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Abstract

Recommender systems attempt to highlight items
that a target user is likely to find interesting. A
common technique is to use collaborative filtering
(CF), where multiple users share information so as
to provide each with effective recommendations.

A key aspect of CF systems is finding users whose
tastes accurately reflect the tastes of some target
user. Typically, the system looks for other agents
who have had experience with many of the items
the target user has examined, and whose classifi-
cation of these items has a strong correlation with
the classifications of the target user. Since the uni-
verse of items may be enormous and huge data sets
are involved, sophisticated methods must be used
to quickly locate appropriate other agents.

We present a method for quickly determining the
proportional intersection between the items that
each of two users has examined, by sending and
maintaining extremely concise “sketches” of the
list of items. These sketches enable the approxima-
tion of the proportional intersection within a dis-
tance of €, with a high probability of 1 — 4. Our
sketching techniques are based on random min-
wise independent hash functions, and use very little
space and time, so they are well-suited for use in
large-scale collaborative filtering systems.

1 Introduction

Recommender systems attempt to provide a user with recom-
mendations regarding information items that she is likely to
find interesting. Recommender systems have been applied
to many domains, such as books, music, videos, images,
web pages, and news. Such systems maintain a profile of
each user, and compare it to certain reference characteristics.
Sometimes these characteristics are obtained from the infor-
mation item itself, in an approach called the content based ap-
proach, and sometimes from information kept regarding the
tastes of other users, in the collaborative filtering approach.
Collaborative filtering (CF) makes predictions about the
tastes of a user (filtering) through collaboration among multi-
ple agents, each tied to a specific user (because each user has
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an agent, we will sometimes use the terms interchangeably).
These CF systems predict whether a certain item is likely to
interest the target user under the assumption that users whose
past tastes are similar to the target user are likely to give a
good prediction regarding the future tastes of the target user.
Typically, CF systems operate in two steps. First, they seek
users who share similar rating patterns with the target user.
Second, they use the ratings from those like-minded users
found in the first step to generate a prediction for the target
user. Real-world CF systems need to handle huge volumes of
information, as the universe of items is enormous, and there
are many users.

Given a target user, we want to find another user who has
rated many of the items the target user has rated. Also, it
is likely that the prediction would be better if items rated by
both users are a significant proportion of the items rated by
either user. For example, it may be the case that two users
have 100 songs that both have rated, but each of them has
rated 10,000 songs. In this case, these 100 songs constitute
only 1% of the songs each user has rated, so it harder to use
the ratings of the first to understand the tastes of the second.

We propose methods for approximating the proportional
intersection (PI) between the items that each of two users
has rated. Our methods are very accurate, returning an ap-
proximately correct answer with very high probability, but
require little information to be stored or sent. These meth-
ods thus provide a useful building block for CF systems. Our
algorithms use sketching techniques, which construct an ex-
tremely concise representation of the items a user has rated,
called a sketch. Rather than storing, transmitting, and pro-
cessing the entire list of rated items, our algorithms operate
on these extremely concise sketches, which are designed to
enable a good approximation of the PI. Our algorithms use
sketches based on random min-wise independent hash func-
tions. We analyze the proposed methods via sampling tech-
niques and Hoeffding’s inequality to calculate the required
sketch size given the desired accuracy and confidence for the
PI’s size. This analysis shows that very small sketch sizes
are indeed sufficient to achieve high levels of accuracy and
success probabilities.

2 Problem Statement

We now formally define the problem of computing the pro-
portional intersection (PI) between two sets. We attempt to

2016



model a simple collaborative filtering domain. In this case,
each user of the CF system has a set of items she has rated.
A certain user, Alice, asks the CF system to give a prediction
for a certain item she has not examined. In order to provide
Alice with a good prediction, we must first find users who
have rated many items that Alice has also rated. It is also de-
sirable to find users such that the number of items rated by
both Alice and any of these users are a significant proportion
of the items rated by either of them. We call the proportion of
items rated by two users out of all items rated by each of them
the proportional intersection (PI). After finding users with a
high PI to Alice’s items, the CF system could use the ratings
of these users to build a prediction for Alice. A naive way to
do this is to keep the entire list of rated items for each user on
a central server. However, this is undesirable, as the universe
of items is very large, and there are a huge number of users,
each of whom has ratings for a significant number of items.

One solution for handling the size of the data sets is com-
pressing the lists of rated items using some known compres-
sion method. We are interested in achieving a much shorter
description of the items list than compression techniques
could enable. Such a concise description is called a sketch.
We aim to design a sketch that would allow us to discover the
PI with target users, and that would be as small as possible.
Thus, we are willing to accept some inaccuracy when find-
ing users with a high PI, and we are willing to accept some
probability of error. Given target accuracy € > 0 and a target
confidence ¢, our method must return an approximation & to
the actual PI z, such that with probability of at least 1 — ¢ the
approximation is accurate enough, so | — x| < e. Obviously,
the size of the sketch would depend on both € and §, and we
wish it to be as small as possible.

We now consider two users, Alice and Bob, and formally
define proportional intersection and the sketching technique.
We denote by C; the set of items Alice has rated, and by C
the set of items Bob has rated. These items are taken from a
large universe U of items (U is several orders of magnitude
larger then C; and C). For now, we will assume that |C4 | =
|C3| = n (for example, the n items each user has rated most
recently). We denote C; N Cy =T.

Definition 1. The proportional intersection (PI) of C1 and

T T
Cyis ARREAE

Under our sketching model, we only maintain the sketches
of the rated item lists. Thus, all we have available are the
sketches S; of Cq, and S5 of C5y. A sketching framework
is designed to allow for the approximation of the PI be-
tween any two users with a target confidence and accuracy.
Let Cy,Cs,...,C,, be the rated item lists of the users, and
51,52, ..., Sn be their sketches. We currently assume that

for any 4, j we have |C;| = |C;|. Consider any two users, ¢

and j, and denote the PI p; ; = ‘Cfgfjl = |C|igfj‘ )
i J

Definition 2. A PI sketching framework with confidence ¢
and accuracy € maintains only Sy, Ss, ..., Smy, and for any
two users, a; and a;, allows for the computation of p; ; with
accuracy of at least € and with confidence of at least . That
is, the framework returns an approximation p; ; to p; ; such
that with probability of at least 1 — & we have |p; ; —p; ;| < €.

The following sections suggest a technique that enables the
building of a PI sketching framework.

3 Sketches for Approximating Proportional
Intersection

Consider again Alice and Bob, with the set C; of items
that Alice has rated, and the set Cy of items that Bob has
rated (from the universe U of items). Again, we denote
|C1]| = |C2] =nand Cy NCy =T, and denote |T'| = ¢t. A
straightforward method of generating a sketch for the items of
each user is simply sampling some 7 random items. This gen-

erates a sketch S| for C; and ST for Cs; each such sketch is

just a set of  items. We can estimate py 2 = % by com-

puting pi 2 = M. However, for the sketch to be small,

we must use small values of r. The probability for each item
from C; to appear in ST is — 7. To note that a certain item
is in both C and CY, it must appear in both ST and S5, and
since 7 is small, this happens with very low probability.

When r = 1, for example, S} is simply a random item
from C, and S3 is a random item from Cs. In order to have
anitem in S N S3, the item chosen from C1 to be in ST must
be in 7" (out of the n items in C there are only ¢ such items),
and the same item must be chosen from C5 to be in S3. Thus,
the probability of having an item in S{ N S} is 3 - L, which
is very small. Consider, however, the case where the sketch
Sy is the minimal item from Cq, and Sy is the minimal item
from C5. If the minimal item in C; U (5 is in T', we are guar-
anteed to have an item in S; N S2. Of course, always using
the minimal item would always generate the same S7 and S5,
regardless of the PI that we are estimating. We overcome this
by using min-wise independent functions.

Let H be a family of functions over the same source X
and target Y, so each h € H is a function h : X — Y, where
Y is a completely ordered set. We say that H is min-wise
independent if, when randomly choosing a function h € H,
for any subset C' C X, any « € C has an equal probability of
being the minimal after applying h.!

Definition 3. H is a min-wise independent family, if for all
C CX, foranyx € C,

b
cr

[Indyk, 2001] shows that it is possible to construct min-
wise independent families of hash functions such as the ones
we require here, so from this point on we use these results.”

We now use integers to define the identity of items in U
(where |U| = w), so any subset C C U is simply a list of
|C| integers in [u] (we use [u] to denote {1,2,...,u}). Thus,

Pricpl[h(x) = mingech(a))

"We must choose h from H under a certain distribution. We
will assume that A is chosen uniformly from H, although any dis-
tribution for choosing a member of h that would make H min-wise
independent would do.

2Although we use Indyk’s results, and assume it is possible to
construct such families of min-wise independent hash functions, we
do note that in fact for most practical applications it is possible to
use any approximately uniform hash function, or even pairwise in-
dependent hash functions, and still obtain very good results.
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Alice’s rated items are C; C [u], and Bob’s rated items are
Cy C [u]. We continue to denote |C;| = |C3] = n and
Cl n CQ = T, and |T‘ =t.

Let H be a family of min-wise independent functions from
[u] to [n?] (so each h € H is a function A : [u] — [n?]). Note
that the domain of each hash function in the family is an in-
teger in the very large range of [u], but the hashed values are
in the much smaller range of [1?]. The reason we use a range
of n? integers rather than just n integers is to mitigate the
effect of collisions in the hashed values.® The complete con-
struction of min-wise independent families is fully explained
in [Indyk, 20011, but for the purpose of understanding the
current work it is only required to know that for any u and
n << wu it is possible to construct a min-wise independent
family of functions mapping from [u] to [n?].

Let h € H be a randomly chosen function from H. We
can apply & on all the integers in C; and examine the min-
imal integer we get, m? = min,cc, h(z). We can do the

same to Cy and examine m% = min,cc,h(x). We now com-

pute the probability that m; = ma: Pryeg[mh = mh] =
Pryen[mingec,h(z) = mingec,h(z)).

Theorem 1. Prjcp[mh = mh] = ;222

T 2-pi2’

Proof. For brevity, we denote p = p; 2. We use the size of
the PI between Alice and Bob, p = p; 2, to compute that
probability. C'; contains n items, p - n are items that are also
present in Cs, and (1 —p)-n that are not. C contains n items,
p-n are items that are present in Cy, and (1—p)-n that are not.
In total C; UCY contains p-n+2-(1—p)-n = pn+(2—2p)n =
n(2 — p) items. When an item in 7" is minimal under h, i.e.,
for some a € T we have h(a) = mingec,uc,h(x), we get
that mingec, h(x) = mingec,h(x). Since H is min-wise

independent, we get that Pryep[m} = mj] = ;50 =
p

2—p°

Building a PI sketching framework requires us to generate
sketches that would allow us to get good estimates for the PI
between any two users, p = p; ;. We note that given o =

Prneg[m? = mb] for Alice and Bob, we can easily obtain

the PI between them, p; 2. Since o = %, we get that

(2—p)a =p,sop = 2a—ap, and thus p = ﬁr—o‘a Therefore,
the problem of estimating the PI is reduced to estimating «.
Our suggested approximation algorithm relies on generat-
ing sketches based on a random sample of several such func-
tions from the min-wise independent family H. The sketches
are then used to approximate «, and thus approximate the PI.

3[Indyk, 2001] shows how to construct an approximately min-
wise independent family of hash functions where the source and tar-
get are the same space, i.e., each h € H isafunction h : [m] — [m].
To construct a min-wise independent family of functions from [u]
to [n?], we first apply an approximately uniform hash function
h' : [u] — [n?], and then apply the functions from the min-wise
independent family from [n?] to [n?] which can be constructed us-
ing the methods in [Indyk, 2001]. Since |C;| = n but k' has a range
of n?, due to the Birthday Paradox principle, the probability of a
collision (i.e., having z # y € C; such that ' (x) = h’(y)) is very
small, let alone a collision that occurs with the specific element we
examine. For further details, see [Indyk, 2001].

We first define the sketches we use. Let v, =
(h1,ha,..., ;) be a tuple of k randomly chosen functions
from the min-wise independent family H. Let C; be the set
of items ranked by agent a;. We now define the sketch for C;
given vy. We first denote the minimal item in C; under h; as
mi” = mingec, hj(x).

Definition 4. The Hy, sketch of C;, S(C;), is the list of mini-
mal items in C; under the k randomly chosen functions from
h: S*(Cy) = (mh mh2 o o,

When £k, the number of randomly chosen functions from
H, is known, we simply write S(C;) rather than S*(C;). We
now show how to use the sketches of C; and C5 to estimate
the PI between them.

3.1 Estimating the Proportional Intersection,
Given Sketches

We first note that due to Theorem 1, randomly choosing a
function h € H and testing whether m} = m% is in fact a
Bernoulli trial, with a success probability of o = 5 1[)12 -
define the random variable of this Bernoulli trial as:

b {1 it mh = mb

0 otherwise

Given the sketches S*(Cy) = (m™ m!2 ..., m") and
SE(Cy) = (mhr,mb2 ... mb*) we can easily test (for each
i € {1,...,k}) whether m* = m}?, and obtain the results

of k such Bernoulli trials.

Lemma 1. Let hq,...,hi be a set of k randomly-sampled
functions from the min-wise independent family H, and X1 =
XM .. X, = X" be the series of k Bernoulli trials, as
defined above. Let X be the number of successes in this se-
ries of Bernoulli trials, X = Zle X;. Then the maximum

PL2 oo & = X This estima-
2—p1,2 k

likelihood estimator for o« =
tor is unbiased.

Proof. Eachsuch X is a single Bernoulli trial, and Pr(X,; =
1) =cand Pr(X; =0) =1—a Xi,...,Xjis ase-
ries of k£ such Bernoulli trials. X is the number of successes
in this series of Bernoulli trials, X = 2521 X, and thus

has the binomial distribution X ~ B(k,«). Since the X;’s
are independent (as [ is min-wise independent) but identi-
cal Bernoulli trials, the maximum likelihood estimator for «
isa = % This estimator is known to be unbiased for the
binomial distribution. O

The estimator & by itself does not provide a bound on the
probability that this value is approximately correct. More-
over, we are interested in approximating p; 2, and not . We
begin by obtaining an estimate for « which is probably ap-
proximately correct (PAC) using the sample X, ..., X of
these k& Bernoulli trials, and later handle deriving a proba-
bly approximately correct estimate for p; ». As mentioned in
Definition 2, if for some ¢ > 0, we consider values that are
within a distance of ¢ from the correct value, p; 2, accurate
enough, and are willing to accept a certain low probability ¢
of having our estimator miss it by more than €, we can derive
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the appropriate number of functions k to use in the sketch.
Obviously, larger values of k£ would increase our accuracy
and confidence, but will of course increase the sketch size,
which we want to minimize. The next section analyzes the
sketch size, i.e., the required k, given the target confidence
and accuracy.

4 Sketch Size Analysis

We now attempt to derive the necessary sketch size, k, that is
required in order to build a PI sketching framework. We can
formulate this problem as building a confidence interval for
the PI, p; ;, with an accuracy of € and with confidence level
of 1 — ¢. The interval we build is: [p; ; — €, p;.; + €].

The interval is centered in p; ;, has a width of 2 - € > 0,
and contains the true p; ; with a probability of at least 1 — 6.
To achieve the desired accuracy and confidence, the sketch
size k must be long enough. To find the appropriate k, we
must obtain an equation to tie together the required k, the
confidence level §, and the accuracy e. Our analysis is based
on Hoeffding’s inequality [Hoeffding, 1963].

Theorem 2 (Hoeffding’s inequality). Ler X1, ..., X, bein-
dependent random variables, where all X; are bounded so
that X; € [a;,b;), and let X =Y | X;. Then the following
inequality holds.

Pr(|X — E[X]| > ne) < 2 ( 207 ¢ )
r — Zne) <2eXp | ~—=—————
2z (b — ai)?

We now use Hoeffding’s inequality to derive the required
sketch size for a desired confidence and accuracy regarding
a = 3£, and then show how to find the sketch size for a
confidence and accuracy regarding p. Let hy,...,h; be a
set of k£ randomly-sampled functions from the min-wise in-

dependent family H, and X; = X™,... X} = X" be
the series k& of Bernoulli trials, as defined above. Again,
let X = 2521 X, and take & = % as an estimator for

a. All X; are either 0 or 1 (and are thus bounded between
these values), and E[X] = k - . Thus, the following holds:

Pr(|X —ka| > ke) < 2e7?2 ke® Therefore the following also

holds: Pr(|&é — a| > €) < 2¢=2F<* We now compute the
number of required samples in order to make sure that this
probability is below some required confidence level §.*

Theorem 3 (Sketch Size for Approximating «). For any
required accuracy € > 0 and required confidence level 1 — 9,
we can construct a confidence interval for o with width 2¢ of
the form: [& — €, & + €].

This interval holds the correct o with probability of at least
1—4. The required sketch length (or equivalently, the required

.. In 2 .
number of samples) to perform this is k = 21163. Equiva-

lently, given k samples and a required confidence of 1 — 9,
the following is a confidence interval for a, with the required

confidence level of 1 — 6: [d— ,/ﬁ ln%,d—i— ./i ln%}.

*Such computations are widely used for the analysis of random-
ized algorithms in various areas. For example, PAC learning algo-
rithms are usually based on similar techniques.
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Proof. We use Hoeffding’s inequality to make sure the er-
ror does not exceed our target confidence level 4, and get:

Pr(la —al > ¢ < 22k < ¢, We extract € and k:
—2ke® < In$. Equivalently: €2 >

1
o In3

Flnally we get

the following equations: € > and k> F' O

The above sketch size analysis was for obtaining an ap-
proximation for «, and not for p; ;. However, due to Theo-
rem 1 we have p; ; = 1 =~ We are interested in building a
PI sketching framework, w1th confidence 1 — ¢ and accuracy
¢ for p; ;. We now show that by taking a sketch size that al-
lows building a confidence interval for v with width of ¢/ = £
and confidence J, we obtained the required accuracy of € and
confidence of ¢ for p; ;.

Theorem 4 (Sketch Size for Approximating p; ;). A PI
sketching framework with accuracy € and confidence § can
In %

g,
<
25

be obtained by using a sketch size of: k =

Proof. For brevity we denote p = p; ;. Due to Theorem 1,
we have p = % Denote by k the sketch size required
for obtaining an estimate & for «, with accuracy of ¢ and
confidence 1 — §, as can be derived from Theorem 3. By
using sketches of size k, we obtain an estimate & such that
with probability 1—4 we have &—¢’ < a < Ga+€’. We use the
following as an estimator for p: p = H_—a We now analyze
how good this estimator for p is. Since & — € < a < & + €,
we obtain the following equations: 2& —2¢’ < 2a < 2&+ 2¢’

and&—e’+1<a+1<d+e +1.

26—2 2 2642
Thus: aie—&flgrfl_p—aas-‘:l
26—2¢ __ _ 2a 2 26
However, &(—T-e’—&fl = areord a+:uf1 > gy — 2€.
We now examine the expression f;,‘ g
20 e ( a+1 )
a+e¢+1 a+1 ‘a+e+1
R a—+1 . (a+14€)—¢
= (————)=p0(—%— )
a+e +1 a+e +1
€ €
=N - 1— —DH -9
P &—|—e’+1) P péz+e’+1
¢ ¢
>p— >p——=p—¢
P arer1=PT17°F
Thuswehave:pzO%f‘rsaf1 Za+2€a+1—26/2ﬁ—36/.

Similarly, we can show that: p < p + 3e.

Note that we need only handle the case where ¢ < d.
Our suggested method uses a sketch size and computes an
estimation for the PI, &, using the sketches. The sketch size
used is determined by the required approximation accuracy,
as defined by € (or €'). If the computed & (our estimation of
the PI) is so small that & < €/, we can simply output p = €
as our estimation (which for the required accuracy of € would
be accurate enough).

When €/ < & we have:

a— e—i-1<2E



We also note that:?

26 24 ( a+1 )
G—€e +1 &+1 ‘a—¢+1
~ a+1 R (d+1—6/)—|—e/
a-etl a—€+1
€ e
=7 - 1 I W N
p ( +d7€/+1) p+pa7€/+1
/ ’
<p+ — <p+S—ptd
Toa—éd+17 1
Earlier we have shown that: p < 5(:624:/1 — dizgﬂ n
d_gf,+1. Thus we obtain: p < d_2€<3t+1 +$€+1 < h+3¢

We have now shown that: p — 3¢’ < p < p + 3€’. Thus,
by using €’ = £ in the formula of Theorem 3, we obtain the
desired accuracy of ¢ for p, rather than for a. O

We now note that a similar approach, using similar transi-
tions, can be used even if the set sizes of user items are similar
but not identical. However, if these sets are vastly different in
sizes, a different method must be used.

5 Applications in Collaborative Filtering
Systems

We now examine the applicability of the above results to col-
laborative filtering systems. Our sketches require k log n bits
per agent. Although k£ does not depend on the number of
items each agent has ranked, n, it does depend on the desired
confidence and accuracy.

Consider a recommender system for items in a large In-
ternet music store, that holds over |U| = 100,000,000 music
video clips. Each integer in that range requires 27 bits to rep-
resent. In such a system we may obtain direct rankings for
clips by users, or infer them using the number of times a user
has watched a clip, or the amount of time spent watching it.
We assume each user has watched 10,000 clips.® The range
of our hash functions is n2, so we require 2log 10,000 = 27
bits to represent each integer in this range. We use values
of € = 0.2, and 6 = 0.1, which allow obtaining a moder-
ately good estimation of the PI, with a pretty high probabil-
ity. Using Theorem 4, we obtain the required sketch size of
k = 337. Thus, a list of a user’s clips requires 27-10,000 =
270,000 bits, whereas a sketch only requires 337 - 27 = 9099
bits. Since there are millions of users, this is a significant
improvement. Another example is personalized web search.”
Consider a recommender system for web pages, which sug-
gests to users websites that were frequently visited by similar
users. In this case, we deal with a much larger universe of

3In the second-to-last transition we again use the fact that €’ < .

SThis is a large number, which might be appropriate for heavy
users after several years of using the system, but it is still several
orders of magnitude smaller than the total number of clips.

"We thank an anonymous reviewer for pointing out this interest-
ing application.

30,000,000,000 items,? so each item requires 35 bits to rep-
resent. Assuming that we have a list of 10,000 pages ranked
per user (similarly to the previous example), a list represen-
tation would require 350,000 bits per user. Since the sketch
size only depends on €, § and the number of items with which
each user has interacted, the sketch size remains 9099 for this
case as well, yielding an even more significant improvement.

6 Related Work

There are many examples of CF systems. An early example
is Tapestry [Goldberg et al., 1992], which relied on infor-
mation manually inserted by users. Early systems with auto-
mated predictions were GroupLens [Resnick et al., 1994] and
Ringo [Shardan and Maes, 1995]. CF algorithms use corre-
lations between human preferences to predict future prefer-
ences. [Resnick et al., 1994] used the Pearson correlation co-
efficient, while [Shardan and Maes, 1995] examined several
other measures.

This paper tackles the problem of handling the massive
data sets in CF systems. A difficult step in generating a
prediction for a target user is finding other users who share
ranked items with the target user. We formulated this problem
as computing the PI between the users’ ranked items. Rather
than maintaining the full lists of ranked items, we only main-
tain much shorter “sketches” that allow approximating the
PI. Several papers deal with sketching. Massive data streams
are fundamental to data processing applications; the increas-
ing size of data sets has triggered the need for improved al-
gorithms for processing huge inputs. Typically, papers that
propose sketching techniques operate on large strings, and
sketches are used to approximate various relations between
strings. Much of that research considers the streaming model,
where an algorithm can only make one pass over the data
and, due to memory constraints, can only maintain a small
sketch for further processing and queries. [Feigenbaum et al.,
2002] presents a sketch for approximating the L!-difference
between two streams, and [Cormode et al., 2003] examines
estimating the Hamming norm for massive data streams.

To the best of our knowledge, the current paper describes
the first research that uses such sketching techniques to al-
low CF systems to handle massive data sets. Our methods
are based on using a min-wise independent family of hash
functions. Such functions have been used in the data stream
model; families of this type have been studied in [Broder
et al., 2000; Mulmuley, 1996; Indyk, 2001]. Another ap-
plication of such functions is estimating rarity of items and
similarity over data stream windows [Datar and Muthukrish-
nan, 2002]. Our methods are similar to several other arti-
cles regarding Locally Sensitive Hashing (LSH) [Gionis et
al., 1999; Andoni and Indyk, 2008]. Our technique is an
adaptation of the LSH framework for the specific case of CF
systems. We focused on estimating PI, and provided bounds
using current theoretical methods, based on assumptions re-
garding the CF scenario. There exist several other techniques
of a similar nature. Random Projection methods, such as

8Measuring the exact number of webpages on the Internet is a
very difficult task, however we believe 30 billion is in the right order
of magnitude.
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[Achlioptas, 2003] embed n points in a high-dimensional
space into a k-dimensional space, where k logarithmically
depends on n, while preserving pairwise distances up to a
small factor. However, our technique is more tailored towards
CF and computing the PI. Semantic Hashing [Salakhutdinov
and Hinton, 2008] chooses codes for datapoints such that
the Hamming distance between the codes correlates with the
degree of semantic similarity between them. A similar ap-
proach, Spectral Hashing, is examined in [Weiss et al., 2008],
where it is shown that finding the optimal Semantic Hash
code is NP-Hard. Although Spectral Hashing is computation-
ally feasible, it still involves non-trivial computations of ma-
trix thresholded eigenvectors of the graph Laplacian, whereas
our approach is much simpler, and computationally efficient.

7 Conclusion

A major challenge in CF systems is the huge amount of infor-
mation to be handled. A key building block of CF systems is
finding users who share many ranked items. We formulated
this problem as computing the PI, and suggested a sketch-
ing technique that allows doing so in an enormous universe
of items, and with huge volumes of information regarding
such rankings. Our method is based on concise sketches. To
achieve a small sketch size, we sacrifice the exact computa-
tion of the PI, and only approximate it with a given accuracy
and success probability. The sketch size is logarithmic in the
desired confidence, and polynomial in the desired accuracy,
remaining small even when the confidence and accuracy are
high. Our method thus allows building scalable CF systems.

Much work remains open for future research. First, our
methods only allow finding users with a high PI of ranked
items with those of the target users. A CF system must also
check for correlations between the users’ rankings, and of-
fer good recommendations based on this information. For a
full solution, one must show how to tractably perform these
steps for massive data sets. Second, we only analyzed the re-
quired sketch size theoretically. We believe empirical tests of
our methods, using real data sets or using simulations, would
allow us to improve the sketch size used, which could be of
importance in real-world applications. Finally, we have fo-
cused on uses of our methods for CF systems, but we believe
these methods are general. Future research could reveal other
applications for these methods, for example in trust and rep-
utation systems.
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