.7
s11:0.8

83:0.3
s4:0.8

\

AND (Z KNOW
IDENTITY X))

814:0.7 £3:0.4
815:0,2 815:0.8 54:0.8
|
\
53:0.2 (OR (FUNCTVAL Y HIGH TO 2) |
g84:0.2 (SENTVAL Y HIGH TO 2
85:0.2 |
56:0.2 Y or DK
89:0.2 i
512:0.2 55:0.8 I
514:0.2 - g7.-0.8 |
511:0.7 i
i
/
|

(DIFFICULTY (Z
REPLACE Y) HIGH)

&d

(forget it!) END

(leaxrn mot-

ive) (FRIENDS X 2)}} N Y or DK
sB:0.7
\ Y s1:0.1
6§1:0.8 810:0.2 813:0.8

&

(notify auth.
and forget)

N\52:0.8B s512:0,2
88:0.2 s13:0.8
s9:0.3

(DIFFICULTY
(Z LEARN (IDENTITY X))

(learn motive,
be gentle

s3:0.2 810:0.8
£§5:0.8 812:0.2

(report to 88:0.9 — 82:0.8
auth, cry 89:0.2 (ENEMIES X 2) s6:0.4
a 1ot) \ - 3730.6

£8:0.3
| 89:0.3
G;Eb 85:0. 3 $10:0.3

(do as mu as s86:0.2
poss. to get 87:0.3
back, not so s8:0.9
much personal) s10:0.9

s11:0.8
(give him s12:0.,7 (get it back,
hell) but be as gentle
ags possible)
Figure 3. Selector function discrimination
net for the theft overlay of Fig. 2,
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is "ascribe a aoal to some observed plan of ac-
tion," or more specifically, 'characterize some
observed action as a step in tne attainment of
some inferred goal." Because of this difference
in use, the data structure used in EX-SPECTRE-1
for storing commonsense algorithms is an aug-
mented AND/OR graph which | have called a step-
wise indexed algorithm (SIA). In an SIA, each
specific step in the alaorithm is represented
by (1) a pointer to a step schema, and (2) rel-
evant binding information relating the instance
of the schema to the schema. For instance, in-
stead of writing (P GOIO DRUGSTORE) as a step
in some algorithm for getting rid of a headache,
this GQOIO step, as well as all other GOIO steps
in the entire algorithm base, 1s represented by
a pointer to the step schema (X GOIO Y), with
the appropriate bindings, ir. this case, XP and
Y:DRUGSTORE. In addition, each step in the SIA
is "father-linked" to its parent step. This will
permit traversing an SIA bottom-up, from a step
to higher level qoals of which it is a part.

Each step schema is backlinked to each of
its occurrences in the algorithm base through
its occurrence set. This provides an index into
the algorithm base to all points where the sch-
ema is referenced. For the (X GOIO Y) schema,
this occurrence set would probably be quite
large in a full-scale system. Hence, finer dis-
tinctions among the various types of GOIO (as
one example), based on the specific conceptual
features of X and Y, would probably have to be
made by the indexinq scheme to improve on the
search efficiency of the PARTOF function, about
to be described.

Fig. 4 shows the SIA and related steD
schema for oart of a physical get-back goal,
referenced by one of the expectancies in the
cattle theft example.

PARTOF Searching Upward Through SIA's

SIA's and step schemas are nut to use as
follows. In addition to beinn scanned by the in-
terceptors of all inactive action overlays, each
input to the overlay system is matched to some
step schema. If the input is unambiguous, and if
a suitably formal system of representational
primitives is used to represent the meaning of
each input, then at most one schema will match
each input. In the cattle theft example, "Jake
saddled his horse," represented in EX-SPECTRE-1
as (JAKE PUT SADDLE ON HORSE), matches the step
schema (X PUT Y ON Z). This schema represents
the more general concept of an actor putting
some object on top of another.

Having matched the input to some schema,
the task then becomes one of locating occurren-
ces of that schema in some active expectancy in
EC by upward searches from each of the schema's
occurrences in the algorithm base. This opera-
tion is performed in EX-SPECTRE-1 by calling the
function (PARTOF <step > <algori thm>) for <step> =
(X PUT Y ON Z) and <algorithm> varying over the
members of EC, in the order of highest saliency
first. Identifications of the schema in some
member, E, of the cloud define upward paths from
the schema to E through SIA's. Such a path, from
a step to an expectancy, is defined to be the

contextual interpretation of the sentence,

I{T,K}.

Fig. 4 shows by dotted lines one path of
length 3 which EX-SPECTRE-1 discovers as an in-
terpretation of "Jake saddled his horse" in
C("Pete stole Jake's cattle"); Jake is going
directly after Pete to get his cattle back. Ano-
ther interpretation not shown, but which is also
discovered, is in the "Jake will inform the
sheriff" expectancy: Jake is going to see the
sheriff.

As a point of engineering, the motivation
for searching upward through SIA's (from the
step schema to the element of EC), rather than
downward (from the members of EC to all possible
step schema) has to do with the phenomenon that
the typical commonsense algorithm tends to be-
come quite specific after just a few levels.
That is, even though the top few levels of an
expectancy describe general subgoals, the lower
levels beqin quickly to deal with the particular
details of the objects and people involved. Put
another way, the infinity of detail in_a common-
sense algorithm is a phenomenon of breadth ra-
ther than depth. Because of this, if the occur-
rence set indexing is refined enough, the number
of relevant occurrences of a schema referenced
by a particular input can be made quite small.
This means that the branching factor in an up-
ward search will be small in comparison with the
branching factor coming downward from the expec-
tancy to the step. To illustrate, even though
the full occurrence set for the schema (X GOIO Y
might be large, the subset of occurrences index-
ed by the particular form (X GOIO STORE) would
only be 2 or 3 in number (e.g. it occurs in an
algorithm for buying something, or returning
something, and perhaps one or two others).

Multiple Interpretations

In any given context C(T, ,... ,T;) , there
will generally be several competing interpre-
tations. A human comprehender seems usually to
be able to prefer one over the rest. Although it
is too early in the research to prescribe exact-
ly how such a preference should be made by the
model, two obvious factors are (1) saliencies of
expectancies and (2) interpretation~path length.
That is, a fit of a step into an expectancy of
high saliency should be preferred over a fit of
that step into one of low saliency. In conjunc-
tion with this, it would seem reasonable to pre-
fer shorter interpretation paths over longer,
more remote ones. In fact, in a full-scale sys-
tem, it would probably be necessary to have
PARTOF give up its scanning after, say, 10 lev-
els of some SIA; after that point, even if some
interpretation could be found, it would almost
certainly be obscure.

Related to these ideas is the conjecture
that sequences of purposively-constructed com-
munication, say as found in children's stories,
are organized so that the average contextual in-
terpretation path length will be relatively con-
stant across all cultures, relative to a typi-
cal algorithm base within each culture. Perhaps
the constant is 3, perhaps 8; it would be inter-
esting to ascertain whether or not such a metric



exists, and if so, to discover its range. That
is, on the average, how far do we have to search
to connect each thought in with the context? Too
short and we become red, too long and we be-
come lost.

Uses of I(T,K)

An interpretation is a useful thing in it-

self. However, once an interpretation path is

discovered, two other context-related operations
become possible. First, all steps "to the left"
of the identified step, S, in algorithm A -
those steps which must logically have preceded
S in A - can be generated as inferences. That
is, if we know that Jake has already saddled his
horse, and this has been Interpreted as part of
a physical get-back, then Jake must already know
who and what X and Y were, have decided on some
plan of action, perhaps qotten his gun, and

gone to the barn. Such inferences relate to the
- — .y
-
Schema: ,’ A4~B means schema
(X GETBACK Y FROM 2) <~ variable A is bound
ALGORITHM: * to value B
OCCURRENCE SET i * “aemue®® »

* sl

Xo=7 X7 Ko=)
Y&~ LOC (X) Y =X Yoy
2e=1.0C(2Z) Ze~(X RELINQUISH Y yA
r
Schema : Schema: Schema :
(X GOTO Y FROM Z) 4, (X FORCE Y TO 2) {X TAKE Y FROM 2)
ALGORITHM: = ALGORITHM: * ALGORITHM: *

OCCURRENCE SETH *
*

» e

X=X We=X
Y& Y Xe=HORSE
247 Yo Y

Z Goun7

Schema:
(X WALK FROM Y TO
ALGORITHM: » &

OCCURRENCE SET:

*
X
Ya&e=1,0C (HORSE)
Z émeL,OC (X)

X=X
Yé&=SADDLE
24=HORSE

OCCURRENCE SET:

*
n

-

OCCURRENCE SET:

*
" *

W=

. Xe=AIRPLANE
Yy
YA

Schema:
(W RIDE X FROM Y TO 2)
ALGORITHM: NIL (algorithm is

me thod-specific)
*®*

]

OCCURRENCE SET

L]
*

*
Xo=W X oW
Yea—=HORSE Yé=HORSE

Schema: ' Schema: Schema:
(X PUT Y ON 2) (X CLIMB-ON Y) (X KICK Y) -
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OCCURRENCE SET:f *
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*

Figure 4. Stepwise-indexed algorithm (SIA) for the
physical getback of an object, and related

step schema.
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class of conceptual inference termed "enablement
inference" in the model of (RI).

The second use is that the original high-
level expectancy in EC can be replaced by the
set of remaining subgoals in A - those "to the
right" of S in A. At that point, the system has
begun to "track" a particular algorithm, and can
descend from general to more specific expectan-
cies which are the subgoals remaining to be ful-
filled in the original expectancy. This narrow-
ing of expectancies is perhaps a rough approx-
imation of the way expectancies evolve from the
general to the specific during the course of a
human's comprehension of a story or sequence of
events.

Overlay Switchers

In a system which relies upon expectancy as
its primary mechanism, it seems to be as import-
ant to specify negative expectancies as well as
positive ones. That is, to make explicit what
classes of behavior would be "anomalous" in the
current context, and to specify what the system
should do when it detects an anomaly.

The switchers, W,, specify these negative
expectancies by making explicit a set of patterns
which are overtly anomalous in the context the
overlay represents. These patterns become active
at the time A is initially activated, and serve
as interceptors for subsequent input which "vio-
lates the spirit" of the overlay. Associated with
each negative expectancy is a pointer to another
overlay to which the system should switch in case
that negative expectancy is realized.

In the prototype system, there are just two
switchers for the theft overlay; one of them is:
(Z BE HAPPY): OVERLAY2, where OVERLAY2 represents
the bundle of expectancies relevant to classes of
practical jokes. At the time of writing, this
negative expectancy can intercept anomalous input
and prepare to switch, but no switching actually
occurs yet. Details of how accumulated informa-
tion can be transfered from one overlay to ano-
ther have not been considered yet.

Related Issues

There is not room here to discuss all the
related topics and questions raised by the con-
ceptual overlay approach to context. For a ful-
ler discussion, the reader is referred to the
unedited version of this paper and to the new
formalism for commonsense algorithms (R3), both
available upon request.

Conclusions

While the task of interpreting actions in
context is only one aspect of "the context pro-
blem", its applicability is broad; even thouoh
much of what we perceive is static information
about the world, it usually relates, via rel-
atively low-level inference, to some action or
another. In this sense, nearly everything relates
one way or another to algorithmic knowledge. And
within this domain, one basic mechanism is as
applicable to understamling why the president
summoned the tape-erasing technician as it is to

understanding why Mary wanted the car keys when
she was hungry.

Specific conclusions are not yet in order.
However, a general conclusion to be drawn is
that algorithms play a central role in the in-
terpretation of volitional actions in context.
Since algorithms presumably account for a large
portion of a person's belief system, the theory
is actually one of how interpretation of percep-
tions is influenced by beliefs. Although the is-
sues discussed have of necessity been limited in
scope, | believe that the basic idea will prove
to be fundamental to most other context phenom-
ena.

Current plans are to continue the develop-
ment of EX-SPECTRE along the lines of the new
commonsense algorithm formalism. Then, after
seven more prototype version numbers, it will
be time to rename the system!
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