Bayesian Real-Time Dynamic Programming

Scott Sanner Robby Goetschalckx and Kurt Driessens Guy Shani
SML Group Department of Computer Science MLAS Group
National ICT Australia Catholic University of Leuven Microsoft Research

Canberra, Australia

ssanner@nicta.com.au

Abstract

Real-time dynamic programming (RTDP) solves
Markov decision processes (MDPs) when the initial
state is restricted, by focusing dynamic program-
ming on the envelope of states reachable from an
initial state set. RTDP often provides performance
guarantees without visiting the entire state space.
Building on RTDP, recent work has sought to im-
prove its efficiency through various optimizations,
including maintaining upper and lower bounds to
both govern trial termination and prioritize state ex-
ploration. In this work, we take a Bayesian per-
spective on these upper and lower bounds and use a
value of perfect information (VPI) analysis to gov-
ern trial termination and exploration in a novel al-
gorithm we call VPI-RTDP. VPI-RTDP leads to an
improvement over state-of-the-art RTDP methods,
empirically yielding up to a three-fold reduction in
the amount of time and number of visited states re-
quired to achieve comparable policy performance.

1 Introduction

Markov Decision Processes (MDPs) [Puterman, 1994] pro-
vide a convenient framework for modeling fully-observable
stochastic planning problems. In an MDP, the agent com-
putes a policy — a mapping from states to actions — in or-
der to maximize a stream of rewards. A popular approach to
policy computation is through a value function — a function
that assigns a value to each world state. The computation of
the value function can be either synchronous, where all states
are updated during each iteration, or asynchronous, where the
agent updates some states more than others.

Recent years have seen a resurgence of interest in asyn-
chronous dynamic programming solutions to MDPs [Bert-
sekas, 1982]. Of particular interest has been the trial-based
real-time dynamic programming (RTDP) approach [Barto ef
al., 1993] as evidenced by a variety of recent work [Bonet
and Geffner, 2003a; 2003b; McMahan et al., 2005; Smith and
Simmons, 2006]. RTDP algorithms have a number of distinct
advantages for practical MDP solutions, specifically:

(1) Anytime performance: RTDP algorithms can be inter-
rupted at any time, generally yielding a better solution
the longer they are allowed to run.

Heverlee, Belgium
{robby, kurtd}@cs.kuleuven.ac.be

1784

Redmond, WA, USA

guyshani@microsoft.com

(2) Optimality without exhaustive exploration: By focusing
trial-based search on states reachable from the set of ini-
tial states, RTDP algorithms may obtain an optimal pol-
icy while visiting only a fraction of the state space.

Recent state-of-the-art advances in RTDP algorithms such
as bounded RTDP (BRTDP) [McMahan et al., 2005] and fo-
cused RTDP (FRTDP) [Smith and Simmons, 2006] propose
(a) maintaining upper and lower bounds on the value func-
tion; (b) using the policy derived from the lower bound to
provide guarantees on policy performance; and (c) directing
exploration (and termination) by the uncertainty of a state’s
value, as measured by the gap between its upper and lower
value bounds. As BRTDP and FRTDP both prioritize search
according to value uncertainty, they may execute needless up-
dates in areas of the state space where the policy has con-
verged, but the values have not.

To address this deficiency, we take a Bayesian perspective
on the upper and lower bounds in order to express a belief
distribution over value functions. We then use this distribu-
tion in a myopic value of perfect information (VPI) [Howard,
1966] framework to approximate the expected improvement
in decision quality resulting from the update of a state’s value.
This leads us to the development of a novel algorithm called
VPI-RTDP that directs exploration (and termination) accord-
ing to this VPI analysis. Empirically, VPI-RTDP results in an
improvement over state-of-the-art RTDP methods, yielding
up to a three-fold reduction in the amount of time and unique
states visited to achieve comparable policy performance.

2 Background

2.1 Markov Decision Processes

A Markov decision process (MDP) is a tuple
(S,A,T,R,~) [Puterman, 1994]. S = {s1,...,8,} is
a finite set of fully observable states. A = {ay,...,am} is

a finite set of actions. T : S x A x S — [0,1] is a known
stationary, Markovian transition function. R : S x A — R
is a fixed known reward function associated with every state
and action. ~y is a discount factor s.t. 0 < ~ < 1 where
rewards k time steps in the future are discounted by ~*.
There is a set of initial states Z C S, and a possibly empty
set of absorbing goal states G C .S where all actions lead to a
zero-reward self-transition with probability 1.

Algorithm 1: RTDP

Algorithm 2: CHOOSENEXTSTATE-BRTDP(s, a)

begin
// Initialize Vi, with admissible value function
Vh = ‘/h
while convergence not detected and not out of time do
depth :== 0
visited. CLEAR() // Clear visited states stack
Draw s from Z at random // Pick initial state
while (s ¢ G) A (s # null) A (depth < max-depth)
do

depth := depth + 1

qisited.PUSl—l(s) .

Vi(s) := UPDATE(Vh, s) // See (2) & (3)

a := GREEDYACTION(V4, s) // See (4)

s := CHOOSENEXTSTATE(s,a) // See (5)

// The following end-of-trial update is an optimization
// not appearing in the original RTDP
while —visited EMPTY() do

s := visited.POP()

Vi (s) := UPDATE(V}, s)

return Vh
end

A policy 7 : S — A specifies the action a = 7(s) to take
in state s. Our goal is to find a policy that maximizes the value
function, defined as the sum of expected discounted rewards

o0
E Y rk|so = s
k=0

where 7, is the reward obtained at time step k.

Vi(s) = Ex (1)

2.2 Synchronous Dynamic Programming (DP)

Value iteration (V1) is a synchronous dynamic programming
(DP) solution to an MDP. Starting with an arbitrary V(s),
VI performs value updates for all states s, computing the next
value function V*(s) := UPDATE(V K1, s):

Q*(s,a) := R(s,a) +7- Y _ T(s,a,8') - VFH(s') ()
s'es

VH(s) = max {Q"(s,a)} . 3)

This update is known as a Bellman update.
The greedy policy 7(s) = GREEDYACTION(V*, s) w.r.t.
V'* and state s is defined as follows:

“)

After some finite number of iterations k of VI, the greedy pol-
icy with respect to V* is provably optimal [Puterman, 1994].

R(s,)+ 3 T(s,0,5) - VE(s)
s'esS

m(s) := arg max
acA

2.3 Asynchronous DP and Real-time DP

Asynchronous DP methods [Bertsekas, 1982] are a variant
of dynamic programming that apply the Bellman update to

begin
/I Compute bound gap of reachable states s', use to select
Vs', b(s') :=T(s,a,s")(Vi(s') — Vi(s"))
B =3, b(s")
if B < Y)=Vi() then
| return m&{l
!
return s’ ~ —z=
end

1785

states in an arbitrary order while still retaining convergence
properties under certain conditions. The real-time dynamic
programming (RTDP) [Barto et al., 1993] algorithm (Algo-
rithm 1) is an asynchronous DP approach that updates states
encountered during trial-based MDP simulations. RTDP ex-
plores the state space in depth-limited trials and performs
Bellman updates at each visited state. RTDP visits states s’
sampled from the transition distribution (s’ ~ T'(s, a, -)) for
the current greedy action a and current state s, i.e.,

CHOOSENEXTSTATE(s,a) := s’ ~ T(s,a,-). (5)

We say that V}, is an admissible upper bound over the op-
timal value function V* if V3, (s) > V*(s) for every state s.
Similarly, V; is an admissible lower bound if V3,(s) < V*(s).
Given an admissible upper bound, RTDP converges to the op-
timal value function in the limit of trials [Barto et al., 1993].

One key advantage of RTDP is that it may only need to
explore a small subset of states to obtain an optimal policy
m* w.r.t. Z if the subset of states reachable from Z under 7*
(the relevant states for) is small.

2.4 RTDP Extensions

One drawback of RTDP is that its random exploration of
states in (5) may focus search in areas of the state space
that already have converged values. Since this wastes com-
putation, one improvement is to focus exploration on states
with high value uncertainty and terminate when there is
low uncertainty. This is the motivation behind the bounded
RTDP (BRTDP) [McMahan et al., 2005] and focused RTDP
(FRTDP) [Smith and Simmons, 2006] extensions to RTDP.

BRTDP and FRTDP both maintain upper and lower bounds
on the value function. Assuming that the upper and lower
bounds are admissible, subsequent DP updates preserve ad-
missibility [McMabhan et al., 2005].

In BRTDP and FRTDP, we update both bounds using
Vi(s) := UPDATE(V},, s) and V;(s) := UPDATE(V, s). In
BRTDP, the CHOOSENEXTSTATE routine that directs explo-
ration is modified (Algorithm 2), prioritizing states by the gap
between their upper and lower value bounds. Trials terminate
when the sum of these gaps is below a threshold. FRTDP pro-
vides a similarly motivated uncertainty-based state selection
and trial termination criteria.

3 Bayesian Real-time Dynamic Programming

While BRTDP and FRTDP often converge faster than RTDP,
they can still execute redundant updates in areas of the state
space where the policy has already converged, but the values

have not. Thus, in place of focusing exploration and updates
on states with the highest value uncertainty, what we would
really like is to prioritize updates on those states whose value
update may lead to the greatest improvement in policy value.

Performing this value of information analysis would be
prohibitively expensive if done exactly and non-myopically
so we use a myopic Bayesian value of information frame-
work [Howard, 1966] to approximate the expected improve-
ment in decision quality resulting from a state’s value update.

We begin by rewriting (2) and (3) using a vector notation

where T s = yT'(s, a,):

L i=R(s,a) + T, Vi1 (6)
Vi(s) = max Qg (7)

3.1 Bounds and Belief Distributions

In order to take an expectation in a Bayesian framework, we
need to assign probabilities to our current value beliefs.

Let V; and Vj, represent vectors of lower and upper bounds
respectively, and 6 = (V}, V,). The bounds V;,(s) and V;(s)
for state s may be correlated with the bounds V;(s") and
Vi(s") for any state s’ reachable from s under some policy
7. Determining these correlations is tantamount to perform-
ing DP backups, which is precisely the operation that we are
trying to optimize.

Given that we have no additional immediate knowledge
about possible belief values v € [V}, (s), Vi(s)] for state s, we
can only reasonably assume that v, is uniformly distributed
between these lower and upper bounds. This assumption is
not simply for convenience. Without knowing how values
were updated or being able to determine correlations between
them, we have no more reason to believe that the true value
v} is at the mean [V},(s) + Vi(s)]/2 rather than at one of
the boundaries V},(s) or Vi(s), or anywhere in between. For
model-based DP, the value updates are not sampled in a statis-
tical sense and thus the central limit theorem and associated
normality assumptions do not apply.

We use 6 to parameterize a multivariate uniform distribu-
tion P (%)) for & € RIS that is consistent with the upper and
lower bounds §. P(¥]0) can be conveniently factorized as

P(@0) = [] P(vsl0)
ses
= [Vi(s) > Vi(s) = Uniform(vs; Vi(s), Vi(s))
Pl = {0 20 o

where dy; (5 (vs) is a Dirac delta function.

3.2 The Myopic Value of Exploration

With a value belief distribution that is the uniform hyper-
rectangle between upper and lower value bounds, we can now
write out the integral for the expected value of Q(a, s) under
the current beliefs and evaluate it in closed-form:

[Qa5|9 (s,a) /HPUS|9 as v} di
:R(s,a)+fa7s-vh;‘/l (8)

1786

‘We now use this to determine the states ¢ € .S for which the
expected information gain of updating value V' () is greatest.
Let us assume that we are only interested in the impact of the
value v; on the current policy value. Given that we do not
know the true value v}, we can use a value of perfect infor-
mation (VPI) analysis [Howard, 1966] where we assume that
a clairvoyant source informs of the true value vy = V*(¢).

Using this assumption of perfect external knowledge about
v; to refine our beliefs, we replace the previous upper and

lower bounds for state ¢ in P(v|d) with v}
E[Qa,s|0, v7]
R(s,a) /5 N HPUS [4 -ﬁ}d{f
’#t
Integrating the above, rearranging terms, and substituting (8)
yields a simplified form of this expectation:

E[Qa.l0,v]] = ©
E[Qu,sl6] = T(s,a,1) (M) +T(s,a,t)v]
d(a,s,t)

C(a,s,t,0)
Now, whereas (8) evaluated to a constant since all values in
Vh and Vl are known, (9) evaluates to the function Cla,st,8) T
d(a,s,n)v; linear in vf since all values other than v] are con-
stants.

To evaluate the gain of knowing vy, we take the analyti-
cal framework of [Dearden ef al., 1998] used for analyzing
the value of action selection in the model-free MDP setting
and adapt it for analyzing the value of state exploration in the
model-based framework. Let a* = GREEDYACTION(V, s)
(since convergence of RTDP requires exploring states reach-
able from the best upper bound action). We could evaluate
the gain in Q-value for state s by using a rather than a* if we
knew the exact value of successor state ¢ is v; :

Gaings t,q,0+(V;) =

max (0, E1Qu|0, v;] — ElQu- 418 v7])

Gaing t,q,q+ (v) is only non-zero when knowledge of v} in-
dicates that a* is better than a in s and the gain is then the
difference in utility. We note that Gains ¢ ¢ o+ (v;) must al-
ways be non-negative because more information can never
reduce policy quality.

In reality, we do not know v;. However, we can still write
out the expected myopic VPI of being in state s with current
best policy a* and knowing the value of ¢ is v; by integrating

over it w.r.t. our beliefs P (v} |6):
oo

J

(10)

VPI; o~ (t) = max P(vﬂg) Gaing t,q,q+ (vy)dvy

aFta* Jx—_ o

! e G Ddvy (11

= —————— max AN t.a.q* (V;)dv

Vi(t) — Vi(t) ata- [J;_Vl(t) taas (v))dvf (1)
Since we are looking at the gain over multiple actions and
only one of them can be optimal, we take the maximum ex-
pected gain possible. VPI .« (t) provides us with an approx-
imate estimate of the myopic VPI of the impact that an update
of state ¢’s value will have on the policy quality at s.

20 vy Vi)

Figure 1: A graphical representation of the VPI,(t) calculation.
Note that a™ is the current greedy optimal action. Gains,.,qa* (vf)
is non-zero for a1 in the union of the hatched and crosshatched areas
and non-zero for a2 in the crosshatched area. Thus, the action yield-
ing maximal gain is a; and the VPI, o+ () is then the combined
hatched and crosshatched area multiplied by 1/(V, (t) — Vi(t)).

VPI, o~ (t) might seem difficult to evaluate. But in Fig-
ure 1 we show that the calculation intuitively only requires a
maximization over the expected gains of taking each a # a*
instead of a*. This can be computed efficiently with the same
O(]S|-]A|) computational complexity as the Bellman backup
at a single state — for every next state ¢, VPI, . () is the
maximizing Gains ¢ 4.+ (vf) over all actions a # a*, which
is a constant time calculation consisting of (a) computing the
line equations (9) for a and a* used by Gaing g0+ (v5), (b)
determining the intersection point of these two lines and (c)
calculating the triangular area between the lines and value
bounds where a dominates. As the Bellman backup must al-
ready be computed four times at each state visited during a
trial, this does not change the complexity of the algorithm.

3.3 VPI Exploration Heuristic

We use the VPI,,-(t) calculation to prioritize state ex-
ploration and trial termination in Algorithm 3. Us-
ing dual bound updates and Algorithm 3 in place of
CHOOSENEXTSTATE(S, a) in RTDP (Algorithm 3) yields the
VPI-RTDP algorithm. This approach has roughly the same
structure as BRTDP and FRTDP except that VPI, - (t) is
used in conjunction with bound gap V4, (s) — V() heuristics.

The VPI .+ (t) calculation is uninformative when bounds
are close to their maximal uncertainty. We thus revert to the
BRTDP heuristic in this case; in practice we use a threshold 3
that is 95% of the maximum possible bound. With probability
« we avoid termination when VP, .- (t) is zero for all states
t since this is a local termination heuristic that ignores the
need of predecessor states to reduce uncertainty.

VPI-RTDP has the same theoretical guarantees as
BRTDP [McMahan et al., 2005] when « > 0 quite triv-
ially since all states with non-zero probability of an update by
BRTDP must then also have a non-zero probability of update
under VPI-RTDP. However, this is mainly of theoretical con-
cern since we have found it advantageous to use very small «
in practice, e.g., « = 0.001 as used in our experiments.

1787

Algorithm 3: CHOOSENEXTSTATE-VPI(s, a)

begin
/I Check for large bound gap
Vi, b(t) i= T(s,a,8) (Vu(t) — Th(1))
B:=3",b(t)
if max; b(¢) > [then
return ¢ ~ %

/I If VPI non-zero, focus on value of information
Vt, v(t) := VPIsq(t)
V=3, 0(t)
if V' > 0 then

| return ¢ ~ %)
/I VP is zero, continue with probability o
r ~ Uniform(0,1)
ifr < a A B #0then

| return ¢ ~ %)
return null

end

4 Empirical Results

We evaluated RTDP, BRTDP (7 = 10), FRTDP (e = .001)
and VPI-RTDP on the racetrack benchmark domain [Barto et
al., 1993]. Example racetrack topologies that we use are pro-
vided in Figure 2. We borrow some topologies from [Smith
and Simmons, 2006] as well as variations of their slippage
and wind enhancements to the original racetrack problem.

The state in this problem is a combination of a car’s coor-
dinate position (x, y) and velocity (', y’) in each coordinate
direction. A car begins at one of the initial start states (chosen
uniformly randomly) with velocity (z’,y’) = (0, 0), receives
—1 for every action taken, except for 0 in the absorbing goal
states. Actions (x”,y”) available to the car are integer ac-
celerations {—1, 0, 1} in each coordinate direction. If the car
hits a wall, then its velocity (z’,y’) is reset to (0,0). Nom-
inally, the car accelerates according to the intended action.
However, a car may skid with probability .1, thus resulting
in 0 acceleration in each direction. Or with probability .8
the wind may perturb the commanded acceleration by a uni-
form choice of {(—1,0), (0, —1), (1,0), (0,1)}. We use dis-
count v = 1 so this is a stochastic shortest paths (SSP) MDP.
We set max-depth = 200 for these problems and thus use
—max-depth to initialize the lower bounds. For informed up-
per bound initialization we used the negative of the Manhat-
tan distance to the closest goal divided by twice the maximum
velocity (clearly an optimistic estimate).

In Figure 3, we show the average policy reward for the
lower bound greedy policy vs. the execution time (top) and
the number of unique states visited (bottom) for each al-
gorithm on four Racetrack problems. 95% confidence in-
tervals are shown on all average reward estimates. VPI-
RTDP outperforms all competing algorithms on each prob-
lem and reaches optimality visiting a smaller fraction of the
state space (i.e., number of unique states) than the competing
algorithms. On the largest problem (Block-80), VPI-RTDP
shows roughly a three-fold reduction in the amount of time
and number of unique states visited required to achieve per-
formance comparable to the best competitor (BRTDP). For
the Block problems especially, VPI-RTDP managed to avoid

I

(a) Large-B (b) Large-Ring

(c) Block-10 (d) Block-20 (e) Block- (30—60) (f) Block-70 (g) Block-80

Figure 2: Various racetrack domains evaluated in this paper. Initial states are labeled ’S’, terminal states are labeled F’. Black squares
delineate walls and whitespace indicate legal car coordinates. There are 8 Block domains ranging in length from 10 to 80 with a fixed width
of 30. For our evaluation, the Block domains have the important property that a large fraction of the states are irrelevant to the optimal policy.

Large-B Large—-Ring Block-80
0 0
T VPI-RTDP
g -~ -~ BRTDP
2 ~ + - FRTDP 50 50
o
>
2 100 ! 100
= - -
o ;*
g ES
I -150 | -150
5 j
0 ¥
<€ ++*+ +
-200 : ‘] -200 : -2oo ‘
0 1000 2000 3000 4000 0 1000 2000 3000 4000 1000 2000 3000 4000 5000
Execution Time (ms) Execution Time (ms) Execution Time (ms)
0 0 0
o —~— VPI-RTDP {’J e
S -~ % - BRTDP i f ' : il
£ _sof| + FRTDP IO 50 ¥ 50} B
o --x--RTDP L4 %o i
> - ! i
= -100 L 100 ‘ % . 100} iS
o T - i
(0] I + * % 1!
(o)) $i .= [
© 150} x : -150 ‘ % -150¢ %/i
o
2 o + % ES A
< & i+ 54
-200 : ; j ‘ —200 b eeent — i | -200t e adail]
4 45 5 55 6 65 7 4 45 5 55 6 65 7 75 0 1 2 3 4

Unique States Visited 1¢*

Unique States Visited 1o

Unique States Visited x 1¢°

Figure 3: Average reward for lower bound policy vs. the execution time and # of unique states visited by each algorithm on three Racetrack
problems. Most importantly, we note that (a) the upper-leftmost line is always VPI-RTDP (representing the best performance vs. time/space
tradeoff) and (b) VPI-RTDP asymptotes at the optimal policy return visiting only a fraction of the unique states visited by the other algorithms.

visiting the many irrelevant states leading away from the ini-
tial state and goal — the VPI of these states was low (so
VPI avoided these states) even while their bound gap was still
large (BRTDP and FRTDP could not avoid these states).

In Figure 4, we analyze the scaling behavior of each al-
gorithm as a function of problem size. Shown are the time
and number of unique states visited required to achieve av-
erage policy return of at least -100 vs. the length parameter
in the Block problem (results averaged over 120 runs of each
algorithm). The number of states in the Block problem grows
slightly superlinearly with length as higher velocities can be
achieved on longer tracks. We chose -100 as a policy perfor-
mance comparison point since it is roughly the point of in-
flection in performance for all algorithms shown in Figure 3

— after -100 is reached, the quality of the policy rapidly im-
proves with future trials. The figure shows that as problem
size increases, the time and space performance gap between
VPI-RTDP and competing algorithms significantly widens.

5 Related Work

Other extensions of RTDP and other efficient algorithms that
focus dynamic programming on reachable states were sug-
gested in the past. Labeled RTDP (LRTDP) [Bonet and
Geffner, 2003b] improves on basic RTDP by labeling solved
states when their values (and the values of their successors)
have converged, thus not requiring future updates. Heuristic
Dynamic Programming (HDP) [Bonet and Geffner, 2003a]

1788

Time to Achieve Policy Performance of =100
4000 T :

--©--RTDP
— 3000f| — # ~ BRTDP &
2 5~ FRTDP R
< 2000 L= VPI-RTDP et
£ A
£ e
= 1000t et ¢ |
IR o
o P SEEETLE - 55 e e .
10 20 30 40 50 60 70 80
Length of Block (Fixed Width = 30)
o X 10°# States Visited to Achieve Policy Performance of 100
3 3 : ‘ : ‘ : ; e
% |[--o--RTDOP P
> || - 4 - BRTDP -
@ 2 -~ FRTDP s .
® —=— VPI-RTDP o
& I
o 1+ o ,-7‘&*//’{7]
z g E
5 S =
* o 20 30 40 50 60 70 80

Length of Block (Fixed Width = 30)

Figure 4: The amount of time and number of unique states visited
required to achieve an average policy return of at least -100 as the
length parameter of the Block problem increases from 10 to 80.

combines an even stronger version of this labeling approach
with a heuristic search algorithm. LAO* and Improved
LAO* [Hansen and Zilberstein, 2001] are policy iteration ap-
proaches to solving MDPs while limiting themselves to rel-
evant states for the current greedy policy. As BRTDP and
FRTDP were shown to outperform LRTDP and HDP [McMa-
han et al., 2005; Smith and Simmons, 2006] and LRTDP was
shown to outperform (Improved) LAO* [Bonet and Geffner,
2003b], we focused our experimental comparison on BRTDP
and FRTDP as the current state-of-the-art RTDP algorithms.
That BRTDP outperforms LRTDP is not surprising — both
avoid visiting converged states (LRTDP labels them), but
BRTDP also prioritizes states by their degree of convergence.

Russell and Wefald [1991] proposed the idea of using my-
opic value of information heuristics for search node expan-
sion. This idea was later applied to MDPs in the form of
Bayesian Q-learning [Dearden et al., 1998], which presents a
technique to balance exploration and exploitation in a model-
free Q-learning approach. While Bayesian Q-learning in-
spired this work, there are subtle, but important differences.
Bayesian Q-learning is concerned with the expected informa-
tion gain of action selection and not with the information gain
of exploring individual states as required here by the RTDP
framework. Furthermore, Bayesian Q-learning models its be-
liefs using a normal-gamma distribution leading to a VPI in-
tegral that cannot be computed in closed-form thus requiring
sampling methods for evaluation. Our model-based frame-
work and uniform hyper-rectangle Bayesian belief distribu-
tion allows us to derive a closed-form computation for the
VPI of the same complexity as the Bellman backup.

The sensitivity analysis used in the hierarchical planner
DRIPS [Haddawy et al., 1995] is the closest approximation
we have found in the literature of the model-based VPI anal-
ysis we derived here. However, in our experiments adapting
DRIPS to the RTDP setting (unreported here due to space
limitations), VPI outperformed DRIPS.

1789

6 Concluding Remarks

We contributed a novel, efficiently computable, and closed-
form Bayesian value of information analysis that can be used
as a state exploration and trial termination heuristic in a new
Bayesian RTDP algorithm: VPI-RTDP. VPI-RTDP attempts
to avoid the pitfalls of BRTDP and FRTDP by focusing search
on those states with the greatest potential impact on policy
quality, not just value uncertainty as done previously. Empir-
ically, VPI-RTDP leads to an improvement over state-of-the-
art RTDP methods, yielding up to a three-fold reduction in the
amount of time and fraction of state space visited to achieve
comparable policy performance. Theoretically, VPI-RTDP
has the same optimal convergence guarantees as BRTDP.

One potential extension of this work would be to contin-
uous state or action MDPs. Certain special cases such as
MDPs with linear Q-functions over the state or action space
might admit computationally efficient, closed-form deriva-
tion of VPI heuristics.

Acknowledgements

NICTA is funded by the Australian Government’s Backing
Australia’s Ability and ICT Centre of Excellence programs.
Kurt Driessens was sponsored by the fund for scientific re-
search (FWO) of Flanders as a postdoctoral fellow.

References

[Barto er al., 1993] A. G. Barto, S. J. Bradtke, and S. P. Singh.
Learning to act using real-time dynamic programming. Tech.
Report UM-CS-1993-002, U. Mass. Ambherst, 1993.

[Bertsekas, 1982] D. P. Bertsekas. Distributed dynamic program-
ming. [EEE Trans. on Automatic Control, 27:610-617, 1982.

[Bonet and Geffner, 2003a] B. Bonet and H. Geffner. Faster heuris-
tic search algorithms for planning with uncertainty and full feed-
back. In IJCAI, 1233-1238, Acapulco, Mexico, 2003.

[Bonet and Geffner, 2003b] B. Bonet and H. Geffner. Labeled
RTDP: Improving the convergence of real-time dynamic pro-
gramming. In ICAPS, 12-21, Trento, Italy, 2003.

[Dearden et al., 1998] R. Dearden, N. Friedman, and S. J. Russell.
Bayesian Q-learning. In AAAI/IAAI, 761-768, 1998.

[Haddawy er al., 1995] P. Haddawy, A. Doan, and R. Goodwin. Ef-
ficient decision-theoretic planning techniques. In UAI, 229-236,
Montreal Canada, August 1995.

[Hansen and Zilberstein, 20011 E A. Hansen and S. Zilberstein.
LAO * : A heuristic search algorithm that finds solutions with
loops. Artif. Intell., 129(1-2):35-62, 2001.

[Howard, 1966] R. A. Howard. Information value theory. IEEE
Trans. on Systems Sci. and Cybernetics, SSC-2(1):22-26, 1966.

[McMahan et al., 2005] H. Brendan McMahan, M. Likhachev, and
G. J. Gordon. Bounded real-time dynamic programming: RTDP
with monotone upper bounds and performance guarantees. In
ICML, pages 569-576, Bonn, Germany, 2005.

[Puterman, 1994] M. L. Puterman. Markov Decision Processes:
Discrete Stochastic Dynamic Programming. Wiley, NY, 1994.
[Russell and Wefald, 1991] Stuart Russell and Eric Wefald. Princi-

ples of metareasoning. Artif. Intell., 49(1-3):361-395, 1991.

[Smith and Simmons, 2006] T. Smith and R. G. Simmons. Focused

real-time dynamic programming for MDPs: Squeezing more out
of a heuristic. In AAAI 2006.

