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Abstract

A significantly complete account of the complex-
ity underlying the computation of relevant solu-
tion concepts in compact coalitional games is pro-
vided. The starting investigation point is the setting
of graph games, about which various long-standing
open problems were stated in the literature. The pa-
per gives an answer to most of them, and in addi-
tion provides new insights on this setting, by stating
a number of complexity results about some relevant
generalizations and specializations. The presented
results also pave the way towards precisely carving
the tractability frontier characterizing computation
problems on compact coalitional games.

1 Introduction

A coalitional game is played by a set IV of players that can
form coalitions in order to guarantee themselves some ad-
vantage. Each coalition S C N is assigned a certain worth
v(S) that players in S can obtain if collaborating with each
other, and the outcome of the game is a vector of payoffs
(Ti);en € RINI that is meant to specify the distribution of
the worth granted to each player in V.

A fundamental problem for coalitional games is to char-
acterize the most desirable outcomes in terms of appropriate
notions of fair worth distributions, which are usually called
solution concepts. Traditionally, this issue has been stud-
ied in economics and game theory in the light of providing
arguments and counterarguments about why such proposals
are reasonable mathematical renderings of the intuitive con-
cepts of fairness and stability. For instance, well-known and
widely-accepted solution concepts are the Shapely value, the
core, the kernel, the bargaining set, and the nucleolus.

More recently, however, Deng and Papadimitriou [1994]
re-considered the definition of such concepts from a computer
science perspective, by arguing that decisions taken by real-
istic agents should not involve unbounded resources to sup-
port reasoning, and by suggesting to formally capture such a
bounded rationality principle by assessing the amount of re-
sources needed to compute solution concepts in terms of their
computational complexity. In particular, they considered the
setting of graph games, where worths for coalitions over a
set N of players are constructed over a weighted undirected
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graph G = ((N, E),w), whose nodes in N correspond to
the players and where the list w encodes the edge weighting
function, so that w(e) € R is the weight associated with the
edge e € E. Then, the worth of an arbitrary coalition S C N
is defined as the sum of the weights associated with the edges
contained in S, i.e., as the value v(S) = Ze6E|eCS w(e).

Within the setting of graph games, Deng and Papadimitriou
characterized the intrinsic complexity of various tasks related
to solution concepts. For instance, they showed that check-
ing whether the core is non-empty is co-NP-complete. More-
over, they provided a polynomial-time computable closed-
form characterization for the Shapely value, and showed that
this value coincides with the nucleolus, whenever each of
its components is non-negative. However, the picture of the
complexity issues arising with graph games depicted by Deng
and Papadimitriou [1994] is not complete. In particular, the
complexity of the problems of checking whether an outcome
belongs to the bargaining set and to the kernel was not de-
rived and, in fact, these questions were explicitly stated as
open problems there. In addition, the complexity of check-
ing whether an outcome belongs to the nucleolus for general
graph games was not derived.

1.1 Contributions

As a matter of fact, the modeling perspective introduced by
Deng and Papadimitriou [1994] was very influential in the
subsequent literature, and it inspired complexity analysis of
several other kinds of compactly specified games (see, e.g.,
[Teong and Shoham, 2005; Conitzer and Sandholm, 2006;
Elkind et al., 2007; Bilbao, 2000]), that is, of games where
associations of coalitions with their worths are implicitly rep-
resented as to avoid the exponential blow-up that would result
if all of them were explicitly listed. Yet, despite the promi-
nence gained in the last few years of studying the compu-
tational properties of solution concepts in graph games, and
more generally for compact games, the questions raised by
Deng and Papadimitriou are still open problems.

The first contribution of this paper is precisely to solve
these open problems, by showing that, for graph games,

(1) Checking whether an outcome is in the kernel is Ag’-
complete;

(2) Checking whether an outcome is the nucleolus is Ag-
complete; and,



(3) Checking whether an outcome is in the bargaining set is
Y -complete.

These main achievements come, however, not alone in the
research reported below. Indeed, we go beyond and study var-
ious computational issues arising in relevant generalizations
and specializations of the setting of graph games.

Generalizations. With respect to generalizing graph games,
we consider the fairly more general classes of games in poly-
nomial characteristic function form within the setting dis-
cussed in [Bilbao, 2000], where the worth function is pro-
vided by means of an oracle, whose call requires polyno-
mial time in size of the game representation. We say that
these games are compact (or in compact form). E.g., graph
games are an instance of this setting where, for each coalition
S C N, v(S) can be computed in polynomial time as a sum-
mation of the weights of all those edges e C S. Other notable
examples of classes of compact games includes the marginal
contribution nets [Teong and Shoham, 2005] and the weighted
threshold games [Elkind et al., 2007]. Within this setting,

(4) We show that nothing has to be paid for the succinctness
of the specifications, since all the membership results
that hold for graph games also hold for any class of com-
pact games. Indeed, we show that, on compact games,
checking the membership in the kernel, bargaining set
and nucleolus are still in AL, TTY, and AF, respectively.

Note that, while (1), (2), and (3) are mainly combinatorial
contributions (for they rely on the definition of rather elabo-
rate reductions), the contribution in (4) appears algorithmic
in its nature. Indeed, it is achieved by showing that the var-
ious solution concepts on compact games can ultimately be
defined in terms of suitable linear programs over exponen-
tially many inequalities (succinctly specified, in their turn).
In particular, those results are established by providing com-
plexity bounds on several problems related to succinctly spec-
ified linear programs, which are of interest on their own, and
where the complexity for programs with polynomially many
constraints is well-known instead.

Specializations. Finally, in the last part of the paper, we in-
vestigate suitable specializations of graph games, by looking
for tractable classes based on exploiting some of their graph
invariants. In particular, we focused on the acyclicity prop-
erty, motivated by the fact that many NP-hard problems in
different application areas are known to be efficiently solv-
able when restricted to instances whose underlying structures
can be modeled via acyclic graphs or nearly-acyclic ones,
such as those graphs having bounded treewidth. In fact, Ieong
and Shoham [2005] have already observed that deciding the
membership of an outcome into the core and deciding the
non-emptiness of the core are feasible in polynomial time on
bounded treewidth marginal contribution nets. Here, we con-
tinue along this line of research, and

(5) We show that, on graphs having bounded treewidth, the
problems of checking whether an outcome is in the ker-
nel is feasible in polynomial time.

Interestingly, the above result is established by showing

how this solution concept can be expressed in terms of an op-
timization problem over Monadic Second Order Logic (MSO)
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formulae. This was not observed in earlier literature, nei-
ther for the kernel, nor for other solution concepts. Thus,
on graphs having bounded treewidth, tractability emerges as
a consequence of Courcelle’s Theorem [Courcelle, 1990] and
of its generalization to optimization problems due to Arnborg,
Lagergren, and Seese [Arnborg et al., 1991].

2  Cooperative Game Theory

A coalitional game G is a pair (N, v), where N is the set of
all the players and where v : 2V — R is the worth function.

A vector (). (With 2; € R) is an imputation of G if
Y ien Ti = v(N) and 2; > v({i}), for eachi € N. The set
of all the imputations of G is denoted by X (G).

Several (solution) concepts have been proposed in the liter-
ature to characterize the most desirable imputations of coali-
tional games. Below, we recall the notions of kernel, bargain-
ing set, and nucleolus (see, e.g., [Osborne and Rubinstein,
19941]), which will be the subject of our research here.

For any pair of players ¢ and j of G, we denote by Z; ; the
set of all coalitions containing player ¢ but not player j. The
excess of the generic coalition .S at the imputation € X (G),
denoted by (.5, x), is defined as v(S) — x(S), where x(S) is
a shorthand for the value ), g ;. The surplus s; j(x) of i
against j at z is s; j(r) = maxgsez, ; e(S, ).

Definition 2.1. The kernel K(G) of a game G = (N, v) is
the set: ’C(g) = {I S X(g) | Siyj(I) > Sj’i(I) = T =
v({7}),Vi,j € N,i # j}. O

Let 2 be an imputation. We say that (y, S) is an objection
of player i against player j to x if S € I, ;, y(S) = v(S),
and y, > xy forall k € S. If (y, S) is an objection of player
1 against player j to z, then we say ¢ can object against j to
x through S. A counterobjection to the objection (y, S) of i
against j is a pair (z,T) where T € Z; ;, z(T) = v(T), and
2z > ap forallk € T\ Sand 2z, > yy forall k € TNS. If
(z,T) is a counterobjection to the objection (y, S) of i against
Jj, we say that j can counterobject to (y, S) through T'. If
there does not exist any counterobjection to (y,.S), we say
that (y, S) is a justified objection.

Definition 2.2. The bargaining set B(G) of G is the set of all
imputations to which there is no justified objection. 0

For any imputation z of G, we define the vector: 6(x)
(e(S1,x),e(S2,x),...,e(Saen_1,x)), where the various ex-
cesses of all coalitions (but the empty one) are arranged in
non-increasing order. Let #(x)[i] denote the i-th element of
6(zx). For a pair of imputations  and y, we say that 6(z) is
lexicographically smaller than 6(y), denoted by 6(z) < 6(y),
if there exists a positive integer ¢ such that 8(x)[i] = 0(y)[i]
forall ¢ < g and 0(x)[q] < 8(y)[q].

Definition 2.3. The nucleolus N'(G) of a game G is the set
NG ={reX()|PyeX(@) sty <0(x)} O

It is well-known that, for any game G, N'(G) is a single-
ton (see, e.g., [Osborne and Rubinstein, 1994]).

3 On the Hardness of Solution Concepts

In this section, we shall characterize the complexity of the
kernel, of the nucleolus, and of the bargaining set of graph



games. With a small abuse of notation, if G is a weighted
graph, we denote by G its associated graph game, too.

We next show a reduction from the AL -hard problem of de-
ciding whether the lexicographically least significant variable
is true in the lexicographically maximum satisfying assign-
ment for a formula [Krentel, 1986] to the problem of deciding
whether an imputation belongs to the kernel of a graph game.

Theorem 3.1. Let G be a graph game, and x an imputation
of G. Then, deciding whether x belongs to K(G) is AY -hard.

Proof Idea. Let ¢ = c¢1 A ... A ¢, be a 3CNF Boolean
formula, that is, a Boolean formula in conjunctive nor-
mal form over the set of lexicographically ordered vari-
ables {a1,...,a,} where each clause contains three liter-
als (positive or negated variables) at most. Based on ¢,
we build in polynomial time the weighted graph K (¢) =
((Ny, E,),w), as discussed next (see Figure 1 for an illus-
tration).

---- penalty edges
= normalizer edge

-~

Figure 1: The game K (¢), where b = (a1 V —ag Vas) A
(ﬁOél V ag V 043).

The set V. of nodes (i.e, players) includes: a variable
player o, for each variable «; in ¢; a clause player c;, for
each clause c¢; in ¢; a literal player {; ; (either ¢; ; = «; ; or
¢; ; = —oy 5), for each literal £; (¢; = o or £; = —oy;, respec-
tively) as occurring in ¢;; and, two special players “chall”
and “sat”. The set E/ consists of the three types of edges:

Positive edges: an edge {c;,¢; ;} with w({c;,4;;}) =

273 for each literal /; occurring in ¢;; an edge
{chall, a;} with w({chall, o;}) = 2, foreach 1 < i <
n; an edge {sat, o;} with w({sat,a;}) = 2¢, for each
2 < i < n; the edge {sat,aq} with w({sat,a1}) =
2! + 20,

“Penalty” edges: an edge {lij, 0 i} with
w({l;j, b j}) = —2mTF7 for each pair of liter-
als ¢; and ¢;; occurring in c¢;; an edge {o; j, "}
with w({e; j, —; ji}) = —2mTF7 for each variable
o; occurring positively in ¢; and negated in ¢;/; an edge
{Oéi, ﬁOéi)j} with ’LU({O(Z', ﬁam}) = _2m+n+7’ for each
variable o; occurring negated in c;.

“Normalizer” edge: {chall, sat} with w({chall, sat}) =

I- e€Ey |e#{chall,sat} wie).
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Consider the imputation z that assigns 0 to all players
of K(¢), but to sat, which receives 1. By Definition 2.1,
since sat is the only player that receives in x a payoff strictly
greater than her worth as a singleton coalition, and since one
may note that w({chall, sat}) > D + 1, where D denotes
the maximum worth over all the coalitions not covering the
edge {chall, sat}, we have that x € K(K (¢)) if and only if
MAXSETcnair,sat e(S,z) < MAXSeT 0t chall e(S, x).

Now, observe that it is never convenient for a coalition to
cover a penalty edge. Thus, since the formula is satisfiable,
MAXSET, 0.0, (5, ) is precisely achieved over a coalition
encoding a satisfying assignment for ¢, thereby equating the
value CS = m x 2"*% + maxgg 32 4. o () =true 2 -

The same reasoning applies to maxserz,,, .,..; €(S; ),
with the difference that for each S, sat € S implies that
x(S) 1 holds, and that the weight associated with the
edge {sat,;} is 2%, for each 2 < i < n, while 2! + 2°
for the case where ¢+ = 1. Thus, this maximum coincides
with the value SC' = m x 2" 4+ max, ({1 | o(on) =
true}' + Zai|o(ai):true 21) - L

Finally, CS < SC holds if and only if a; is true in the
lexicographically maximum satisfying assignment for ¢p. L[]

Theorem 3.2. Let G be a graph game, and x an imputation
of G. Then, deciding whether x belongs to N'(G) is Ag-hard.

Proof Idea. The reduction is again from the problem of de-
ciding whether «; is true in the lexicographically maximum
satisfying assignment for such a given formula ¢. Let ¢ be a
3CNF Boolean formula and let (IV,, E,) be the graph built
in the proof of Theorem 3.1. Let N, = N, \ {sat}, let N
be the set of players {p | p € Ny Ap # a1} containing a
copy of each player in Ny, but o, and let N,, = {a,a,b,b}.
Moreover, let E, = {{p, ¢} | {p,q} € Ex N {p,q} C Ni}.

Based on ¢, we define the weighted graph IN(¢)
((Ny, Ey),w), as discussed next (see Figure 2 for an illus-
tration of the construction).

{{p.a} [p € Ne \ {1} Ag € Ni}

-~

Figure 2: The game N (¢), where b= (a1 V—az Vag) A
(ﬁal V ag V a3).



The set N, of nodes coincides with N U Nj UN,. The
set £ of edges coincides with Ey, U {{p, q} | {p,q} € Ex A
P70} € Ny} U {{a1,q} | {a1,q} € Ex AT € Ny} U
{{p. @} Ip € Nu\{ar}Aq € Ne}U{{a, b}, {@, b}, {b,b}}.

Moreover, weights partition edges into three groups:

Positive edges: w({c;, 4 ;}) = w({e;, li;}) = 273,
for each literal ¢; occurring in ¢;; w({chall,o;}) =
w({chall,a;}) = 2¢, for each 2 < i < n; and,
w({chall,a1}) = w({chall, a1 }) = 2.

“Penalty” edges: w({ﬂi,j, &/J}) = w({zm,zi/,j}) =
—2m+n+7 for each pair of literals ¢; and ¢;; occurring in
cjiw({en, aig}) = w({@iy, a0 }) = —2m,
for each variable «; occurring positively in ¢; and negated

in cj; w({os, ~aiy}) = w({ai, mag,}) = =2
for each variable «; with ¢ # 1 occurring negated in
i w({ar,ma1;}) = w{ar, 7@, }) = —2mintT,

for each clause c; where «; negatively occurs; and
w({p,q}) = —2m*+"*7, for each pair of players p #
and ¢, with p € N and ¢ € Ny.

“Normalizer” edges: Consider the value A 1=
ZBGEN eC Ny U w(e). Then, w({a,b}) = w({a,b}) =
A +2and w({b,b}) = —A — 4.

Consider the graph game N (¢), which can in fact be built
in polynomial time, and the imputation z that assigns 0 to all
players of N (¢), but to 1, which receives 1. Note that x is
an imputation, because of the weights of the edges in N,..

Let S, = argmaxgcy, v(S). Along an analogous line
of reasoning as in the proof of Theorem 3.1, one can show
that U(S*) =m x 2" 4 maXs=¢ Zailo(ai):true 2° and,
in fact, that &y € S, if and only if o evaluates to true in the
lexicographically maximum satisfying assignment for ¢.

Moreover, one can show the two following properties: (i)
the excess of S, is the maximum one, no matter what specific
imputation is considered. Therefore, = is in the nucleolus
if and only if it minimizes the excess of S,. And (ii), each
coalition S C Ny, has a dual coalition S C N U {1} (and
viceversa) such that S = {p | p € SAp# a1} U{a1 | a1 €
S} and v(S) = v(9).

By combining the two observations above, it emerges that
if o evaluates to true in the lexicographically maximum sat-
isfying assignment for ¢, then all the coalitions achieving the
maximum excess precisely share oy only—in particular, this
is the case because there is no single normalizer edge, which
instead would have occurred in each coalition achieving the
maximum excess. Hence, assigning 1 to o at z is the best
we can do as to minimize such maximum excesses.

On the other hand, if a4 evaluates to false in the lexico-
graphically maximum satisfying assignment for ¢, then it is
not convenient that «v retains all the worth. O

Theorem 3.3. Let G be a graph game, and x be an imputation
of G. Then, deciding whether x belongs to B(G) is Hg-hard.

Proof Idea. Let & (Va)(3B8)d(ex, B) be a quantified
Boolean formula over the variables « = {a,...,a,} and
B={pf1,...,0:},where p(a,3) = c1 A...Acy, is a3CNF
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formula, and where each universally quantified variable oy, €
a occurs only in the two clauses c;) = (o V =) and
Ci(ky = (mag V B). Deciding whether such a quantified for-
mula is valid is known to be a I} -complete problem.

Based on ®, we define the weighted graph B.S(®)
((Ngg, Egg ), w), as discussed next (see Figure 3).

BS?

---- penalty edges
=— normalizer edge

Figure 3: The game BS(@), where @
(Vo) (361, B2, B3) (@1 V=B1) A= VB1) A(B1V B2V —033).

The set N4 of the nodes (i.e., players) includes: a clause
player c;, for each clause c;; a literal player ¢; ;, for each
literal £; occurring in ¢;; and, two special players “chall” and
“sat”. The set B of edges includes three kinds of edges.

Positive edges: an edge {c;, ¢; ;} with w({c;,¢; ;}) = 1,
for each literal ¢; occurring in the clause c;; and an edge
{chall, ¢; ;} with w({chall,?; ;}) = 1, for each literal
¢; of the form a; or —q; (i.e., built over a universally
quantified variable) occurring in ¢;.

“Penalty” edges: an edge {Vi,j, ~Yingr } with
w({7i,5, Vi }) —m — 1, for each variable z;
(either v; = a4 or ; = f3;) occurring in ¢; and cj;
an edge {gi,j7éi/,j} with w(£i,j7éi/,j) = —m — 1, for
each pair of literals ¢; and ¢;; occurring in c;; an edge
{chall, 4; ;} with w({chall,¥;;}) = —m — 1, for
each literal ¢; of the form (3; or —3; (i.e., built over
an existentially quantified variable) in ¢;; and, an edge
{chall, ¢;} with w({chall, c;}) = —m — 1, for each c;.

“Normalizer” edge: {chall, sat} with w({chall, sat}) =
n—1+m-— ZeEE e#{chall,sat} wie).

Note that the graph game B.S(®) can be built in polynomial
time from ®. Then, consider the imputation z that assigns m
to sat, n — 1 to chall, and 0 to all other players. Note that =
is indeed an imputation, since v(N) = m + n — 1 because
w({chall,sat}) =m+n—1— ZeeEBS et {chall,sat} W(€)-

Firstly, we can prove that no player has a justified objec-
tion against a clause or a literal player, that no player has a
justified objection against chall, and that no player different
from chall has a justified objection against sat. Therefore,
we can focus on the objections of chall against sat.

BSI



Then, it can be observed that the objections of chall against
sat are in a one-to-one correspondence with truth assign-
ments for universally quantified variables. Moreover, coun-
terobjections encode ways to satisfy the formula, while being
consistent with the assignment encoded in the objection at
hand. Therefore, x is in the bargaining set if and only if ® is
valid. |

4 Membership Results

In this section, we show that the various hardness results de-
rived in Section 3 are tight, since the corresponding mem-
bership results can be established. In fact, memberships are
proven to hold over much wider classes of games than graph
games, that we call compact games. Formally, let C be a class
of games. We say C is a class of compact games if, for every
game G € C, the game encoding (whose size is denoted by
[|G|]) includes the set N of the players (so that, |[N| < ||G|]),
and the worth function v is implicitly given by an oracle such
that, for each coalition .S, v(.S) can be computed in polyno-
mial time w.r.t. ||G||. Hereafter, let C., be a class of compact
games. We start by analyzing the kernel.

Theorem 4.1. For any G € C.q, deciding whether an impu-
tation  belongs to K(G) is feasible in AY.

Proof. Given the imputation x, we firstly observe that, for
each pair of players ¢ and j, the value s; ;(x) can be computed
in polynomial time by means of a binary search over the range
of the possible values for the worth functions, by using an NP
oracle. Indeed, for any value h in this range, we can decide
in NP whether there is a coalition S such that v(S) > h, by
guessing the coalition .S, and by checking in polynomial time
that v(S) > h. Eventually, we can compute in polynomial
time the value v({}) for each player ¢ € {1,...,n}. Thus,
after polynomially-many oracle calls, we may check in poly-
nomial time that for each pair of players ¢ and ;7 such that
xj #v({j}), it is the case that s; ;(z) < s;;(x). O

The cases of the bargaining set and of the nucleolus are
more intricate and will be discussed in details below.

4.1 Bargaining Set

It was argued that checking whether an imputation belongs
to the bargaining set is in ITY for graph games, with the ar-
gument that one may guess in NP objections and counterob-
jections (hence, by focusing only on those that can be repre-
sented via polynomially many bits) [Deng and Papadimitriou,
1994]. Our main achievement is to show that membership in
I1Y can indeed be established independently of the precision
adopted to represent the real values of interest in the game. To
this end, we first provide a useful characterization of a player
1 having a justified objection against some player j.

Lemma 4.2. Player i has a justified objection against player
J to x through coalition S € I, ; if and only if there exists a
vectory € RIS such that: (1) y(S) = v(S); (2) yr, > x, for
eachk € S;and, (3)v(T) < y(TNS)+x(T\S), VT € Z; ;.
Theorem 4.3. For any G € C.q, deciding whether an impu-
tation x belongs to B(G) is feasible in T15 .
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Proof Idea. We prove that the complementary problem of
deciding whether z ¢ B(G) is in ¥F, because an NTM may
guess two players i and j, and a coalition S € Z; ;, and
then it may perform a co-NP check that the system of in-
equalities in Lemma 4.2, determined by ¢, 7, and S, has a
solution. We have to show that deciding whether this sys-
tem, say LP, has no solutions is feasible in NP. Observe that
LP has |S| variables (y1,...,¥s). From Helly’s Theorem,
given a collection C = {cy, ..., i} of convex subsets of R™,
ﬂci cc Ci = @ implies the existence of a collection c'cc
such that [C'| < n + 1and (,,cc ¢i = @. Hence, if LP has
no solutions, there is a subsystem LP’ of LP consisting of (at
most) |S| 4 1 inequalities that has no solutions, too. Thus, an
NTM may guess LP’, and check in polynomial time that LP’ is
infeasible, by standard linear programming techniques. [l

4.2 Nucleolus

Let G = (N, v) be a game, and consider the following linear
programming problem LP, for & > 0:

{mine | z(S)=v(S)—¢ VSe€A,.,re{0,....k—1}
z(S)>v(S)—e VSCN,S¢Fr
z € X(G)}
where Ag = {9, N}, ¢ = 0, Fo = &, and where ¢, is
the optimum of LP,, A, = {S C N | z(S) = v(5) —
€, foreveryz € V,} w1th V., = {z | € X(G) A
(x, €-) is an optimal solution to LP,.}, and ={SCN|

2(S) = y(8S), Y,y € Vi .

Following Maschler et al. [1979], it can be shown that there
is an index k, < |N| such that LP;_ has exactly one optimal
solution (., €k, ), where z. is the nucleolus of G.

Theorem4.4. Forany G € C.4, computing the nucleolus of G
is feasible in FAY, and thus deciding whether an imputation
is the nucleolus of G is in AY.

Proof Idea. We build in FAY a linear program LP that is
equivalent to LP, and consists of n equalities at most, where
n is the number of players IV in G. Then, the nucleolus is
clearly computable in polynomial time from LP. To com-
pute this program, we represent in a succinct form the above
programs LPy, for 1 < k < n. Roughly, equations of the
form z(S) = v(S) — ¢, are replaced by some basis By_1
of the affine hull of the polytope defined by LP;_;. We can
show that such a basis can be computed in FAE. Moreover,
given any coalition S, there is a polynomial-time oracle giv-
ing its associated inequality in LP, which amounts to decide
whether the vector of R” encoded by S may be obtained as a
linear combination of basis vectors. If this test fails, then the
inequality z(S) > v(S) — € belongs to LP;. Then, we com-
pute the optimal value for this program, and continue with
the next program. We can show that solving such a succinct
linear program is feasible in FAY, as well as computing the
dimension of its associated polytope. After at most n steps,
we get a linear program whose associated polytope has di-
mension 0, and we stop the procedure. It can be seen that the
program consisting of all the bases computed so far is equiva-
lent to LPy, , and of course has a unique solution (as the poly-
tope dimension is 0), which is the nucleolus of G. O



5 Tractable Classes of Graph Games

Monadic Second Order (MSO) Logic formulae on graphs are
built from logical connectives V, A, and —, the membership
relation €, the quantifiers 3 and V, and vertices variables and
vertex sets variables—in addition, it is often convenient to use
symbols like C, C, N, U, and — with their usual meaning,
as abbreviations. Courcelle [1990] considered an extension
of MSO, called MSO,, where variables for edge sets are also
allowed. The fact that an MSO, sentence ¢ holds over a graph
G is denoted by G = ¢.

An important generalization of MSO, formulae to opfi-
mization problems is presented by Arnborg et al. [1991].
Next, we state a simplified version of these kinds of problems.
Optimization problems are defined over MSO5 formulae con-
taining free variables, and over graphs that are weighted on
both nodes and edges.

Let G = (N, E), fn, fe) be a weighted graph where [
and fp are the lists of weights associated with nodes and
edges, respectively. Then, fx(v) (resp., fr(e)) denotes the
weight associated with v € N (resp., e € E).

Let ¢(X,Y") be an MSO; formula over the graph (N, E),
where X and Y are the free variables occurring in ¢, with
X (resp., Y) being a vertex (resp., edge) set variable. For
a pair of interpretations (zy, zg) mapping X to subsets of
N and Y to subsets of F, we denote by ¢[(zn, zg)] the
MSO; formula (without free variables) where X and Y are
replaced by the sets z(X) and zg(Y), respectively. A so-
lution to ¢ over G is a pair of interpretations (zy, zg) such
that (N, E) = ¢[(2n, zg)] holds. The cost of (zy, zg) is the
value - . ox) IN(2) + X ye. vy fE(Y). A solution of
minimum cost is said optimal.

For a positive constant k, let hereafter C, be a class of
graphs having treewidth bounded by k.

Theorem 5.1 (simplified from [Arnborg et al., 1991]). Let
¢ be a fixed MSOs sentence and let G = ((N, E), fn, [&)
be a weighted graph such that (N, E) € Ci. Then, computing
an optimal solution to ¢ over G is feasible in P (w.r.t. ||G]|).

5.1 MSO; and the Kernel

We are now in the position of stating a tractability result about
the kernel over bounded treewidth graph games.

Theorem 5.2. Let G = ((N, E),w) be a graph game such
that (N, E) € Cy, and let x be an imputation of G. Then,
deciding whether x € K(G) is feasible in P.

Proof Idea. Firstly, consider the problem of computing the
coalition over which the maximum excess at x is achieved.
Foreach X C N and Y C F, consider the following MSO»
formula, stating that Y is the set of all those edges e € E such
thate C X: proj(X,Y) = Vo, v'({v,v'} € Y — {v,v'} C
X)AVu, v ({v,v'} CX A{v,v'} € E— {v,0'} €Y).

Let wg and wy be such that wg({v,v'}) = —w({v,v'})
and wy(v) = x,, and observe that maxgcn e(S, x)
mingcn (z(S) — v(S)) coincides with the cost of an optimal
solution to proj(X,Y) over (N, E), wn, wg).

Recall, now, that + € K(G) if and only if, for each pair
of players i # j, s; j(z) > sji(x) = x; = v({j}), where
si4(r) = maxgsez, ; e(S,z). In fact, one may modify the
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weights of 7 and j in G so that, in any optimal solution of the
above formula, ¢ € X and j ¢ X, so that maxgcn e(S, z)
coincides with s; ;. Hence, by Theorem 5.1 and the above
MSO; formula, s; ; (and s ;, too) is computable in polyno-
mial time. By checking this condition for each pair 7, j, mem-
bership of x in (G) can be decided in polynomial time. [

6 Conclusions

In this paper, we have provided a picture of the complexity
issues arising from graph games (by closing several long-
standing open problems) and, more generally, with succinctly
specified coalitional games. Our membership results apply to
most of the classes of compact games proposed in the liter-
ature, while hardness results represent lower bounds (and, in
fact, exact bounds) for the complexity of reasoning over them.

The paper also introduced a logic-based approach to isolate
classes of tractable games for the kernel. An avenue of fur-
ther research is to apply this approach to trace the tractability
frontier for the nucleolus and the bargaining set.
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