GENTZEN-TYPE FORMAL, SYSTEM REPRESENTING PROPERTIES OF

FUNCTION AND ITS

IMPLEMENTATION

Toshio Nishimura Masakazu Nakanishi and Morio Nagata Yoshiaki Iwamaru
Dept. of Math Faculty of Eng. , Keio Univ. The Mitsui Bank Ltd
Univ. of Tsukuba Yokohama, Japan Tokyo, Japan
Ibaragi Pref. Japan
ABSTRACT In order to prove these sequents,we may use the

We describe a theorem-prover (called TKP 1),
which is based on a Gentzen-type formal system
[14). TKP 1 can directly deal with functionals and
the composition of functionals, it comprises the
fixed point operator and a kind of facility for
induction. Let us attempt to prove P(F(x, y)) for
F(x,y) such that F(x,y) = ¥V, f"(x,y). Provided
that P(F(x,y)) can be obtained from P f f"(x,y))
n=0,1,2,..., TKP 1 automatically gives the induc-
tion hypothesis P (f" (x, y)), and then prove P(f""
(x,y)). It. can efficiently make proving procedure

for properties of recursive programs. We can
supply assumptions and definitions at will. TKP 1
displays an easily read proof-figure.

KEY WORDS
LISP, automatic theorem proving, inductions,

proving programs correct, fixed point operation,
Gent/en-type formal system, composition of
functional, infinitely long expression.

1. INTRODUCTION

Many methods for proving theorems about pro-
grams have been studied. ([1), [2], [6] etc.)

Some of them are works on the fixed point operator
(2), [15]. We have tried an implementation
of an automatic theorem proving system, called
TKP 1 (Tsukuba-Keio Prover No. 1), which is
based on a Gentzen-type formal system represent-
ing the properties of functions (14). The plausi-
bility and the completeness of this system are
certified by the monotonic functional interpretation
[13], 1141. Moreover, the cut-elimination
theorem (3) holds in this system. The basic ex-
pressions of this system are functionals and com-
position of functionals, wherein the usual logical
formula is a kind of functional. Connectives be-
tween functionals are decomposed in a way simi-
lar to logical connectives. Besides, the system
includes the operator for infinitary sum, from
which we can apply the fixed point operator in this
system. Let us consider to prove 2, £'(x) » G.

In this case the following sequents must oe proved.

f°(x) » G (n=0,1,2, ..)

of

mathematical induction.

First, we prove F°(x)->G. Next f"'(x) - G is
tried to prove under the induction hypothesis
f"(x) > G.

Because TKP 1 can directly deal with the com-
position of functionals and provides a kind of
facility of fixed point operator and induction,
TKP 1 can efficiently process the proofs for prop-
erties of recursive programs. As TKP 1 is
developed as the cut-less system, it can easily
decompose a theorem to be proved into some
subtheorems. And it accomplished the proofs of
most problems described in (8), and moreover,
acceding to user's demands, assumptions and
definitions are acceptable by TKP 1, and it
displays the proof-figure in a plain form after
problems are proved. In section 2, we shall
explain the outline of the formal system and in

3 describe the formal system, The way to prove
the problem shall be explained in 4. The out-
line of implementation is given in 5. In 6 we
discuss some improvements and its future
applications of TKP 1.

2. OUTLINE OF FORMAL SYSTEM

Now we shall briefly explain our system, which
is mainly based on 2 valued logic. The underly-
ing formal system is given in [14], and it can be
interpreted by monotonic functionals. The plausi-
bility and the completeness can be certified in a
way similar to [13].
Let F and G be functions of the type a-> and B-> Y
respectively. We denote the composition of F and
G by

F- G (F- G(x)=G(F(x)))
If F and G are compatible and of the same type,
the join of F and G is denoted by

FVG
A formula P may have the value true (i) or false
(). Let the function ¢ always have the value ¢,
and the function | the value i. Then a formula
p can be considered as functions and | accord-
ing that they have values ¢ and | respectively.
And the expression PG has the value G if P is
true and ¢ if P is false.
Let us consider the following expression

if P (x) then y else f(x)

The value of this expression is y if P(x) is true.

and is f(x) if P(x) is false. We can represent this
by the following composition.

P{x)-y v IP{x) {(x)
where P(x) denotes the negation of P(x).
Next, we consider the program
begin F, G
loop \f P then begin H;K;goto loop end end

This can be represented by

FG(V (P-H K. —P

n

where A? =1, A'-A A" A* = A-A', ... A" =A-A7

and V, A" =A°VA' VAT V...

When A and B are formulas, we can consider that
the composition A B means 'A and B', because

1:1=s1, }¢=¢, $.1-¢ and ¢ - ¢ =¢. The similar

method concerning | and ¢ is shown in [2).

Similarly the join AVB beans *A or B', because
IVI=1, IVvé=], ¢vl=1and ¢vd=¢,
The program

begm i: =1, s:=0;

loop :if (i > N) then begin s: = 8 + a.:

i:=1+1; goto toop end end

will show the same resultas s : = a; + ...+ an.
This represented by the expression of the form

(ir=1)(s: = 0) V,((1> N)(s: = s+ aj)(i: =i+1))" (i>N)
- B a+....+a4d

which is called a sequent. 'F - G' means that G

is an extension of F. In the 2-valued case, for

formulas A and B, *A > B' means that A implies

B, and so is identical with A-* B in Gentzen's

original form [3J.

Now, we shall consider the following recursive

definition of the function F (of type a).

F(x,y) =_if P(x)'"°" y else h(F(k(x),y))

It is well known that F can be defined as the least
fixed point J/, f"('o) (denoted by dl), if we
introduce the following function f of the type a-a
111).

t°(e)=1(06)=9
f**'(¢) =if p(x)theny else h{{" (¢)(k(x), ¥))
{repregented as p(x}y v 1p(x)- h{L" (¢ }k(x}, ¥}))

On the other hand the function G of the same type
as F is defined by
G(x,y)=if p(x) then y else
Then we can rewrite G as follows,
G(x,y) = 3glx,y}=ev ¥, (P{(x)-yvip(x)- g7 ¢) (kix),
h(y))
In order to prove that F is the same function as G,
it is sufficient to show the following two sequents:
af(x,y) » g&(x,y) and g(x,y) > 2f(x,y)

We shall use the first of these to illustrate the
proving procedure of our theorem prover discuss-
ed in 4. As is shown in the following section,
rules of inference will be given symmetrically for
the left hand side and the right hand side of -* .

(G(k{X), n(y))

58

3. THE FORMAL SYSTEM
Here, we describe simply the axioms and rules of
inference. The meanings of most symbols em-

ployed here have been briefly explained in the
previous section . Herein we use Greek capital
letters, r, A etc., to represent a finite set of
functionals such as F» F™ . In Miner's
LCF system UOJ, ",™ in both sides denotes the
conjunction. In our system,"," in the left hand side
of m+ represents the conjunction and ", " in the right
side denotes the disjunction. A proof-figure is a
tree constructed by sequents, in which every
uppermost sequent is an axiom and upper sequents
and a lower sequent are connected by a rule of
inference.

3.1 Axioms

In general, various assumptions are acceptable by
TKP 1 as axioms, however, we establish our
system using only logical axioms as the most
basic ones.

Logical axioms are sequents of the following form.

1. ¢4, where ¢ is the particular constant,

2. ', F,Iv+48 , F, A¢

3, ij, API ..P B,r? -a-ﬂl, AH‘...P‘B, ﬂg,
where Pj 18 a formula.

3.2 Rules of Inference
3.2.1 Rules of Replacement

(1) IF, FL ¢ VF and FV ¢ can be replaced by F,
the converse also hold.

(2) ®F and F ¢ can be replaced by &, the con
verse also holds.

(3) 31 an?¢:an be replaced by $and | respec-
tively, the converse also holds.

(4) PzQ, P2Q, 1(PQ), (PVQ) and 11P can be
replaced by (P2 QA (Q D P), TPVQ, TPVIQ
TP-71Q and P respectively, the converse
also holds.

(5) If 4> occurs in the left hand side of a sequent,
then the left side can be replaced by * and $
in the right can be omitted.

3. 2.2 Rules of Inference with respect to Logical
Connectives
{1) v - left
N, AFB, I» +A I'n, AGB, '+ &
I, A.{FVG}: B, I': » A

V - right

' - A:r,AFB, AGB, A:
r -« &, A-{FVYG) - B, A

where F and G are compatible functionals.

d ~ left

F'v,AF"(¢) B,l2 -8
f1. A aF. B, Iz =~ &

(2)
n=0,1,2,...

d - right

FsAv,A-F™ () B, 4=,
", A- aF+ B,

A3 F B
A

From the compatibility of ¥F"{ %} and 28F,
these rules of inference are reasonable.

(3) - left
M, A-P(g/h}1«B, I':, A-vh-P B »p
I.I ,A' V hP- B, rg -+
where g is an arbitrary functional of the
same type as h, and P [g/h) denotes the
result obtained by replacing h for g.
Moreover, we shall use the symbols y -right,
v -left, aright and J-left as follows.
y - right
C»nv, A-P (/b)) B, Ax
" » 0y, AcYhP-B, Az
where f is an arbitrary free variable of
the same type as h not contained in the
lower sequent.
(4) i~ left
'y, A-PE/hM-B, T2 »A
F., A- "lhp' B, rg - A
where f is a variable satisfying the condi-
tion in the description of w- right
1 - right
F+bi, A-P[g/h)-B,A2, A 1hP- B
r - A,, A« JhP- B, &
where g is an arbitrary functional satisfy-
ing the condition in the description of ¥ -
left.
3.2.3 Other Rules of Inference

As the occasion demands, we can add the following

practical rules.

[y, Te » A, C Ay Iy, C, 1y + A1, B

[‘;, I's e i'\l, &

and

A, ..., An - B, ..., Bas F -+ G

AF,, Am F+ B.IG,..., BaG

where Ay ., Am , B,, ..., B« are of typea+8
and F and G of type &8 » r. These rules® are easily
verified.

59

4. PROVING PROCEDURE OF
TKP 1 AND ITS EXAMPLE

In this section, we illustrate the theorem prover
based on the formal system which is described
in the previous section.

4 .1 Illustrative Example

We shall illustrate the proving procedure of
TKP 1 by giving the proof of the following
example :

F(x,y) & if p(x) then y else h(F(k{(x), y))
G(x, y) & _iip(x) then y else G{k(x), h(y})

Then F(x,y) = G(x, y)

As described in the previous section, F and G
can be defined by the series of formulas :

f*x,y) =g"({x,y) = ¢ {4.1)
£ (x,y) = p{x)-yv 1p(x) - h{f"(k(x), y))

(4. 2)

g™ (%, y) = p(x)-y v Ip(x) - g*(k(x), h{y))
- (4. 3)
Fix,y) = df(x,y) = YV, (" (x,y) (4. 4)
G(x,y) = sg(x,y) = V, g (x,) (4. 5)

where f(¢) and gh{¢) are abbreviated simply by
f* and g, respectively.
LLet us illustrate how to prove

F(x, ¥y} -~ G{x,y)

in our theorem prover. We adopt (4. 2), (4.3),
(4.4) and (4.5) as definitions, and the following
as an assumption :

h(¢) = ¢ (4.6)
{(4.1) is provided in TKP 1.
As

F(x, ¥y) » G(x,y) (4.7)

is not an axiom, (4,7) is automatically transform-
ed to (4.8) by (4. 4) and (4. 5).

oIty eV ogh(x,y) (4. 8)
Then TKP 1 attempts to prove
Py MGy Vgnny) (4.9

At the same time, TKP 1 automatically generates
the induction hypolthesis as an assumption

f7(x,y) = g (x,y) (4.10)

In (4.9) it is clear that f"-case 18 provable, so
we trace the B+, case.

(4.9-1) """ (x,y) ~ g (x,y)
Then we have
(4.10-2) p(x)-yv 1p(x)-h{(f"(k(x), ¥)) - 8" " (xy)

The p(x).y ~cnse i8 also easily shown, because,
by (4.3},

(4.10-3) p(x)- yvip(x)- h(f"(k(x},y)
+ plx)-y v p(x) - g* (k(x}, h(x))
The prover tries 1o prove

(4.10-4) p{x)« h(f"(k(x), y))
+ p(x)-y, p(x) - g"(kix),h(y))
under the hypothesis of the
induction (4. 10)

(4.10-4) and the result obtained by the replace-
ment of f” with g" in (4. 10-4), where this re-
placement is possible according to the hypothesis
(4. 10), have no logical connectives and do not
match to definitions and assumptions (4. 1) ~ (4. 6)
and (4. 10). Therefore TKP 1 fails to prove
(4.10-4), and it must backtrack to (4. 8). Now it
attempts to prove

P, y) VE (Y VIS () V (xey) (40 10)

At the same time, TKP 1 automatically generates
the induction hypothesis ["(x,y) = g"(x,y)

and "' (x,y) = g"" {x,¥)

The case f%(x,y) °\En (x,y) is tr‘o‘%vial. On the
other hand, the case F' (x,y)> Y, (x,y) is prov-
able by using the assumption (4.6). Now we show

below the proof of
" 0y - g™ y) (4.12)

which is accomplished by TKP 1
f-nti(x’y) - En‘? (x’ y)

Iby definitions (4. 2) and (4. 3)
p(x)-y v P(x)-h (") (k(x), ¥))

» p(x)» yvip(x}- g"" "' (k(x), h(y))
by inference rule of v - left

il

p(x). y »p(x) . y, 1p(x)-g""" (k(x), h{y))
. (Axiom 2.)
W(x)h{f (k(x}, y)»plx)y, p(x)-g"*? (k(x),
hiy))

Toy T (x,3) - g7 (X,) .
Tp(x) - hlg"* (k(x), y)) + p(x)- y,1p(x)- g"" “k(x,

‘[h(y))

by definition (4. 3) and g**! (x,y)

1p(x) * h { p(k{x)). yyp(k(x))- g~ (k {¥),
hiy)}} = 7pi(x) - M+lk(x), hiy))

by definition (4, 2) and decomposition of

function

Tp{x) { plk{x)} h{y)V 1p(k(x)) h(g"(k*(x),
h(y))

=+ 1pix). {p(k(x}) -h{y) v 1p{k(x}) "

h (f"(k*(x), h{y))}
by V - left, V - right and
f"(x,y) =g~ (x,Y)
L p(x) . p(k(x)): h(y)+"jp(x) . p{k(x))-h{y),
1p (x) - h{g"(k*(x}), h{y}))

{(Axiom 2.)
1p(x) - 1p(k(x))- h{g"(k*{x}, h{y)))

» p(x} - plk(x))-h(y), 1p(x)- h(g"(k*(x),
h (¥)))

(Axiom 2.)

-

This completes the proof of

F{x, y) Gix,y).

-

4. 2 Application of Rules of Inference

First, TKP 1 examines whether the same expres
sion exists in both sides of a sequent or not and
whether an undefined element exists in the left
hand side of a sequent or not. If there exists a
same expression in both sides orwin the left hand
side in a sequent, the sequent is provable. If a
sequent is not provable and includes some logical
connectives, TKP 1 transforms it according to
the top level logical connectives in the left and
right hand side of the sequent.

We shall show the transformation rules. In these
rules the left hand side of =» is a given sequent
and the right hand side is transformed sequents.

(1) 1 (not)
Y S S SR R - W |
I - 6, TA,1 2 AT » 4,9
{2) A {and)
I, AANB,b*T51,A B,A + T
F+8, AAB, 9= V+A A Y and 0,8, %
(3) Vv (or)
VAVB AT 3 LA AV and I, B,a~» "
(4) Implication and Equivalence

Implication and equivalence are replaced
by TAVB and (ADB)A (B™ A) respectively.

(5)

Decomposition of Functions

McCarthy' s conditional expression is based
on the form of if - then - else, e.g.

if p then ci else en.
Such an expression p is called a p - type
expression. In the proving process, the
following rules are applied to the expression
which contains p - type expressions,
(i) f (p) is decomposed into p
(ii) f(p op k) and f(k op p) are decomposed
respectively into p op f(k) and f(k)op p,
where op is a logical connective and k is
not a p - type expression,
f{-yp) is decomposed into 4p, where p is
a p-type expression.

Undefined
|

(iii)

Element

¢

(6)

d D w
These rules are applied in the following order.

7 in both side, A in left side, v in right side,
V in left side, Ain right side, implication
in both sides,equivalence in both sides,
decomposition of function and undefined
element.

4. 3 Application of Assumptions and Definitions

When a sequent can not be transformed by rules

60

of inference and is not provable, TKP 1 attempts
to apply assumptions and definitions which are
given by the user to the sequent. In applications
of assumptions and definitions, a pattern-match-
ing facility is required. In matching processes
for assumptions and definitions, TKP 1 first tries
to make assumptions match and then definitions
afterwards. When an assumption matches two or
more subexpressions of a sequent, it first applies
to the innermost expression contained in the left-
most term. If an assumption (or a definition)
matches a subexpression, then the right part of
the assumption (or the definition) is substituted
for the subexpression. The prover tries to prove
each new sequent. When TKP 1 can not prove
any new sequent, it will try to apply the next
assumption (or definition) to the old sequent. If

a sequent transformed by an assumption (or a def-

inition) is the same form as a sequent which already

appeared in the proving process, it is considered

that the matching fails.

4.4 Induction

There are situations in which our formal system
must prove the sequents including infinitary sums.
Therefore TKP 1 has the procedure for a fixed
point operator and mathematical induction. Oir
system employs the induction with respect to the
number of applications of functions. The proce-
dure of transformation of a fixed point operator is
as follows. In this section ex(x) denotes an ex-
pression with subexpression x.

n+ i

ex{df) is transformed to ex{")y ex(t
n=0,1,2,...)

(1) },

(2) If the prover can not prove the expression,
ex(3f) is transformed to ex{f’) v ex(f')vex(f""*

n =0,1,2,...)
(3)

The prover generates automatically the induc-
tion hypothesis for i"*" or "*? to prove the
n.

given proposition for all

The prover attempts to prove the transformed ex-
pression. If it is proved, a proof tree which
denotes the proving procedure is constructed. |f
it fails to prove them, it automatically prints out
the trial process of the proof. This output shows
us what kind of assumption is required.

5. IMPLEMENTATION

5. 1 TKP 1 _and KLISP

Our program, called TKP 1, is written in KLISP
(Keio LISt Processor) language which is a subset
of LISP 1.5 [9] [1]. KLISP interpreter on
TOSBAC 3400/30 (24 bits/word, 16K words) has
about 4K cells of free list. As it has GLISP sys-
tem which translates programs in M - expression
into S - expression, so we have written TKP 1

in M - expression.

TKP 1 consists of three phases ; translator,

)

61

prover and viaualizer. These are successively
executed. Problems in input form are read by the
translator of TKP 1 and are translated into inter-
nal forms which can be easily manipulated by the
prover. When the prover succeeds in proving
the given problems, the prover puts proof trees
in S - expression form into an auxiliary memory.
Finally the visualizer receives these proof trees
and displays the proof figures in printed form.

5.

2 Input Form of TKP 1

Using the example of 4. 1, let us explain the input
form of TKP 1. Inputs for TKP 1 are assumptions,
definitions and a sequent to be proved. Each of
assumption, definition and a sequent is called a
statement, and any set of statements which con-
tains a sequent is called a problem. In the case
of the example of 4. 1, inputs for TKP 1 are as

follows.
TE($X, $Y) o+ ?G($X, $Y) (5.1)
H{@) -» @ (5. 2}
c F<N +1>(X,Y) = p(X). YV\P(x). H(F <N>
(K(X), Y)) (5. 3)
: G<N + 1>(X,Y) = P(X). YY\P(X}). G<N>
(K(X), H(Y)) (5. 4)

(5.1) is a sequent to be proved. In our system
"»'" and "@'" means 3 and w respectively.

$x
where x is an identifier, For example,a-{b + c)~+
airb+a. cis written as follows.
FAX($B+3C)->S$A*EB+3A*SC
(5. 3} and (5. 4) are definitions. A general form of
a definition is

r e

where r is usually f<n> (x,, x,, ..., X} {(mz20),
n must be"N +i" (i is a positive integer) and

€ 18 an expression,

A definition is coneidered as a kind of an assump-
tion by the processor, but a formal parameter

Xxj needs not to be written as an arbitrary element
$x; .

5.3 Translation and Retranslation

Translator translates (5.1) and (5. 4) into internal
forms. For example {5.1) is translated to
(“ARROW(((* F)(= X){= YNHH* G) (= X) (=

If the prover cannot prove a problem, no proof
trees are generated. When it fails to prove the
problem, the trial process to prove this is always
displayed.

When a proof tree is generated, the prover con-
structs a proof tree and puts it into an auxiliary
memory.

Visualizer translates this tree to a proof figure
using the structure of stairs corresponding to the
level of sequent in the proof tree. An example

of the proof figure will be shown in the APPENDIX.
The detailed grammer of the input form and trans-

Y)))

lation rules are described in [5],

6. CONCLUSIONS

Many computer programs to prove theorems about
programs have been implemented{(l), (6) etc.).
One of the main features of our theorem prover is
based on a Gentzen - type formal system. Most
significant features of TKP 1 are the following ;
(1) Since cut operation is not required in our
formal system, TKP 1 can be implemented as a
fully automatic theorem prover. (2) The fixed
point operator can be decomposed as it is a
logical operator. (3) An induction hypothesis

is automatically generated. (4) TKP 1 performs
a part of course-of-values induction (7). A
Gentzen - type theorem prover which has the
facility to display proof figures is very useful to
show readable and understundable proof proce-
dures. If we make an interactive theorem prover,
this feature is very powerful. The other feature
involves using an inductive method and fixed point
theorem. Some programs using induction meth-
ods have been already studied (11 (.10), in our
prover, propositions to be proved are not re-
stricted by a particular programming language.
Providing assumptions and definitions to this
prover, results in a large generality and flexi-
bility with our program. In spite of the ability

to prove all examples described in (8), our formal
system and our theorem prover are quite concise,
namely, 4K cells are available for the prover and
data.

Considering the facts described above, we sum-
marize here some future aspects of the study of
our program and formal system.

(1) The program can be extended to accept a
kind of dynamic assumptions, e.g., procedu-
ral assumptions (4).

(2) It may be anticipated that this prover should
contain useful algebraic theorems, and theo-
rems which are unuseful should be automat-
ically deleted from the system.

Theorems prepared should be selected ac-
cording to user's requirements.

(3) We concider that our theorem prover will
have more extensive applications when pro-
vided with an interactive facilities.

REFERENCES

[1) Boyer, R.S. and Moore J.S. "Proving The-
orems About LISP Functions, "Proceed-
ings of 3rd 1JCA1, 1973, pp. 486 - 493

(2) deBakker, J.W. and deRoever, W.P. "A
Calculus for Recursive Program Schemes,"
in Automata, Languages and Programming,
pp. 167-196(ed. Nivat, M.),North-Holland,
Amsterdam, 1973.

62

[3] Gentzen, G. "Untersuchungen uber das
logische Schliesenl, |I," Math, Zeitschr
39, 1934, pp. 176 - 210, pp. 405 - 431.

(4) Hewitt, C. Description and Theoretical
Analysis (Using Schemata) of PLANNER
A Language for Proving Theorems and
Manipulating Models in a Robot," ph. D.
Thesis, MIT, Cambridge, Massachusetts,
1971.

[5) Iwamaru, Y., Nagata, M.,
and Nishimura, T. "implementation of
Gentzen - type Formal System Represent-
ing Properties of Functions, " Comment.

Nakanishi, M.

Math. Univ. St. Pauli, 23 - 1, 1974,
pp. 45 - 66,

[6] King, J.C. "A Program Verifier," Ph.D.
Thesis, Carnegie - Mellon University,
Pittsburgh , Pennsylvania, 1969.

[7) Kleene, S.C. "Introduction to Metamathemat-
ics," D. Van Nostrand Company, Inc.,
Princeton, New Jersey, 1952.

[8] Manna, Z., Ness, S. and Vuilliemin, J.
"Inductive Methods for Proving Properties
of Programs," Proceedings of An ACM
Conference on Proving Assertions About
Programs, New Mexico State University,
New Mexico, January 6-7, 1972, pp. 27 - 50.

[9) McCarthy, J., et al., "LISP 1.5 Program-
mer's Manual," MIT Press, Cambridge,
Massachusetts, 1962.

[10] Milner, R. "Implementation and Applications
of Scott's Logic for Computable Functions,"
Proceedings of an ACM Conferences on'
Proving Assertions About Programs,

New Mexico State Univ. , New Mexico,
January 6 -7, 1972, pp. 1 - 6.

(11) Morris, J.H. "Another Recursion Induction
Principle, " CACM, Vol. 14, No. 5,
1971, pp. 351 - 354.

(12) Nakanishi, M. "KLISP Reference Manual
(Revised Version)," Keio Institute of
Information Science, Keio Univ., Yokohama,
1970 (in Japanese).

(13) Nishimura, T. "Gentzen - Style Formulation
of Systems of Set-calculus," Comment.
Math. Univ. St. Pauli, 23 - 1, 1974,
pp. 29 - 36.

(14) Nishimura, T. "Gentzen - type Formal
System Representing Properties of
functions, "Comment. Math. Univ.
23 - 1, 1974, pp. 37 - 44.

St.Pauli,

[15] Park, D. "Fixpoint Induction and Proofs of APPENDIX
Program Properties/' in Machine Intel-

ligence 5, pp. 59 - 78 (eds. Meltzer, B. and Equivalence of two factorial functions
Michie, D.), Edinburgh Univ. Press,
Edinburgh, 1969. Prove F(x) -> G(x,1)

[161 Strachey, C. "Towards a Formal Semantics/’ Definitions F(x) =if x-0 then 1 else x * F(x~I)
in Formal Language Description Languages G(x,y) =ifx=0]thenyelse G(x-1,
for Computer Programming, pp. 198 - 220 X *y)
(ed. Steel, T. B.), North-Holland, Assumption x G(y,Z2) = G(y, x - Z)

Amsterdam, 1966.

epnnnes RLIBP=-1, SYBTER (VERDLION=0} ..opane

hovE TrINN} ~» TELSH.1)
witv MAF LN} TiONS

be FAMsUMIE) » PINIRLYNVINIENOF (D (L=

Mo BUReEIIE.Y) § PUIRIAYVAPIRILBCND {R=] ,X0¥])

Sl ASSUn,TIDwS

8 PFndinn) > QCAPIIX.LD
A BETBARDIETLETY =) GNP BT, Ixs4])

PRADSF 7 |oula

Wikl =) 10i{x.1)
[}

. FlaRp rorsT

]

Sverr FLRPINIVFCU2LIIR) =) TQLNLAL
L J
. u" ".‘.‘.c

|]

See~e FLAMIEL =) FOLE1)

L]

L] FLURD POINY

]

vaver BIE) ~F VHIN.L)

.

* iU PoLNT

L

Snnse B 53 FOLE,L)

LE X RN IR N

Svever FLNTAMIRS =) POLEL)
)
1] Finld PoinT
.

Sever Feyeadin) *> SO 1MoL IVEANLMIXLY)
L]

] NIOT v-RLLN.
:—vbb Faneidin) «p Bed¥iNL) » Udurididot}
: By DRFINITION
:vr-o PIArALYSAPIXIEROT END LN L) =) BEBRINIL) » WONAEDLAIL)
L]

. LEFY vRLIN,
+

seene PIEIAS o) BeOXINa1) o HiNsk>(NL)
L] L]

* . LEFY g-BLIN,
L L]
’ esee PEE) 4 b *3 BC02 10,00 o GCNeLPIEeL)
L L
sage '
> L
*
L
.th’.-.’-oc’-..’.--’_--’---,---.---’--."o.’.u.’

*

L By BAPIWITION

L]

Sasenr PINY & L =» BaOF{NsL) o PUAIRRVAPLEIAGERDI(Tvlonosd
[]

v RiEny veELIN.
+
Sever PEN} o & ~P GEOMKiE) o PIRIAL ¢ APIZIEQUNIIN Y Key)

+

] niany a=ELEn.

:tvoo FLAE + 3 *> BSOMINLLY » BUN) » WAL IEL A A A PR L
+

L]

|]
sesss PLAN 2 3 = DD INLLY 2 4 & APLEEABAAI L1 0oL)

63

L1 %
[T Y]
]
L]
*
Seree \PIXIEESFENI(T=L] =) UCU2IR,1F « QNelP(Nodi
L]

v
L]
v
*
[T o’-.o)---,a-.’- --’---’---’-o-’---’---'
L]

. LEFT &-EuLln,

+
Srwey VPIAF » AOF NI IR=R) =) SLOPINsLY + GdweldiN.i)

. vehLin.
"

Savne RSFQNDIN-L) =F PLLD ,» BERPIR1) o BANSLPIE.L)
L)
’ AW P Tion 9

L]
Sveve XSBCHILA~LsL) =3 PIEY » QEPPINL] o+ DANSLILIN,1}
L]

v
L
*
L]
SucalapsdivaunnPranpans)
*

. by MFinITion

L
Sorre ROEANIX"1sL) =3 PIK) 5 GCOPINLAY 5 PIRIALVAPLN I ENEN (N=1,X01)
.

* AIOMT w-ELAR.
)

Sover EOQCNRIN-Led) =3 PURY o AOMINLL) » PINMEL » VPLRIBOENI (-1, K0 }
L
[] RISNT A-kLEM.
»

Ssens REBCHI(N-1a1) =3 PIE} o SCPMN,L) + PN APEN RO UANPINSL; Eny)
* *

. L RisuT geBiinm,
] L]
. Srove EOBCHI(N=14%) =0 PUK) » QCOPERL) » PiX} o WPLE)
] . v
) .] ol In,
. L} L]
. : Seane PIEL » ROBCNIIR~Lo0} =F PIE) & RQAMASL] 4 PUE)
L]
wied q
a> *
L]
-
RessBagaParahesnPronuvra)

]
mpepe FolNpIig=i.1) ~> P} , SCBPIRL} +» PIK) » QeEmDPLIX=L M=)
*

L ABSSUNPTION }
»

Sevee QANPIA=1eN®L) +> PliAY) o GCODIK L) &+ PIX) o QONDiR=2.ReE)

<«%>
ooy
+

v
*

scese NoBON3in-1,4) =» PR} o Blor{RaL) ¢ 1 o VPIRIAECNI L1, 0oL
L]

) RIignT &~-BLIn,

4

Oreas ASQANBLIR=LaLY =3 PIX? 5 BURDIELL) » 3 » WMLN)
*

. yeRLEN,.

orsne PLE) ¢ RoBnR{N=Sel) =) PLEF « NBDINLR) » §

LI K B L B

Sreve NORANPIR=L,4) =) PLU] & SLODIKAL o | » DEND{EeLe0dy}

L]
L]
.
L]
»
Sevviuacdavadoovhranpavadroajenu)

[] AgyurTion 1
[

Soons SLUPLETL R0L) 3 PLA) o, SUPENLD 5 & « BN i1 001)

tnil SowilnteS Tul PSS ,

