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Abstract

A new resolution strategy for Horn sets of

clauses, each clause of which contains no more
than one positive literal, Is presented which
requires that in each resolution either one an-

cestor be a false positive unit or that one
ancestor and the resolvent both be false. This
strategy emphasizes "relevant" positive units
while controlling the explosive non-unit resolu-
tion. Some properties of interpretations for
Horn sets are reviewed and used to significantly

reduce the computation and storage required to
Implement semantic resolution for Horn sets. This
work was supported in part by the National Science

Foundation and Argonne National Laboratory.

. Introduction

Since the Introduction of resolution for
automated theorem proving, one line of effort has
been to develop strategies and huertstics for
special classes of clause sets or special classes
of problems. One such class is the class of Horn
sets. Recent interest In Horn sets [3,6] stems
from the fact that many strategies that are not
complete in general are complete for Horn sets.
For example, positive unit resolution, which for
Horn sets Is just Pi resolution, is complete.
Negative resolution Is just set-of-support resol-
ution with the set of support the negative clause.
Factoring Is not necessary in order to refute an
unsatisftable set of Horn clauses [3], In addi-
tion to possessing many useful and interesting
properties, Horn sets occur quite often in prac-
tice. For example, the axiom systems for groups,
rings, and many other algebraic systems have Horn
sets as the natural translation Into clause form
as do various formal systems (see e.g., Hermes
[4]). Horn clauses also have a great deal of

intuitive appeal, for the Horn clause -L,V,..V
-Lx VM is logically equivalent to (L /\.../}Lk)ﬂM.
That is a Horn clause represents an impflication

in which each of the antecedents is a positive
unit (or intuitively, a simple statement of fact
or hypothesis) and the consequent is also a posi-
tive unit. Many mathematical axioms and theorems
take this form. Finally, one can apply the split-
ting techniques developed in [3] to reduce a
non-Horn set of clauses to a class of Horn sets;
thus, the theory developed for Horn sets can be
applied indirectly to non-Horn sets as well. The
purpose of this paper is to present a new strate-
gy (essentially a sharpening of semantic resolu-
tion) that is complete for Horn sets and to dis-
cuss some interesting properties of Horn sets
that greatly simplify the implementation of
semantic resolution for those sets.

While many methods for resolution are com-
plete for Horn sets, some desirable combinations
of strategies are not complete together even when
the class of problems is restricted to Horn sets.
Two such strategies are positive-unit resolution
and set-of-support resolution [3], Restricting
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resolution to unit resolution avoids the combina-
torial explosion of the number of clauses gener-
ated on the various levels that is usually present
when non-unit resolution is allowed. For, In the
latter case, when forced Into the non-unit section
of a theorem prover, a program usually must try

resolution on all pairs of literals from a pair
of non-unit clauses. (When ordering or lock
resolution [2] is used this is not the case;

however, these methods are not compatible with
many of the more successful strategies like set of
support.) Thus, once the program leaves the unit
section, even for just one level, relatively large
numbers of resolvents are generated. Then in
developing a strategy that is not compatible with
unit resolution, great care must be taken to
control the non-unit resolvents that are allowed
to be generated lest the combinatorially explosive
non-unit section undo the savings that the
strategy yields in the unit section. Of course,
semantic resolution [2] has as its main goal to
restrict the resolvents generated to those that
are highly likely to be relevant to the proof by
taking into account the intended meaning of the
clauses. In semantic resolution, an interpreta-
tion | of the symbols of the language is input to
the theorem prover along with the set of clauses
to be refuted. Then one parent in each resolution
is required to be false in |I. The idea Is that
two clauses which are both true are less likely

to produce a deduction leading to a contradiction
than are two clauses one of which Is false. The
most widely-used special case of semantic resolu-
tion is set-of-support resolution in which the
interpretation | satisfies just the axioms and is
only Implicitly present. In Section 2 we develop
a strategy which is a combination (but not the
intersection) of positive-unit resolution and

s email tic resolution.

One difficulty with semantic resolution is
that if the domain of the interpretation contains
more than a few elements the computation required
to fully evaluate a non-ground clause may be too
time consuming. In addition there is a problem
of how to represent for each clause the sets of
domain elements for which the clause is true and
those for which the clause is false. For these

reasons, most applications of semantic resolution
have used only very simple interpretations; for
example, the interpretation in which all literals

resolution. In Section 3 the
the amount of computation and

are false yields PI
problem of reducing

storage required for evaluating Horn clauses
based on the use of cross products of interpre-
tations will be discussed. Section 4 will

contain some concluding remarks.

1. Completeness of Positive-unit
Semantic Resolution for Horn Sets

The reader is assumed to be familiar with
the resolution principle for first order logic
and the terminology related to It. The defini-
tions necessary for the particular theorems to



be proved will be presented; then some lemmas will
be recalled and the completeness of the strategy
proved.

DEFINITION:
not more than one unnegated literal.
is a set of Horn clauses.

A Horn clause is a clause containing
A Horn set

DEFINITION: An interpretation | for a set S of
clauses consists of a non-emoty domain D of
objects and an assignment of the predicate, func-
tion and constant symbols occurring in S such that
each n-ary predicate symbol is assigned an n-ary
relation on D, each n-ary function symbol is
assigned an n-ary function on D into D, and each
constant symbol is assigned an element of D.

In the standard inductive way the assignment
of values to symbols in S can be extended to an
assignment of all ground formulas over the alpha-
bet of 5. If @ is the assignment above, define
9' as follows: let @' =@ on the predicate,
function and constant symbols of S; let
@'(£(ty,.n.08)) be ¢(f)[¢'(t1),....¢'(tn)] for

the ground term f(tl,....tn) and (D'(P(tl,...,tn))
be ¢(P)[¢'(tl),...,¢'(tn)] for the ground atom
P(tl....,tn); and let ¢' interpret the logical

connectives according to their usual meaning.

DEFINITION: A clause is falsified by the inter-
pretation | if it has a ground instance which is
false in |I.

DEFINITION: A clause is positive if it contains

only unnegated literals. A clause is negative
if it contains only negated literals. A clause
is mixed if t contains both negated and unnegated

literals.
DEFINITION: A unit is a clause containing one
literal.
DEFINITION: A resolvent of two clauses A and B

is a positive-unit resolvent If one of A and B s
a positive unit. A positive-unit refutation of a
set S of clauses is a refutation in which each
resolvent is a positive-unit resolvent.

DEFINITION: Given an interpretation I, a resol-
vent of two clauses A and B Is a semantic resol-
vent with respect to | if one of A and B is
falsified by I. A refutation of a set S of
clauses is a semantic refutation with respect fto

| if every resolvent in the refutation is a seman-
tic resolvent with respect to |I.

In [3] it was shown that any unsatlsflable
Horn set has a positive-unit refutation but that
for an arbitrary set of support, T, there may not
be a T-supported positive-unit refutation. That
is, the intersection of the two strategies,
positive-unit resolution and set-of-support re-
solution, is not complete for the class of Horn
sets. Since set-of-support resolution can be
viewed as a special case of semantic resolution
[2], It follows that the intersection of positive-
unit resolution and semantic resolution also is
not complete for the class of Horn sets. Now,
semantic resolution is an attempt to bring the
meaning of the symbols into the search effort as
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an aid in guiding a program to the generation of
the empty clause, the idea being that in order to
generate the contradiction that produces the

empty clause, i.e., falsehood, one should use
clauses that are themselves false. Positive-unit
resolution has as its goal the elimination of a
class of resolutions that produces combinatorially
large numbers of new clauses. In addition, there
is an intuitive appeal to positive units as con-
veying more information than other clauses since
it is generally more useful to know that a parti-
cular property holds than to know just that one

of a number of statements hold (see [3] for a
more complete discussion of the advantages of unit
resolution). A strategy that was based on both of
these intuitively appealing ideas would seem to be
a good candidate for an efficient theorem prover
for Horn sets. Since the intersection of the two
cannot be complete conditions must be relaxed
and/or altered in such a way as not to lose the
advantages of the two constituent strategies.

In particular, relaxing the conditions to allow
non-unit resolution must be done with extreme
care.

In the strategy presented below, this rate
of growth will be controlled by requiring that
for non-unit resolutions one parent and the
resolvent both be falsified by the interpretation.
Since the number of false resolvents generated by
a false clause will generally be smaller than the
total number of resolvents that the false clause
could generate, this new restriction should cut
down the number of clauses that will be generated
by non-unit resolution. With this restriction
on the non-unit section, an additional restriction
can be placed on the positive-unit section --
namely, that the positive unit must be false. The
net effect of these modifications is to produce
a strategy that combines the advantages of
positive-unit resolution and semantic resolution
and that relies especially heavily on the seman-
tics, provided by the user in the form of an
Interpretation, to guide it through the dangerous
non-unit section. Also, if the interpretation
does not falsify any axiom, as would be the usual
case, then as in set-of-support pairs of axioms
will not be allowed to resolve directly even
when one of them is a positive unit, a short-
coming of just positive-unit resolution (and
indeed, of hyperresolution In general). Finally,
the reader may also note a great similarity
between the method used in the completeness proof
here and of bilinear resolution of Kuehner [6].
There, of course, there is no restriction on
positive-unit resolution. Also the non-positive-
section of a bilinear program is based purely on
syntactic considerations, i.e., on the use of
negative clauses.

Before proving the completeness of the new
strategy, some previously proved results [3] on
Horn sets are recalled and some lemmas are proved.
The ground case is considered first. The
following two lemmas from [3] are recalled.

DEFINITION: A set S of clauses is minimally
unsatlsflable if S Is unsatlsflable but no proper
subset of S Is.

LEMMA 1. (LEMMA 1 from [3]) If S is an unsatls-
flable set of Horn clauses then there is a



positive-unit refutation of S,

LEMMA 2, (THEOREM 5 from [3]) 1f S is a minimal-
ly unsatisfiable set of Horn clauses, then S
contains exactly one negative clause.

One addicional lemma 1is
completeness theorem is given,

proved before the

LEMMA 3. Let S be a minimally unsatisfiable set
of ground Horn clauses, and let p be an atom
occurring in 5, Then p occurs unnegated exactly
once,

PROOF. Of course 1f p occure in § it must occur
positively at least once or ~p would be a pure
literal, and S would not be minimally unsatis-
fiable. Now suppose S contains the clauses
pAl,pAz"‘.lpAn; ‘PBI,“Pﬂz,....-PBm; C]_'Cz’ -y Ck

vhere all occurrences of p and -p are shown
explicitly. Then 5, = {Al,...,An,Cl,...,Ck] is

also unsatisfiable, Moreover, since each clause
pA, 18 a Horn clause and p {5 an atom, each A, {is
negative, Now if any A, is empty, then p occiirs
in S a8 a positive unit and subsumes any other
clause that contains the positive literal p. 1In
this case, if n”*1, S cannot be minimally unsatis-
fiable. 1f no A, {8 empty and n>l, then by

LEMMA 2 asbove, S1 is not minimally unsatisfiable
for it contains more than one negative clause,
Let S, be minimally unsatisfiable subset of S

and let A, be the one negative clause from S, that
is present in S,, (Indeed, one Ai must be present
or else a subset of the set [C ,C. } would be

unsatisfi{able contradicting thé minimkl unsatfs-

fiability of S5.) By returning the literal p to
A,, one obtaina & deduction of the positive-unit
c}auae p from the clause pA, and the clauses

C,, 1<€)<k. Having deduced Ehia unit clause, all
o} the clauses pA, can be discarded because they
are subsumed by p and a refutation of S obtained
from p and the remaining clauses of S, Thus a
refutation exists which uges only one clause con-
taining the positive Iiteral p. But it had been
assumed that n>1, and so § could not be minimally
unsatisfiable, a contradiction. QED

Of course, if S 1s minimally unsatisfiable
but not Horn, it may very well contain several
occurrences of a positive literal as can be seen

by the example {pq,p-q,-pg,-p-q).

THEOREM 1. Let 5 be an unsatisfiable set of
ground clauees and suppose S {s a Horn set.

1 be an interpretation for the language of S.
Then there exists a refutation R of § such that
esch resolution in R satisfies one of the follow-
ing two conditions: 1, one of the resolvends is a
positive unit which (= false (n I, or 2. one of
the resolvends and the resolvent are both false
in I.

PROOF. The proof proceeds by induction on the
number n of atoms occurring in S, It may be
assumed without loss of generality that § is
winimally unsatisfiable,

Case 1. n=1. 1In this case S consiets of the two
unit clauses p and -p. One of the two clauses is
falee in 1 snd the resolvent, nawely the empty
clause {s false, so that the one step refutation
satisfies condition 2,

Case 2,

Let

Assume that the theorem holds for all
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sets of clauses containing less than n atoms, and
suppose S contalns exactly n atoms, There are
two subcases,

Subcase a. S contains a positive unit p
which is false in I. Let S consist of the clauses
P, -pBl,....-—ka,C1 Since p is a falpe

positive unit, each resolution R(p,-pB )-B1
satisfies condition 1 of the theorem.

By LEMMA 3, no other clause of S contains the
positive literal p. Thus from S by a sequence of
resolutions satisfying condition 1 one can gener-
ate the set of clauses Sl-{Bl""'Bk’Cl""'Cm}'

’-na,cmo

S, 1s unsatisfiable and contains strictly fewer
than n atoms, Thus by the induction hypothesis
there {s a refutation R of S, satisfying the
conditions of the theorem. +hen the juxtaposition
of the k resolutions involving p and R also
satisfies the conditions and 18 a refutation of S.

Subcase b, S contains no positive units
which are false in 1. (The reader may wish to
consult Example 1 below while reading this por-
tion of the proof.) By an lterative process we
will locate a false clause in S which can be
used to start a sequence of resolutions satisfy-
ing condition 2; that is, each resolvent in the
sequence will be false, Finally, the last
resolvent will either be the empty clause or a
false positive unit, Now, from LEMMA 1 one can
conclude that S contains at least one positive
un{t clause., Let the positive units of § be

pl....,pn . Form the set S1 by excluding these

positive &nits from S and deleting the literals
-Py» 1<i<n_ from the remaining clauses., 1In the
usual way One can establish that S; 1s unsatis-
fiable and Horn. If S. does not contain a false
positive unit or the empty clause then let
P41 Py be the positive units of Sl'

th& set S b% excluding from S, these positive
units and deleting the literals —pi.nr+kSi$n2

from the remaining clauses. As above 5, 1s
unsatisfiable and Horn. Continue generating sets
S,, at each step excluding the (true) positive
uniits and deleting their negations from the other
clauses, until an S 18 obtained which contains
either a false posifive unit or the empty clause,
Note that since each p, is a true positive unit,
each negative literal Ehat was deleted fram a
clause in the above process is false, Now
suppose that S contains a false positive unit,
say u, This positive unit corresponds to a
clause U-—ql-qz...-qju in 5 where each qg is one

Form

of the P lshSnm that was deleted in forming

the Si's. In addition each P> l<ixn corresponds

to a similar clause C, in S, Also note that U is
false in 1 since u is false in I and each -qj is
the negation of a true positive unit; in the- same
way each negative literal of each C, is false in
I. We have now located the desired false clause,
U. A chain of resolutions beginning with U,
using the C, and satisfying condition 2 will now
be given th*t will generate the false positive
unit u. The clause U contains a literal which 1s
the negation of a positive unit that was excluded
in producing Sm from Sm-l' That unit P, in

5 corresponds to clause Ci in S, The resol-

m-1
vent of U and C, on p, consits of the positive
literal u and sbme nefative literals from among



the -p But each of these literals is false so
that the resolvent of U and C , call it D 4 is

false in |I. Therefore, this resolution satisfies
condition 2 of the theorem. tf D contains
another literal, say-p with n j}-n (i.e., a

literal that was eliminated m"%flrmmg the last
set S ) form the resolvent Dy, using D,¢ and C

As above, 1) and 1) are both false, so condi-
tion 2 is satisfied," Continue in this way until
all negative literals that were deleted in forming
S from S have been resolved away. Call the

m m-1

resulting clause D Note that each negative
literal in a clause®’ C. where n -i"n corresponds

i m-1 m *

at was el|m||nate in formlng an

o a I|teral
g false in | and

m-1
contalns the positive literal u, it contains only
negative literals that were deleted in forming
sets S with k<m. The above process is now
repeated resolving away negative literals from
D that correspond to literals that were
eliminated in forming S from S . Call the
result of this step D ™7 As above D is false,
contains thr- positive literal u and does not con-
tain a negative literal that participated in

forming either S . or S Continue in this way
until the clause™!) is formed. Indeed, D is just
the positive unit u which is false in |I. More-

over, since u is present in each resolvent in the
sequence, all thr intermediate resolvents and U
itself can be discarded by subsumption once u is
generated. That is, (S-(.U})U|.u} is unsatisftable.
Now the false positive unit u can be used to
eliminate the literal u altogether as in Case a
above; the result is an unsatisfiable Horn set
that contains fewer than n atoms. The induction
hypothesis now gives the desired result. Tn case
S contains the empty clause, the above process
can be used with the only modification being that
each of the intermediate clauses does not contain
a positive literal and the final clause D. is the
empty clause; thus when the process terminates,
the result is in fact a refutation all of whose
resolutions satisfy condition 2 (see Example 2).

This completes the induction step and hence
also the proof of the theorem.

The process in the proof of Theorem 1 will
now be illustrated with two examples.

EXAMPLE 1. Let S be the set of clauses [r,-rq,

-rs,-q-sp,-pt,-tj and let | be the interpretation
that assigns the value true to r, g, and s, and
false to p and t. Now r is the only positive

unit in S and it is true. According to the

proof of the theorem the set *»[q,s,-q-sp,-pt,
-t) would be formed. Then since both the positive
units occurring in S are true, the process in the
proof would continue to find the set S,"=[p, -pt -t
S, does contain a false positive unit,p. Therefore,
according to the proof, the clause -gq-sp of the
original set S could be used to start a chain of
resolutions that would result in the false posi-
tive unit p. One would first form the resolvent
of -q-sp with, say, -rs to get the clause -r-qp.
Note that -gq-sp is false and that the resolvent

-r-qp is also false and that the only true literal
of the clause -rs is the positive literal s. Now
the resolvent of -r-gqp and -rq is formed. This

resolvent is -rp which is also false. Finally,
the resolvent of this clause and the clause r is
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generated. This last resolvent is the positive-
unit p, which is a false positive unit clause.
This can now resolve with -pt to produce the
clause t. This clause resolves with the

unit -t to produce the empty clause. Note

that a theorem-proving program would not, of
course, actually generate the sets S. and S m they
were discussed here only to illustrate the process
of the proof of Theorem 1. A program would simply
note that the clause -g-sp was false and that the
resolvent of -g-sp and -rq was also false and
therefore legal to add to the set of generated
clauses. Note that since literals -p might be
deleted from several clauses in forming the S
sets, one might expect a considerable amount of
merging. However, the strategy cannot be
strengthened to require merging as can be seen by
noting that if the false clause U has only 2
literals, its resolvent with another Horn clause
cannot be a merge.

BEXAVPLE 2. Let S be as in Example 1, and let the
interpretation | assign the value true to all
atoms. The process in the proof of the theorem
would generate sets S. and S~ as in Example 1.
However, the positive unit p of S, is not false
for this |I. Thus the set S ~[t,-t} would be
generated. This set also does not contain a
false positive unit so the set S,»lempty clause]
would be generated. Now the empty clause comes
from the clause -t in S, As above one would
start with this clause and work back, resolving
first with the clause -pt to produce -p, then
resolving with -g-sp to produce -g-s and so on.
Again, an actual program would not consider any
of the sets S.-S,, but simply which clauses were
false and had false resolvents. Note that when
the interpretation makes all atoms true the
refutation produced will be an NI refutation,
and that for Horn sets, such refutations are also
input refutations [3]j.

It is now shown that Theorem 1 does not
remain true when the condition of being Horn is
removed. Let S be the set (pqg,.-pqg.p-9,.-p-9} and
let the interpretation | assign true to both p
and q. Then one can generate resolvents using
the false clause -p-q producing the two clauses
-p and -q. However, neither of these can resolve
with the clause pq since neither is a false posi-
tive unit and in each case the resolvent is not
false. Thus no refutation can be produced
satisfying the conditions of Theorem 1. Indeed,
there is no refutation even if condition 1 is
relaxed to read one ancestor is a false positive
clause instead of unit. This set of clauses can
also be used to show that the converse of
Theorem 1 is not true. Let | assign both p and q
false. Then the clause pq is false and its re-
solvent, p, with -qp and its resolvent, q, with
-pgq are both false positive units so that these
resolutions satisfy condition 2. These false
positive units can be used one after the other to
produce the empty clause from -p-q. However, S
is not a Horn set and indeed no renaming of S is
Horn. We do have the following result, however.

THEOREM 2. Let S be a set of ground clauses
which is minimally unsatisfiable. If for every
interpretation 1 there exists a refutation satis-

fying the conditions of Theorem 1, then S is Horn,



PROOF. Suppose S contains a non-Horn clause, say
C=pqC', where p and q are two positive literals.
Let | be an interpretation in which both p and q
are true. Now consider any refutation R of S.
Since S is minimally unsatlsfiable, C must occur
in R. Wherever C enters R the literals p and ¢
will enter and will propagate until one of them is
resolved away. Suppose p is the first of the two
from C to be used as a literal of resolution. Now
the clause resolving on p with C or its descendent
must contain the literal -p and therefore certain-
ly cannot be a false positive unit. Of course,
the resolvend containing p and q also cannot be a
positive unit. Thus condition 1 cannot be satis-
fied. Next, the resolvent must contain the posi-
tive literal q, which is true in 1. Thus the
resolvent cannot be false and condition 2 cannot
be satisfied. Therefore R cannot satisfy the
conditions of Theorem 1. Since R represented an
arbitrary refutation of S we have a contradiction
to the hypotheses of this theorem.

It should be pointed out that the conclusion
of Theorem 2 is that S is Horn, not just that some

renaming of S is (lorn. Indeed, if a set S has a
renaming which is Horn but S itself is not Horn,
then S will have an interpretation | as in the

theorem relative to which there is no refutation
satisfying the conditions of Theorem 1.

THEOREM 3. Let S be an unsatisfiable set of Horn
clauses. Let | be an interpretation over the
language of S. Then there exists a refutation R
of S such that each resolution in R satisfies one
of the following two conditions: 1. one of the
resolvends is a positive unit which is falsified
by 1, or 2. one of the resolvends and the resol-
vent are both falsified by 1.

PROOF. Let S' be an unsatisfiable set of ground
instances of clauses in S and let R' be a refuta-
tion of S' satisfying the conditions of Theorem 1
wtth 1 as the Interpretation. Let R be the refuta-
tion of S obtained by lifting R' in the usual
manner. R satisfies the conditions of this theorem
as can be seen by the following. Suppose p is a
false positive unit in R' and p is the correspond-
ing clause in R. P cannot contain a negative
literal because it has a positive clause, p, as

an Instance. Also, P cannot contain more than one
positive literal because it is either in a Horn
set or is deduced from a Horn set by resolution
L3]- Thus P is a positive unit. Moreover, it has
p as an Instance, and p is false in I. Therefore,
| falsifies P, and the resolution In R using P
satisfies condlton 1 of this theorem if the corres-
ponding resolution in R' using p satisfies condi-
tion 1 of Theorem 1.

In a similar way, If a resolution in R*
satisfies condition 2 of Theorem 1, the corres-
ponding resolution in R will satisfy condition 2
of this theorem because one of the resolvends and
the resolvent will have instances which are false
in 1. Since every resolution in R' must satisfy
one of the two conditions, the theorem is proved.

111. Implementation

While semantic resolution has a great deal of
intuitive appeal, in actual practice few theorem-
proving methods that have been programmed use any
but the most trivial of Interpretations for the
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languages being used and they are usually based
on some syntactically recognizable feature. For
example, the underlying interpretation for Pi
resolution and also for hyporrcsolution is the
interpretation in which every predicate symbol is
assigned the relation which is identically false,
and false clauses are recognized by the lack of
negative literals. One would like to see the use
of interpretations which satisfy, say, the axioms
of the mathematical theory under consideration
and thus would have the effect of focusing atten-
tion on the special hypotheses and conclusion of
the result for which a proof is sought, as in
set-of-support resolution. The advantage here
over Just set of support would be that the seman-
tic requirement, i.e., that one ancestor be false,
would have effect at all levels of the search
whereas set-of-support resolution, while quite
effective at level 0, allows any level 1 or
greater clause to resolve with any other clause.
Or perhaps even better, one would like to be able
to arrange the interpretation so as to single out
particular clauses as being Important for the
particular theorem by making those clauses false
in the interpretation even If some do happen to
be axioms. That is, for a particular problem the
user might suspect that a certain axiom was
especially relevant; he could arrange that axiom
to be false in the interpretation thus allowing
it to enter the semantic search at an earlier
stage.

There are two reasons why little use has
been made of semantic information in theorem
provers. First, for interpretations whose
domains are not fairly small, determining whether
or not a clause containing variables is falsified
may be a formidable Job. For example, the stan-
dard pair of axioms for associativity in group
theory each have 6 variables. In a domain of 100
individuals, the determination that one of these
axioms has no false instance, the normal case,
would require testing 100 different 6-tuples.
Even with highly efficient, optimized methods
such a task would not likely be feasible. The
second reason has to do with representing, for a
given clause, which values falsify that clause.
That is, having determined whether a clause
possibly has some instances which are false, one
would like to save that information. If a clause
C has several variables, there may be many tuples
that falsify C requiring more storage to save
than the information might be worth. The purpose
of this section is to present methods by which
these two problems might be overcome. These
remarks are not meant to be an exhaustive study
of this area; in particular, this section will not
discuss in great detail the methods and data
structures that might be used by a particular
program. Rather the purpose is to present some
interesting, previously known results about inter-
pretations and Horn sets and to Indicate briefly
how these properties can be useful for theorem-
proving programs. We begin with a basic defini-
tion from mathematics.

DEFINITION; Let L be a first order language, and

let | and | be two interpretations over L with
domains D. and D respectively. The cross-product
of I and I, is the interpretation | whose domain

D is the cross-product of Dy and D, (i.e., the set
of ordered pairs whose first coordinate comes from



Dy and whose second coordinate comes from D>, and
which assigns values to the predicate, constant,
and function symbols of L as follows: if a is a

and |, assigns a; to a and 1,

then | assigns the ordered pair
is an n-ary function symbol and
on D

on D, ,

constant symbol
assigns ax to a,
(ai.azx) to a; If f
if 14 assigns to f the n-ary function £-
and I,
then 1 assigns to f the n-ary function on D4 x D3
which maps an n-tuple of ordered pairs ((a ,b ),
...,(a ,b )) onto the ordered pair
(f,(aq1,...,an),f2(b4,...,br)); if P is a predi-
cate symbol and If I4. assigns to P the n-ary

P41 D4 and I, assigns to p the n-ary
P2 D,, then 1 assigns to P the n-ary
which is true for an n-tuple of ordered

assigns to f the n-ary function fa

predicate
predicate

on
on
predicate

pairs ((al,b }y...,(a .bn)) if and only if both

Pl(al"“'an and P2( 1”“bn) are true.

if a clause con-

is true in two
in the cross
In addition,
in a class

McKinsey [ 7] noted that
taining only one positive literal
interpretations then it is also true
product of the two interpretations.
If a clause C is true of each algebra
of algebras that is closed under algebraic direct
product, then there is subclause C' of C contain-
ing at most one positive literal (i.e., C' is
Hom) and C' is also true of every algebra in the
class. Hom [5] later showed that the class of
Hom sets and the class of sets of clauses which
are true in a direct product of two interpretat-
ions if and only if they are true in each indi-
interpretation are the sarme class. (Thus
In both cases only clauses

vidual
the nmname Horn clause.)
containing only the equality predicate were con-
sidered; however, their methods easily generalize.
Sare of these results will be reviewed in the
following paragraph; the reader is referred to
[7] and [5] for the full presentation of this
material as well as other results.

Consider two interpretations |I. and I, and a
ground literal 1,. If I, is an atom, then by
definition L is true in 1. x I, if and only if
it is true in both 1. and I> Now if L is the
negation of an atom, say L=-M, then L is true
if and only if it is true in at least one
For M is true in 1. x I if and

in both 1, and 1, and so M

is false (i.e., L is true) if and only if M is not
true in both Iy and I that is M is false
least one of tnem. Next, suppose the ground Homn
.-Ln M is true in both |I. and
In both and |- then M
in the cross-product, and so C is also true
the cross-product. If M is not true in one of
the I's, say M is false in 1., then some negative
literal -I; is true in |1 By the above, -1, is
in the cross-product, so again C is true
Thus, any ground Horn clause
interpretations is true in
the cross-product. Of course, a Hom clause
would be false in 1. x I if and only if each neg-
ative literal was false In both |- and |, and the
positive literal was false in at least one of the
two. This analysis applies equally well to the

if a particular instance of

a clause with variables is true or false in the
cross-product of two interpretations. These
results generalize to products of more than just
two interpretations in a straightforward way.

in
. X |2
of Iy and I>
only if it is true

in at

lo.
is true

clause C=-L4..
Now if M is true l1.

in

true in

the cross-product.
that is true in two

case of determining

Thus, if |.,... are interpretations and C is a

sl
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Horn clause which is true in each 1 ;, then C is
true in I1x....xl, If C is false in I_.x.,.x1

then each negative literal of C is false in eldch
l; and the positive literal of C is false in at

least one |;

The above remarks form the basis for reduc-
ing the amount of work required to evaluate Horn
clauses for semantic resolution and to store in-
formation about the tuples for which such clauses
are false. Consider again the case of an assoc-
iativity axiomm C with 6 variables. If instead of
interpretation with a domain of 100 ele-

interpreta-

a single
ments we use the cross-product of two
tions each of whose domains has 10 elements (and
thus whose cross-product domain has 100 elements),
then to evaluate C in 1 x |- one would evaluate
C in |4 and I requiring 2*10 6>*tuples to be
considered as opposed to 100 *10'? |, with a reduc-
tion factor of 5*10 If more sublnterpretations
are used the savings is even more dramatic. For
example, by using three domains each with 5 ele-
ments, we would be using the equivalent of a
single interpretation whose domain had 125 ele-
ments, and the evaluation of a clause with 6
variables would require the, consideration of

3*5 , or approximately 5*10 , 6-tuples. Moreover,
efficient means of organizing the calculations can
be expected to reduce to an even greater degree
the number of tuples requiring testing for a given
clause.

The storage
taking advantage
For the purposes
following notation:

problem can also be reduced by
of the properties of Horn clauses.
of this paragraph we use the

it a-(al....,aB) s-r:d b=(b1,...,bn) are two
n-tuples then a x b will indicate the n-tuple of
ordered pairs ((a,b),...,(an .,bn)). Recall that

in 14 x I> it and only if
is false in both 11 and Is
is false in at least one
The amount of

is false
literal

a clause C
every negative
and the positive literal
of the two sublnterpretations.
space required to store the set of tuples falsi-
fying a clause in the cross interpretation can be
greatly reduced by storing
fromm the sublnterpretations and using these to
construct tuples from the cross interpretation
when (and if) needed. Suppose the tuples of
values that make C false in I1, are a.,..,.a

instead certain tuples

and
those that make C false in 1—- are b ,...,b .
Further, suppose the tuples that make all the
negative literals of C _false but the positive

literal true and those for
Il ared,,,.. tuple from

in |.
,dm .

are ¢q ,.,.,Cnp ,
Consider a

1. x 12 of the form a; x =z. If z is one of the
bi's or 3's then by the above remarks a Xx z makes
C false in the cross interpretation since the
first coordinate falsifies every literal of C
while the second coordinate satisfies at most
just the positive literal. On the other hand, if
z is not among the bl!s or d's, then it satisfies a
negative literal of ¢ and io "a x 7 must satisfy
C in I. x 71?2~ " Asimilar remark holds for values
of the form =z x b Finally,
form ¢ x d must satisfy C since both c.
satisfy the”positive literal of C* Also,
jjbove”™ any value of the form z x y where either
is not among the appropriate lists must
Thus, the tuples of the cross inter-

a value of the __
and d
as

z ory
satisfy C.



preta_tion_that falsify C are a
and c¢i, x b; for diffenent combinations of i and j.
Thu* by saving, in addition to the values in the
subinterpretations that falsify the clause, those
values that falsify the negative literals but sat-
istfy the positive literal one can significantly
reduce the amount of storage required. To get an
estimate of the kind of saving involved, consider
again two interpretations of 10 elements each and
a clause with three variables. There are 10
3-tuples of values In each domain. Suppose a
third falsified the clause in each domain and an-
other third falsified the negative literals but
satisfied the positive literal. Then there would
be 666 triples in each domain that need to be
saved or 1332 altogether. in the cross interpre-
tation there are 333*333*3=332667 triples of
ordered pairs that falsify the clause. As before,
if more smaller domains are u ed, the reduction

is even more drastic. Moreover, efficient nota-
tions from set theory can be used to store such
information. For example, if several tuples have
coordinates in common, this can be indicated by
condensing some of the coordinates to be sets.
E.g., the six triples (a,b,c), (a,b,d), (a,b,e),
(e,b,c), (e,b,d) and(e,b,e) could be represented
by ({.a,e} ,b,[c,d,e}). That is, anything from the
set [a,e] can be used as first coordinate, b as
second coordinate and any of [c,d,e] for the third
Such notations have proven useful in other con-
texts in theorem proving (see, for example,
Auguston and Minker [1]).

Xbl, a| dey

Finally, the use of cross-products makes it
easier for the user to "tailor" interpretations
to emphasize particular clauses by giving the

various clauses the appropriate properties in the
coordinate interpretations. For example, consider
the theorem of group theory that if x?=e for

every x the group is commutative and its standard
representation as a set of clauses with the con-
clusion negated. This set contains the three
units Pxxe, Pabc, and -Pbac. Suppose one would
like to concentrate on Pabc and -Pbac and delay
the entry of Pxxe into the search. Then in the
cross product interpretation Pabc and -Pbac must
be false while Pxxe must be true. Then Pabc must
be made false in at least one of the interpreta-
tions In the cross-product while the atom Pbac
must be true (l.e., -Pbac false) in all the inter-
pretations in the cross product. Also, Pxxe must
be true in all interpretations. It would be
easier to devise two interpretations of, say, 4 or
5 elements each, that satisfy these conditions,
especially the condition on Pxxe, than to verify
them for a single interpretation of 20-25 elements.
If the above conditions are satisfied and the two
subinterpretations are themselves groups, then
neither the axioms nor the clause Pxxe can be
resolved together, and the refutation search must
begin with either Pabc or with -pbac and another
clause whose resolvent with -Pbac has a false
instance in the cross-product. Indeed, the clause
Pxxe would not be able to resolve with any clause
C unless C and the resolvent both had false
instances.

V. Concluding Remarks

This paper has presented a new strategy, a
strengthening of semantic resolution, which is
complete for the class of Horn sets. This strategy

is actually a combination of semantic and syntac-
tic approaches—syntactic because the emphasis on
positive units is totally independent of any
intended meaning of the symbols; semantic because
different interpretations supplied by the user will
yield different search spaces. The results

reviewed in Section 3 will prove most useful in
actually implementing the new strategy, or indeed
any semantic strategy, for programs that will deal

with Horn sets. The time and storage savings that

those results will provide may make it possible
for the first time to construct truly semantic
programs, that is programs which can use the infor-

mation provided by the user about the intended
meaning of the clauses as opposed to a meaning
imposed by some syntactic property as in hyper-
resolution. There are some questions that are
raised by these results. First, it may be
possible to derive an efficient strategy from
Lemma 3 and constrained-variable resolution.
it would be very interesting indeed to know if
some version of Theorem 1 held in the non-Horn
case for hyperresolution, which is the analogue
of positive-unit resolution for Horn sets.
Finally, it would be most useful to know how many
of the results here carry over to paramodulation
for equality.

Also,
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