
Model-based Revision Operators for Terminologies in Description Logics

Guilin Qi

Institute AIFB
University of Karlsruhe

Karlsruhe, 76128, Germany

Jianfeng Du

Institute of Software, Chinese Academy of Sciences &
Graduate University of the Chinese Academy of Sciences

Beijing, 100190, China

Abstract

The problem of revising an ontology consistently
is closely related to the problem of belief revision
which has been widely discussed in the literature.
Some syntax-based belief revision operators have
been adapted to revise ontologies in Description
Logics (DLs). However, these operators remove the
whole axioms to resolve logical contradictions and
thus are not fine-grained. In this paper, we propose
three model-based revision operators to revise ter-
minologies in DLs. We show that one of them is
more rational than others by comparing their logi-
cal properties. Therefore, we focus on this revision
operator. We also consider the problem of comput-
ing the result of revision by our operator with the
help of the notion of concept forgetting. Finally, we
analyze the computational complexity of our revi-
sion operator.

1 Introduction

Next generation semantic applications are characterized by a
large number of ontologies, some of them constantly evolv-
ing. When changing ontologies, we often confront the prob-
lem of dealing with inconsistencies [Haase and Stojanovic,
2005; Schlobach et al., 2007; Qi et al., 2008]. In [Qi et al.,
2008], two scenarios have been considered where we need to
deal with this problem. The first one is the ontology learning
scenario where inconsistencies occur during the process of
learning expressive ontologies from text corpus incrementally
and the second one is the ontology mapping scenario where
erroneous mappings may result in an inconsistency and need
to be repaired. Inconsistencies hamper the effective use of
ontologies because answers derived with standard-reasoning
are completely meaningless. Therefore, inconsistency han-
dling is an important problem for ontology change.

Inconsistency handling has been considered as a central
problem in many topics of knowledge representation, such
as belief revision [Gärdenfors, 1988] which deals with the
problem of accommodating newly received information con-
sistently. The problem of revising an ontology consistently is
closely related to the problem of belief revision. Many op-
erators in belief revision have been adapted to deal with in-
consistencies in description logic-based ontologies where de-

scription logics (DLs) are a family of important ontology rep-
resentation languages (see [Halaschek-Wiener et al., 2006;
Qi et al., 2006; Flouris et al., 2006]). However, these opera-
tors are all syntax-dependent ones. That is, suppose there are
two ontologies that are logically equivalent and we want to
revise them with another ontology using these operators, then
we may get two ontologies which are not logically equivalent.
In belief revision, there is an important family of revision op-
erators, called model-based revision operators, that are inde-
pendent of the syntactical forms of the ontologies to be re-
vised. A model-based revision operator in propositional logic
is usually defined by the symmetric difference set between
two interpretations which are a set of propositional variables.
However, it is not trivial to adapt the model-based revision
operators to DLs because DLs have their own features (see
[Flouris et al., 2005]). For example, in DLs, we can distin-
guish two kinds of logical contradictions: inconsistency and
incoherence. An ontology is inconsistent iff it has no model,
i.e., it is inconsistent in the first-order sense. An ontology is
incoherent iff there exists some unsatisfiable concept (i.e, an
unsatisfiable concept stands for the empty set).

In this paper, we propose three novel model-based revision
operators to revise terminologies in DLs by adapting the well-
known Dalal revision operator defined in propositional logic.
In Section 3, we first define a revision operator by directly
adapting the notions of difference set between two interpreta-
tions and distance between two terminologies. However, this
revision operator cannot deal with incoherence. To solve the
problem, we propose a modified distance between two termi-
nologies. The revision operator defined by this new distance
function is still problematic because it does not differentiate
satisfiable concepts and unsatisfiable concepts. Therefore, we
define a modified difference set between two interpretations.
We also consider the problem of computing the result of revi-
sion by this operator with the help of the notion of forgetting.
In Section 4, we show that this revision operator is better than
others by comparing their logical properties. Finally, we con-
sider some computational issues of this revision operator.

2 Preliminaries on Description Logics

We introduce some basic notions of Description Logics (DLs)
(more detailed of DLs can be found in [Baader et al., 2007]).
In our work, we consider only terminological part of a DL-
based ontology, i.e., the so-called TBox (or terminology)

891

which is used to express the intensional level of the ontol-
ogy. A TBox T consists of concept axioms and role axioms
(RBox). Concept axioms (or terminology axioms) have the
form C � D where C and D are (possibly complex) con-
cept descriptions, and role axioms are expressions of the form
R�S, where R and S are (possibly complex) role descrip-
tions. The signature Sig(T) of TBox T is the set of concept
and role names occur in T .

The semantics of DLs is defined via a model-theoretic se-
mantics, which explicates the relationship between the lan-
guage syntax and the model of a domain: An interpretation
I = (�I , ·I) consists of a non-empty domain set �I and
an interpretation function ·I , which maps from concepts and
roles to subsets of the domain and binary relations on the do-
main, respectively. Given an interpretation I, we say that I
satisfies a concept axiom C � D (respectively, a role inclu-
sion axiom R � S) if CI⊆DI (respectively, RI ⊆ SI).
An interpretation I is called a model of a TBox T , written
I |= T , iff it satisfies each axiom in T . We use Mod(T) to
denote all the models of a TBox T . Two TBoxes T1 and T2

are equivalent, written T1 ≡ T2, iff Mod(T1) = Mod(T2). A
named concept C in a terminology T is unsatisfiable iff, for
each model I of T , CI = ∅. A terminology T is inconsistent
iff it does not have a model, and it is incoherent iff there exists
an unsatisfiable named concept in T . Incoherence is a kind
of logical contradiction which has been widely discussed (see
[Flouris et al., 2006]). When there is a concept in a TBox, if
the TBox is inconsistent, then it must be incoherent.

3 Model-based Revision Operators for

Terminologies

In this paper, we assume that there is at least one concept in
any TBox and each individual TBox is coherent (so it is con-
sistent by the first assumption). Our revision operators are
adapted from Dalal’s operator [Dalal, 1988], which is an im-
portant model-based operator defined as follows: given two
propositional formulas φ and ψ, we first calculate the distance
between them as the minimal cardinality of the difference sets
between models of φ and models of ψ, then the set of mod-
els of the result of revising φ by ψ consists of models of ψ
that satisfies the following condition: there exists a model of
φ such that the cardinality of the difference set between the
two models is the same as the distance between φ and ψ. The
difference set between two models consists of propositional
variables that are interpreted differently by them.

3.1 Definitions

To adapt Dalal’s revision operator to DLs, we need to define
the ”difference set” between two models. By treating each
concept name as a propositional variable, we can define the
difference between two models in DLs in a similar way as
the difference set between two models in propositional logic.
Suppose we want to revise a TBox T1 using another one T2.
Following the idea of Dalal’s revision operator, in our revi-
sion operator, we revise some models of T1 to make them as
models of T2. However, we introduce a special treatment.
Since logical errors in TBoxes are usually caused by incor-
rect concept definitions (see [Rector et al., 2004]), to revise a

model I of T1, we only reviseAI for some concept namesA,
and keep RI for all role names R intact. We will show that
revising AI for some concept names A is enough to turn a
model of T1 into a model of T2 (Section 4). In order to ensure
that RI is not revised for role names R, the distance between
T1 and T2 should not be related to role names. This can be
achieved by the following definition of a difference set.
Definition 1. Let T1 and T2 be two TBoxes, and CN and
RN be respectively sets of concept names and role names in
Sig(T1 ∪ T2). Let I = (Δ, ·I) and I ′ = (Δ, ·I′

) be models
of T1 and T2 respectively, which are defined on Sig(T1∪T2).
The difference set between I and I ′, written diff(I, I ′), is
defined as follows:

diff(I, I ′) =
{

CN, if there exists R ∈ RN , RI 	= RI′
,

{A ∈ CN |AI 	= AI′}, otherwise.

That is, the difference set between two models is the set
of all concept names if they interpret a role name differently
and the set of concept names that are interpreted differently
by the models otherwise. Note that if I1 and I2 do not share
a common domain, then they are not comparable.

We can define the distance between two TBoxes. Through-
out the paper, we use |S| to denote the cardinality of set S.
Definition 2. Let T1 and T2 be two TBoxes. The distance
between T1 and T2, written d(T1, T2), is defined as:

d(T1, T2) = minI|=T1,I′|=T2 |diff(I, I ′)|.
The distance between two TBoxes T1 and T2 is the minimal

cardinality of the difference sets between models of T1 and
models of T2.

We define our first revision operator.
Definition 3. Let T1 and T2 be two TBoxes. A revision op-
erator, written ◦M , is defined in a model-theoretical way as
follows:

Mod(T1 ◦M T2) = {I |= T2 | ∃I ′ |= T1,

|diff(I, I ′)| = d(T1, T2)}.
That is, the models of the result of our revision operator

◦M are the models of TBox T2 satisfying the condition that
there exists a model of T1 such that the difference between
them is equal to the distance between the two TBoxes.

It is easy to see that if T1 is consistent with T2, then T1 ◦M

T2 ≡ T1 ∪ T2. From this property, we have that T1 ◦M T2

is incoherent if T1 ∪ T2 is incoherent but consistent. It has
been pointed out incoherence will cause trivial subsumption
relation on unsatisfiable concepts so that it should be resolved
after revision (see [Schlobach et al., 2007] and [Flouris et
al., 2006]). The problem of the revision operator is caused
by the distance between two TBoxes. That is, when T1 ∪
T2 is incoherent but consistent, their distance is 0. So any
interpretation that is a model of T1∪T2 is a model of T1◦MT2.
To solve this problem, we need to give a special treatment of
unsatisfiable concepts in T1 ∪ T2.
Definition 4. Let T1 and T2 be two TBoxes and CN be the
set of concept names in Sig(T1 ∪T2). The modified distance
between T1 and T2, written d′(T1, T2), is defined as:

d′(T1, T2) = minI|=T1,I′|=T2,∀A∈CN :AI′ �=∅|diff(I, I ′)|.

892

When model I ′ of T2 is used to define the new distance
function, it cannot interpret any concept as an empty set. This
will exclude the case that there exists model I of T2 such
that both I and I ′ interpret an unsatisfiable concept as an
empty set. Note that the existence of model I ′ of T2 that does
not interpret any concept as an empty set is justified by the
assumption that T2 is coherent. By replacing d in Definition 3
with d′ we can get a new revision operator, which is denoted
as ◦M ′ . The following example shows that we do not have
T1 ◦M T2 ≡ T1 ∪ T2 anymore even if T1 ∪ T2 is incoherent
but consistent.

Example 1. Let T1 = {A � B � D, A � C,B � C} and
T2 = {A � ¬B,A � ¬C}. A is an unsatisfiable concept
in T1 ∪ T2. Consider a model I of T2 and a model I ′ of T1

such that ΔI′
= {a, b, c, d}, AI′

= {a}, BI′
= {a, b, c},

CI′
= {a, b, c} and DI′

= {a, c}, and ΔI = {a, b, c, d},
AI = {d}, BI = {a, b, c}, CI = {a, b, c} and DI = {a, c}.
We have diffS(I, I ′) = {A}. Therefore |diff(I, I ′)| =
1 and d′(T1, T2) = 1. We show that Mod(T1 ◦M ′ T2) =
Mod(T2 ∪{B � C}). Suppose I |= T1 ◦M ′ T2, then I |= T2

and there exists a model I ′ of T1 such that |diff(I, I ′)| = 1.
It is not difficult to see that we must have diff(I, I ′) = {A}.
Therefore, BI = BI′

and CI = CI′
. Therefore, I |= B �

C. Conversely, suppose I |= T2 ∪ {B � C}. Then I |= T2.
Suppose I ′ is an interpretation such that ΔI′

= ΔI , BI′
=

BI and CI = CI′
, AI′

= ∅ and DI′
= DI . We have

diff(I, I ′) = {A}. Therefore, I is a model of T1 ◦M ′ T2.

From Example 1, to resolve an unsatisfiability, the revision
operator ◦M ′ may remove all the unsatisfiable concepts in the
original TBox. This is not the standard way to deal with un-
satisfiability because it does not debug the ontology to find the
cause of the contradiction (see [Schlobach et al., 2007]). In
Example 1, one of the reasons that concept A becomes unsat-
isfiable is that it is claimed to be a subconcept of both B and
¬B. To resolve an unsatisfiability, we should change those
concepts or axioms that are involved in the contradiction and
keep the unsatisfiable concept if possible.

The problem of the revision operator ◦M ′ is caused by the
definition of difference set. That is, it gives the same prior-
ity to the satisfiable concepts and the unsatisfiable concepts
in a difference set between two interpretations. To solve this
problem, we introduce a notion of stratified set to define a
new difference set. Given n sets of concept names S1, ..., Sn,
by S = (S1, ..., Sn) we denote a stratified set such that el-
ements in Si (i = 1, ..., n) have the same priority but el-
ements in Sj are preferred to those in Sk for any j < k.
The cardinality of the stratified set S = (S1, ..., Sn) is de-
fined as an ordered set of numbers |S| = (|S1|, ..., |Sn|).
Let S = (S1, ..., Sn) and S′ = (S′

1, ..., S
′
n), |S| < |S′|

iff there exists an i ∈ {1, ..., n}, such that |Si| < |S′
i| and

|Sj | = |S′
j | for any j < i, and |S| = |S′| iff |Si| = |S′

i|
for any i ∈ {1, ..., n}. We now define a stratified difference
set between two interpretations. We assume that the set CN
of concept names in signature Sig(T1 ∪ T2) has been strat-
ified such that some concept names are more important than
others. When defining the stratified difference set between
interpretations I and I ′, we first give higher priority to con-

cept names in diff(I, I ′) that are unsatisfiable in T1 ∪ T2

than those that are satisfiable in T1 ∪ T2, then further strat-
ify these two sets of concept names using the stratified set on
CN . Formally, we have the following definition.

Definition 5. Let T1 and T2 be two TBoxes. Sup-
pose (S1, ..., Sn) is a stratified set on all concept names
in Sig(T1 ∪ T2). Let I = (Δ, ·I) and I ′ =
(Δ, ·I′

) be two interpretations. Let U = {A ∈
diff(I, I ′) | A is unsatisfiable in T1 ∪ T2} and W =
diff(I, I ′) \ U . The stratified difference set between
I and I ′, written diffS(I, I ′), is defined as follows:
diffS(I, I ′) = (U ∩ S1, ..., U ∩ Sn,W ∩ S1, ...,W ∩ Sn)

Similarly, we can define dS(T1, T2) through replacing
diff by diffS in Definition 4 and then define a new revi-
sion operator through replacing diff by diffS and replac-
ing d by dS in Definition 3, which is denoted as ◦S . We
need some further explanations of the stratified set on con-
cept names in Sig(T1 ∪ T2) in Definition 5. There are some
benefits of defining the stratified difference set by this strati-
fied set. First, based on different stratified sets, we can define
different difference sets, thus different revision operators. We
allow users to order the signature of the language and de-
cide which concept names are more important than others.
Therefore, our revision operator is more flexible than those
defined previously. Second, in Section 5, we will provide a
special stratified set on concept names in Sig(T1 ∪ T2) such
that the result of the revision operator defined by the strati-
fied difference set can be computed in polynomial time for
a lightweight DL. A naive stratified set is to give all concept
names in Sig(T1 ∪ T2) the same priority. In this case, n = 1
in Definition 5 and diffS(I, I ′) = (U, S1 \ U). We illus-
trate the new revision operator using Example 1, by taking
this naive stratified set.

Example 2. Consider model I of T2 and model I ′ of T1

such that ΔI′
= {a, b, c, d}, AI′

= {a}, BI′
= {a, b, c},

CI′
= {a, b, c} and DI′

= {a, c}, and ΔI = {a, b, c, d},
AI = {a}, BI = {b, c}, CI = {b, c} and DI = {a, c}.
We have diffS(I, I ′) = (∅, {B,C}). So |diffS(I, I ′)| =
(0, 2). We must have d(T1, T2) = (0, 2) based on the follow-
ing observations: (1) for any pair of interpretations I1 and
I ′

1, we must have AI1 = AI′
1 	= ∅, (2) for any pair of inter-

pretations I1 and I ′
1, if |diffS(I1, I ′

1)| = (0,m), where m
is an integer, then we must have m ≥ 2. Therefore, a model
I of T2 is a model of T1 ◦S T2 iff there exists a model I ′ of T1

such that ΔI = ΔI′
and |diffS(I, I ′)| = (0, 2).

3.2 Syntactical counterpart of revision operator ◦S

We show that the result of our revision operator ◦S can be
computed with the help of the notion of concept forgetting.

It has been shown in [Lang and Marquis, 2002] that Dalal’s
revision operator is a special case of a general framework
based on variable forgetting, where a propositional variable
forgotten in a propositional formula will result in another for-
mula which is logically strongest consequence of the origi-
nal formula that is independent of the variable. This inspires
us to provide an approach for computing our revision opera-
tor ◦S syntactically by using the notion of forgetting in DLs.

893

We first introduce the relation ∼A and the notion of concept
forgetting given in [Wang et al., 2008]: let A be a concept
name in a DL language L, and I and I ′ interpretations of
L. We define I ∼A I ′ iff I and I ′ agree on all concept
names and role names except possibly on A. The result of
forgetting about A in T , denoted as forget(T , A), is de-
fined in a model-theoretical way as follows: forget(T , A)
is a TBox on the signature Sig(T) \ {A} and any interpre-
tation I ′ is a model of forget(T , A) iff there is a model
I of T such that I ∼A I ′. It has been shown in [Wang et
al., 2008] that when we forget a set A = {A1, ..., An} of
concept names, the order of concept forgetting will not influ-
ence the final result of forgetting. Therefore, we can define
forget(T ,A) = forget(...(forget(T , A1), ...), An).
In [Wang et al., 2008], an algorithm is given to compute the
result of concept forgetting in DL-Lite, a family of DLs that
provide tractable reasoning. However, for more expressive
DLs, the result of concept forgetting may not be expressed
in the same language [Konev et al., 2008]. In the following,
we define a revision operator by using the notion of forget-
ting and show that this operator corresponds to the revision
operator ◦S .

We define the notion of recovery set, which is a set of con-
cept names in the original TBox that will be forgotten to re-
store coherence.
Definition 6. Given two TBoxes T1 and T2, a recovery set of
T1 w.r.t. T2 is a set V of concept names in T1 ∪ T2 such that
forget(T1, V) ∪ T2 is coherent.

We use RT2
T1

to denote all the recovery sets of T1 w.r.t. T2.
A trivial recovery set is the set CN of all concept names in
T1 ∪ T2 as forget(T1, CN) = ∅ and T2 is assumed to be co-
herent. In Example 1, {A} and {B,C} are recovery sets of
T1 w.r.t. T2. Among all the recovery sets of T1 w.r.t. T2,
some are preferred to others. In the following, we define a
preference relation on RT2

T1
. We first stratify a recovery set

by giving priority to unsatisfiable concepts in it and further
stratify these unsatisfiable concepts and other concepts by a
pre-defined stratified set. We then compare two recovery sets
by comparing the cardinality of their stratified sets.
Definition 7. Let T1 and T2 be two TBoxes. Suppose
(S1, ..., Sn) is a stratified set on all concept names in
Sig(T1 ∪T2). A preference relation on RT2

T1
, called a lexico-

graphic relation and is denoted as �lex, is defined as follows:
for any two recovery sets V1 and V2, let Ui = {A ∈ Vi | A
is unsatisfiable in T1 ∪ T2} and Wi = Vi \ Ui for i = 1, 2.
V1 �lex V2 iff |(U1∩S1, ..., U1∩Sn,W1∩S1, ...,W1∩Sn)| ≤
|(U2 ∩ S1, ..., U2 ∩ Sn,W2 ∩ S1, ...,W2 ∩ Sn)|.

We call a recovery set V ∈ RT2
T1

preferred if for all recov-
ery sets V ′ ∈ RT2

T1
, V �lex V

′. By Pre(RT2
T1

) we denote the
set of all preferred recovery sets in RT2

T1
.

Definition 8. Let T1 and T2 be two TBoxes. Suppose
(S1, ..., Sn) is a stratified set on all concept names in
Sig(T1 ∪ T2). A forgetting-based revision operator, denoted
as ◦f , is defined as follows:
T1 ◦f T2 = {forget(T1, V) ∪ T2 | V ∈ Pre(RT2

T1
)},

where Pre(RT2
T1

) is defined by (S1, ..., Sn).

T1 ◦f T2 consists of the union of T2 and the knowledge
bases1 obtained from T1 by forgetting preferred recovery sets.
Therefore, the result of revision is a set of knowledge bases.
In [Meyer et al., 2005], a set of knowledge bases is called a
disjunctive knowledge base (DKB). Its semantics is given as
follows: A DKB B is satisfied by an interpretation I iff I is
a model of at least one of elements of B.

Example 3. (Example 1 continues) Suppose the stratified set
on {A,B,C} is {{A,B,C}}. There are several recovery
sets of T1 w.r.t. T2, such as {A}, {B,C}, {A,B,C}, etc. It is
easy to check that V = {B,C} is the only preferred recovery
set. Therefore, T1 ◦f T2 = {forget(T1, V)∪T2} = {{A �
D} ∪ T2}. That is, we get a unique TBox T = {A � D,A �
¬B,A � ¬C} as the result of revision.

One may notice that our revision operator drops more in-
formation than necessary to restore coherence because B �
C can be added to T without causing a contradiction. This
kind of problem can be fixed, for example, by taking another
step to restore unnecessary removals by a syntax-based re-
vision after we apply the forgetting-based revision operator.
The detailed discussion of this problem will be left as future
work.

We are able to show that revision operators ◦S and ◦f are
semantically equivalent. Due to page limit, proofs of proposi-
tions in this paper are either omitted or sketched. Full proofs
can be found in a technical report at http://www.aifb.uni-
karlsruhe.de/WBS/gqi/papers/IJCAI09QD.pdf.

Proposition 1. Let T1 and T2 be two TBoxes. Suppose
(S1, ..., Sn) is a stratified set on all concept names in
Sig(T1 ∪ T2). If both ◦S and ◦f are defined by (S1, ..., Sn),
then we have Mod(T1 ◦S T2) = Mod(T1 ◦f T2).

Proof sketch. We first show that Mod(T1 ◦S T2) ⊆
Mod(T1 ◦f T2).

Suppose I |= T1 ◦S T2, then there exists a model I ′ of
T2 such that diffS(I, I ′) = dS(T1, T2), RI = RI′

for any
R ∈ RN , and AI′ 	= ∅ for any A ∈ CN . We set V as the set
of all the concept names in diffS(I, I ′). We first show that
V is a recovery set, that is, forget(T1, V) ∪ T2 is coherent
by showing that I ′ is model of forget(T1, V)∪T2 and using
the fact thatAI′ 	= ∅ for anyA ∈ CN . Next, we show that V
is a preferred recovery set by reduction to absurdity by using
the fact that if forget(T1, V) ∪ T2 is coherent, then there
exists a model I of forget(T1, V) ∪ T2 such that AI 	= ∅
for any unsatisfiable concept of T1 ∪ T2 and there exists a
model I ′

of T1 such that I ∼V I ′
.

Second, we show that Mod(T1 ◦f T2) ⊆Mod(T1 ◦S T2).
Suppose I |= T1 ◦f T2. Then I |= forget(T1, V) ∪ T2.

Since I |= forget(T1, V), there exists I ′ |= T1 such
that I ∼V I ′. So |diff(I, I ′)| = |V |. We show that
dS(T1, T2) = |(U ∩ S1, ..., U ∩ Sn,W ∩ S1, ...,W ∩ Sn)|
by reduction to absurdity. Therefore, |diffS(I, I ′)| =
dS(T1, T2). Since I |= T2 and I ′ |= T1, I is a model of
T1 ◦S T2.

1The result of forgetting may not be a DL knowledge base any-
more.

894

For a terminological axiom φ, T1 ◦f T2 |= φ (resp. T1 ◦S

T2 |= φ) if φ is satisfied by every model in Mod(T1 ◦f T2)
(resp. Mod(T1 ◦S T2)). Proposition 1 tells that there exists an
algorithm to decide if T1 ◦S T2 |= φ, provided that there ex-
ist algorithms for computing the function forget, because
T1 ◦S T2 |= φ iff T1 ◦f T2 |= φ iff forget(T1, V)∪ T2 |= φ

for all preferred recovery set V ∈ Pre(RT2
T1

).

4 Logical properties

We consider postulates for revision operators in DLs given
in [Qi et al., 2006], which are reformulated from Katsuno
and Mendelzon’s postulates (KM postulates) in [Katsuno and
Mendelzon, 1992].
(G1) Mod(T1◦T2) ⊆Mod(φ) for all φ ∈ T2.
(G2) If Mod(T1)∩Mod(T2) 	= ∅, then Mod(T1◦T2) =
Mod(T1)∩Mod(T2).
(G3) If T2 is consistent, then Mod(T1◦T2) 	= ∅.
(G4) If Mod(T) = Mod(T1) and Mod(T ′) = Mod(T2),
then Mod(T ◦T ′) = Mod(T1◦T2).
(G5) Mod(T1◦T2)∩Mod(T3)⊆Mod(T1◦(T2∪T3)).
(G6) If Mod(T1◦T2)∩Mod(T3) is not empty, then
Mod(T1◦(T2∪T3))⊆Mod(T1◦T2)∩Mod(T3).

(G1) guarantees that every axiom in the new TBox can be
inferred from the result of revision. (G2) says that we do
not change the original knowledge base if there is no conflict.
(G3) is a condition preventing a revision from introducing
unwarranted inconsistency. (G4) says the revision operator
should be independent of the syntactical forms of knowledge
bases. (G5) and (G6) together are used to ensure minimal
change.

We are able to show that the operator ◦M satisfies all these
postulates.
Proposition 2. ◦M satisfies (G1)-(G6).

Postulates (G1)-(G6) are reasonable when we only want to
deal with inconsistency. However, (G2) is not a good postu-
late to capture a rational revision operator for terminologies
because it infers that if a TBox is consistent with another one
but their union is incoherent, then the result of revision is still
incoherent. This is exactly the problem for the revision oper-
ator ◦M given by Definition 3. Therefore, we modify (G2) as
follows:
(G2′) For any TBox T1 and any coherent TBox T2, T1 ∪T2 is
coherent if and only if Mod(T1◦T2) = Mod(T1)∩Mod(T2).

Postulate (G2′) requires that if T1 ∪T2 is incoherent but T2

is coherent, then the result of revision should not be equiv-
alent to their union. It is clear that ◦M does not satisfy this
postulate.

We are able to show that our revision operators ◦M ′ and ◦S

satisfy (G2′) and many other postulates.
Proposition 3. For any stratified set on all concept names in
Sig(T1 ∪ T2), ◦M ′ satisfies (G1),(G2′) and (G3)-(G6). ◦S

also satisfies (G1),(G2′) and (G3)-(G6). But they do not sat-
isfy (G2) in general.

Proposition 3 shows that postulates (G1),(G2′) and (G3)-
(G6) do not differentiate operator ◦S and operator ◦M ′ .
Therefore, we propose a new postulate which is satisfied by
◦S but falsified by ◦M ′ .

Unsatisfiability Repair Given two TBoxes T1 and T2, sup-
pose there exists a set V of satisfiable concepts in T1∪T2 such
that all the unsatisfiable concepts in T1 ∪ T2 are satisfiable in
forget(T1, V)∪T2. Then for any model I ∈Mod(T1◦T2),
there exists a model I ′ ∈ Mod(T1) such that AI = AI′

for
all unsatisfiable concept A in T1 ∪ T2.

This postulate says if we can resolve all unsatisfiable con-
cepts by forgetting some satisfiable concepts, then none of
the unsatisfiable concepts should be forgotten after revision.
Example 1 shows that ◦M ′ does not satisfy this postulate.

Proposition 4. For any stratified set on all concept names
in Sig(T1 ∪ T2), ◦S satisfies the postulate ”Unsatisfiability
Repair”.

Propositions 1-4 show that ◦S is better than other two when
applied to deal with incoherence.

5 Computational Issues of Revision Operator

◦S in DL-Lite�
We first analyze the computational complexity of our revi-
sion operator in a special DL, called DL-Lite�. The language
of DL-Lite� extends the core language for the DL-Lite fam-
ily [Calvanese et al., 2007] by allowing conjunctions of ba-
sic concepts in the left-hand side of inclusion axioms, where
there exists an algorithm to compute the result of concept for-
getting [Wang et al., 2008]. The DLs of the DL-Lite family
are tailed to capture conceptual modeling constructs, but still
have low reasoning overheads. All reasoning tasks in the DLs
of this family, such as concept subsumption and answering
complex queries, are computationally tractable.

We show the time complexity of subsumption checking un-
der our revision operator.

Proposition 5. Given two TBoxes T1 and T2 in DL-Lite� and
a concept subsumption axiom φ in DL-Lite�, the problem of
deciding if T1 ◦S T2 |= φ is Δp

2-complete.

Proof sketch. (Hardness) We show this by a ≤p
m-reduction of

the following Δp
2-complete problem [Krentel, 1988]: Given a

satisfiable clause set C = {Cl, ..., Cn} on X = {x1, ..., xn},
decide whether the lexicographically maximum truth assign-
ment Φ(X) on (x1, ..., xn), which we denote by Φm(X), ful-
fills Φm(xn) = true. For 1 ≤ j ≤ m, let L(Cj) denote the
set of literals in Cj . For l a literal occurring in C, let Bl

denote the concept name Ai if l is xi, or A′
i if l is ¬xi.

Let T1 = {Gi � Ai, Gi � A′
i, Gi+n � Ai, Gi+n � A′′

i |
1 ≤ i ≤ n} ∪ {Hj � Bl | 1 ≤ j ≤ m, l ∈ L(Cj)} and
T2 = {Ai � A′

i � ¬Gi, Ai � A′′
i � ¬Gi+n | 1 ≤ i ≤

n} ∪ {
�

l∈L(Cj)
Bl � ¬Hj | 1 ≤ j ≤ m}. We define a

stratified set for ◦S as S = ({Gi | 1 ≤ i ≤ 2n} ∪ {Hj | 1 ≤
j ≤ m}, {Ai, A

′
i | 1 ≤ i ≤ n}, A′′

1 , . . . , A′′
n). For a truth

assignment Φ(X), let VΦ denote {Ai | 1 ≤ i ≤ n,Φ(xi) =
true} ∪ {A′

i, A
′′
i | 1 ≤ i ≤ n,Φ(xi) = false}. Then VΦ

is a recovery set of T1 w.r.t. T2 iff Φ(X) satisfies C. Note
that for a preferred recovery set V of T1 w.r.t. T2, since V
does not contain any Gi or Hj , it must contain Ai or A′

i, A
′′
i

for all 1 ≤ i ≤ n; otherwise some Gi is unsatisfiable in
forget(T1, V) ∪ T2. Since S prefers recovery sets that do
not containA′′

1 (and hence containA1) over recovery sets that

895

contain A′′
1 etc., it is clear that for distinct truth assignments

Φ(X) and Ψ(X) satisfyingC, we have VΦ �lex VΨ iff Φ(X)
is not lexicographically less than Ψ(X) w.r.t. (x1, ..., xn). It
follows that Pre(RT2

T1
) = {VΦm}. Hence T1 ◦S T2 |= Gn �

A′
n iff T1◦f T2 |= Gn � A′

n (by Proposition 1) iffA′
n 	∈ VΦm

iff Φm(xn) = true. Since T1, T2 and S can be constructed in
polynomial time, the hardness holds.

(Membership) Let the stratified set for ◦S be (S1, ..., Sn).
We use the following algorithm to check if T1◦ST2 |= φ.
1. U := {A ∈

⋃n

i=1
Si | A is unsatisfiable in T1 ∪ T2};

2. for i := 1, ..., n do Ti = U ∩ Si; Ti+n = Si \ U ;
3. for i := 1, ..., 2n do

4. for j := 0, ..., |Ti| do

5. Guess (V1, ..., Vi) where Vk ⊆ Tk for all 1 ≤ k ≤ i,
and check if |Vk| = mk for 1 ≤ k ≤ i − 1, |Vi| = j and⋃i

k=1
Vk∪

⋃2n

k=i+1
Tk is a recovery set of T1 w.r.t. T2; if so, set

mi as j and continue next i;
6. Guess a stratified set (W1, ..., Wn) where Wi ⊆ Si for all 1 ≤

i ≤ n, and check if
⋃n

i=1
Wi is a recovery set of T1 w.r.t. T2,

forget(T1,
⋃n

i=1
Wi) ∪ T2 �|= φ, and for all 1 ≤ i ≤ n,

|Wi ∩ U | = mi and |Wi \ U | = mi+n; if so, return false;
7. return true;

In the above algorithm, a preferred recovery set V is com-
puted in lines 1–5 by a guess-and-test approach, and mi is
set as |V ∩ Ti| for all 1 ≤ i ≤ 2n. Clearly (m1, ...,m2n)
is unique for all preferred recovery sets. Note that U can be
computed in polynomial time. Note also that the checking
process in line 5 or line 6 can be accomplished in polyno-
mial time, so the algorithm finishes after calling an NP oracle
O(1 +

∑2n
i=1(|Ti| + 1)) = O(

∑n
i=1 |Si|) times. That is, the

algorithm works in Δp
2 time.

The above proposition shows that subsumption checking
under ◦S is in general intractable. However, in a special case
where every concept name constitutes a stratum in the given
stratified set for ◦S , subsumption checking in DL-Lite� under
◦S is tractable (see Algorithm 1).

Algorithm 1. Checking(T1, T2, (S1, . . . , Sn), φ)
Input: Two TBoxes T1 and T2, a stratified set (S1, . . . , Sn) on all

concept names in Sig(T1 ∪ T2) such that |Si| = 1 for all 1 ≤
i ≤ n, and a concept subsumption axiom φ.

Output: The truth value of T1 ◦S T2 |= φ, where ◦S is defined by
(S1, . . . , Sn).

1. U := {A ∈
⋃n

i=1
Si | A is unsatisfiable in T1 ∪ T2}; V := ∅;

2. for i := 1, ..., n do Ti := Si ∩ U ; Ti+n := Si \ U ;
3. for i := 1, ..., 2n with Ti �= ∅ do

4. if forget(T1, V ∪
⋃2n

k=i+1
Tk) ∪ T2 is incoherent then

5. V := V ∪ Ti;
6. return forget(T1, V) ∪ T2 |= φ;

Algorithm 1 first computes the unique preferred re-
covery set V in RT2

T1
(lines 1–5), then checks whether

forget(T1, V) ∪ T2 |= φ (line 6). By Proposition 1, the
result of the above checking is exactly the truth value of
T1 ◦S T2 |= φ. In the algorithm, Ti consists of at most
one axiom for any 1 ≤ i ≤ 2n. Since a preferred recovery

set V should make |(T1 ∩ V, ..., T2n ∩ V)| minimal among
that of all recovery sets, RT2

T1
has only one preferred recov-

ery set. It is computed by considering T1, ..., T2n in turn to
keep as many axioms with higher priority as possible while
guaranteeing coherence. Let V be a partial preferred re-
covery set before considering Ti. Then Ti is appended to
V if forget(T1, V ∪

⋃2n
k=i+1 Tk) ∪ T2 is incoherent, be-

cause otherwise coherence cannot be restored by considering
Ti+1, ..., T2n. Since the result of concept forgetting in DL-
Lite� TBoxes can be computed in polynomial time [Wang et
al., 2008], as well as coherence checking and subsumption
checking in DL-Lite� can be accomplished in polynomial
time [Calvanese et al., 2007], Algorithm 1 works in poly-
nomial time.

6 Related Work

In [Flouris et al., 2005], Flouris et al. generalize the
well-known AGM (Alchourrón, Gärdenfors and Markinson)
framework in order to apply the rationales behind the AGM
framework to a wider class of logics. In [Flouris et al., 2006],
a framework for the distinction between incoherence and in-
consistency of an ontology is proposed. A set of rational pos-
tulates for a revision operator in DLs is proposed. In [Qi
et al., 2006], reformulated AGM postulates for revision are
adapted to DLs. A set of postulates is given in [Ribeiro and
Wassermann, 2007] by adapting Hansson’s postulates for a
semi-revision operator (see [Hansson, 1999]).

Some concrete operators have been proposed. In [Haase et
al., 2005], an algorithm is given to determine consistent sub-
ontologies by adding an axiom to an ontology. A revision
operator is given in [Halaschek-Wiener et al., 2006] based on
Hansson’s kernel operator. In [Qi et al., 2006], the authors
propose two revision operators that satisfy their postulates.
All these revision operators deal with inconsistencies. Qi et
al. in [Qi et al., 2008] propose a general revision operator
to deal with incoherence by adapting Hansson’s kernel revi-
sion operator. However, this operator is not fine-grained in
the sense that it removes a whole axiom from a TBox if it
is selected by an incision function. Our revision operators
are different from existing ones in that they follow another
family of belief revision operators, i.e. model-based revision
operators, so they are more fine-grained than existing ones.

Our work is different from existing revision approaches
on prioritized knowledge bases, such as [Benferhat et al.,
2002], because our work is based on a preference over con-
cept names.

7 Conclusion and Future Work

In this paper, we adapted the well-known Dalal revision op-
erator for revising terminologies in description logics. We
pointed out some pitfalls when we tried to adapt the notion
of a difference set between two interpretations and the no-
tion of a distance function between TBoxes. We defined three
model-based revision operators successively and showed that
one of them (◦S) is more rational than others using some ex-
amples. We then defined a revision operator syntactically
using the notion of concept forgetting and showed that this
operator is semantically equivalent to the revision operator

896

◦S . We considered logical properties of our revision opera-
tors with respect to postulates given in [Qi et al., 2006] and
by proposing some new postulates. We showed that the re-
vision operator ◦S is more rational than others. Finally, we
showed that subsumption checking in DL-Litecore under our
revision operator ◦S is PNP [O(log n)]-complete and provided
a polynomial time algorithm to compute the result of revision
in a special case.

We consider only revision of terminologies in DLs. As a
future work, we will extend our work to consider ontologies
with ABoxes. This is very challenging because it has been
shown in [Wang et al., 2008] that even for DL-Lite languages,
forgetting results in DL-Lite with ABoxes are not expressible
in the same language. We will consider the following solu-
tions. First, we do not require that the result of revision must
be expressed in the same language as the original language for
the ontologies under consideration. Second, we consider ap-
proximation of the result of revision in the original language,
like the work done in [Giacomo et al., 2007].

Acknowledgments

Thanks three anonymous reviewers for their useful com-
ments. Guilin Qi is partially supported by the EU under the
IST project NeOn (IST-2006-027595). Jianfeng Du is par-
tially supported by NSFC grants 60673103, 60721061 and
70801020.

References

[Baader et al., 2007] F. Baader, D. Calvanese, D. McGuin-
ness, D. Nardi, and P. Patel-Schneider. The Description
Logic Handbook: Theory, implementation and applica-
tion. Cambridge University Press, 2007.

[Benferhat et al., 2002] Salem Benferhat, Didier Dubois,
Henri Prade, and Mary-Anne Williams. A practical ap-
proach to revising prioritized knowledge bases. Studia
Logica, 70(1):105–130, 2002.

[Calvanese et al., 2007] Diego Calvanese, Giuseppe De Gi-
acomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Tractable reasoning and efficient query an-
swering in description logics: The dl-lite family. J. Autom.
Reasoning, 39(3):385–429, 2007.

[Dalal, 1988] M. Dalal. Investigations into a theory of
knowledge base revision. In Proc. of AAAI, pages 475–
479, 1988.

[Flouris et al., 2005] G. Flouris, D. Plexousakis, and G. An-
toniou. On applying the AGM theory to DLs and OWL.
In Proc. of ISWC, pages 216–231, 2005.

[Flouris et al., 2006] G. Flouris, Z. Huang, J.Z. Pan, D. Plex-
ousakis, and H. Wache. Inconsistencies, negations and
changes in ontologies. In Proc. of AAAI, pages 1295–1300,
2006.

[Gärdenfors, 1988] P. Gärdenfors. Knowledge in Flux-
Modeling the Dynamic of Epistemic States. The MIT
Press, Cambridge, Mass, 1988.

[Giacomo et al., 2007] G. De Giacomo, M. Lenzerini,
A. Poggi, and R. Rosati. On the approximation of instance
level update and erasure in description logics. In Proc. of
AAAI, pages 403–408, 2007.

[Haase and Stojanovic, 2005] P. Haase and L. Stojanovic.
Consistent evolution of owl ontologies. In Proc. of ESWC,
pages 182–197, 2005.

[Haase et al., 2005] P. Haase, F. van Harmelen, Z. Huang,
H. Stuckenschmidt, and Y. Sure. A framework for han-
dling inconsistency in changing ontologies. In Proc. of
ISWC, pages 353–367, 2005.

[Halaschek-Wiener et al., 2006] C. Halaschek-Wiener,
Y. Katz, and B. Parsia. Belief base revision for expressive
description logics. In Proc. of OWL-ED. 2006.

[Hansson, 1999] S.O. Hansson. A Textbook of Belief Dynam-
ics: Theory Change and Database Updating. Kluwer Aca-
demic Publishers, 1999.

[Katsuno and Mendelzon, 1992] H. Katsuno and A.O.
Mendelzon. Propositional knowledge base revision and
minimal change. Artif. Intell., 52(3):263–294, 1992.

[Konev et al., 2008] B. Konev, C. Lutz, D. Walther, and
F. Wolter. Formal properties of modularisation. In H.
Stuckenschmidt and S. Spaccapietra, eds., Ontology Mod-
ularization, Springer, 2008.

[Krentel, 1988] Mark W. Krentel. The complexity of opti-
mization problems. J. Comput. Syst. Sci., 36(3):490–509,
1988.

[Lang and Marquis, 2002] J. Lang and P. Marquis. Resolv-
ing inconsistencies by variable forgetting. In Proc. of KR,
pages 239–250, 2002.

[Meyer et al., 2005] T. Meyer, K. Lee, and R. Booth. Knowl-
edge integration for description logics. In Proc. of AAAI,
pages 645–650, 2005.

[Qi et al., 2006] G. Qi, W. Liu, and D. Bell. Knowledge base
revision in description logics. In Proc. of JELIA, pages
386–398, 2006.

[Qi et al., 2008] G. Qi, P. Haase, Z. Huang, Q. Ji, J.Z.
Pan, and J. Völker. A kernel revision operator for
terminologies–algorithms and evaluation. In Proc. of
ISWC, pages 419–434. 2008.

[Rector et al., 2004] A.L. Rector, N. Drummond, M. Hor-
ridge, J. Rogers, H. Knublauch, R. Stevens, H. Wang, and
C. Wroe. Owl pizzas: Practical experience of teaching
owl-dl: Common errors & common patterns. In Proc. of
EKAW, pages 63–81, 2004.

[Ribeiro and Wassermann, 2007] M. Moretto Ribeiro and
R. Wassermann. Base revision in description logics - pre-
liminary results. In Proc. of IWOD, pages 69–82, 2007.

[Schlobach et al., 2007] S. Schlobach, Z. Huang, R. Cornet,
and F. van Harmelen. Debugging incoherent terminolo-
gies. J. Autom. Reasoning, 39(3):317–349, 2007.

[Wang et al., 2008] Z. Wang, K. Wang, R. W. Topor, and J.Z.
Pan. Forgetting concepts in dl-lite. In Proc. of ESWC,
pages 245–257, 2008.

897

