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Abstract

Mixed multi-unit combinatorial auctions (MMU-
CAys) are extensions of classical combinatorial auc-
tions (CAs) where bidders trade transformations
of goods rather than just sets of goods. Solving
MMUCAs, i.e., determining the sequences of bids
to be accepted by the auctioneer, is computationally
intractable in general. However, differently from
CAs, little was known about whether polynomial-
time solvable classes of MMUCASs can be singled
out based on constraining their characteristics.

The paper precisely fills this gap, by depicting
a clear picture of the “tractability frontier” for
MMUCA instances under both structural and qual-
itative restrictions, which characterize interactions
among bidders and types of bids involved in the
various transformations, respectively. By analyz-
ing these restrictions, a sharp frontier is charted
based on various dichotomy results. In particu-
lar, tractability islands resulting from the investi-
gation generalize on MMUCAs the largest class of
tractable CAs emerging from the literature.

1 Introduction

Mixed multi-unit combinatorial auctions (MMUCASs) are ex-
tensions of classical combinatorial auctions (CAs) where bid-
ders trade transformations of goods rather than just simple
goods [Cerquides et al., 2007]. These mechanisms are par-
ticularly useful in the context of automating supply chain for-
mation, where production processes often emerge as the re-
sult of complex interactions among producers and consumers
(cf. [Walsh and Wellman, 2003]).

Formally, a transformation over a set G of types of goods is
atuple (Z, O, p) where T € NI¢| (resp., O € NI¢l)is a vector
of natural numbers denoting the quantities of the goods that
are required (resp., produced) for the transformation to take
place (resp., as a result of the transformation), and p € R is
the payment the bidder is willing to make in return for being
allocated the transformation!. Then, a mixed multi-unit com-
binatorial auction instance is a tuple (G, T, Uiy, Upy:) Where

'If p < 0, then the auctioneer must actually pay —p to the bidder
in order for she to implement the transformation.
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7T is a multi-set of transformations over G, and U;,, € NIC|
(resp., Uput € N |G|) is a vector denoting the quantities of
goods the auctioneer holds to begin with (resp., expects to
end up with). Solving a MMUCA instance (G, T, Uiy , Uout)
amounts to finding a sequence of transformations such that,
based on the input goods in U;,,, the auctioneer may end up
with the desired goods in U,,; with the maximum possible
revenue (short: WINNER-DETERMINATION problem).

The above problem has been intensively studied in recent
years, by extending to MMUCASs several results originally
conceived for classical CAs. In particular, languages have
been defined and analyzed that allow bidders to compose
(atomic) bids in a natural and intuitive way [Cerquides et al.,
2007]; and, motivated by their intractability (formally, NP-
hardness), solution approaches have been proposed (see, e.g.,
[Giovannucci et al., 2007]) that well-behave on realistic sce-
narios [Ottens and Endriss, 2008].

Differently from classical CAs, however, little was known
about whether polynomial-time solvable classes of MMU-
CAs can be singled out based on the structural and topolog-
ical properties of the instances at hand. As a matter of fact,
by focusing on the kinds of interactions among bidders that
are likely to occur in practice, classes of instances over which
WINNER-DETERMINATION is tractable—called “islands of
tractability” in the literature—have been identified for clas-
sical CAs (such as structured item graphs [Conitzer et al.,
2004] or bounded hypertree-width dual hypergraphs [Gott-
lob and Greco, 2007]). However, none of these results had a
counterpart in the case of MMUCAs.

The aim of this paper is precisely to fill this gap, by depict-
ing a clear and complete picture of the frontier of tractability
for MMUCA instances. In particular, since the existence of
a solution is not guaranteed in the case of MMUCAs (unlike
classical CAs), attention is focused not only on the WINNER-
DETERMINATION but also on the FEASIBILITY problem of
deciding whether a given instance admits a solution at all;
indeed, an important and peculiar source of complexity for
MMUCAs lays hidden in this latter problem.

In more detail, in the first part of the paper, we show two
interesting dichotomy results pertaining FEASIBILITY, which
precisely determine the frontier of tractability under quali-
tative restrictions, i.e., under restrictions characterizing the
types of bids in terms of the variety and quantity of goods
involved in the various transformations. In fact:



(1) Inthe case where each bidder submits a multi-set of trans-
formations and accepts any combination of them for the
sum of their prizes (short: OR-language), we show that
FEASIBILITY is tractable if and only if every transforma-
tion requires and produces one item of one single good at
most, or every type of good is required (or produced) as
input (resp., output) by one transformation at most.

(2) In the case where each bidder accepts at most one trans-
formation from the multi-set of hers submitted transforma-
tions (short: XOR-language), we show that FEASIBILITY
is tractable if and only if every type of good is required as
input by one transformation at most.

Then, we turn to consider structural properties of the net-
works originating from bidder interactions, motivated by the
fact that many NP-hard problems in different application ar-
eas are known to be efficiently solvable when restricted to in-
stances that can be modeled via (nearly)acyclic graphs. Sur-
prisingly, bad news emerged from our investigation. Indeed:

(3) We show that FEASIBILITY is hard on (nearly)acyclic in-
stances too. In particular, this is the case for two natural
ways of encoding bidder interactions, namely for trans-
formations graphs (where nodes are in one-to-one corre-
spondence with transformations and an edge indicates that
one transformation produces a good required by the other),
and for goods graphs (where nodes are in one-to-one corre-
spondence with goods and an edge indicates the possibility
of transforming a good into another).

Eventually, in the final part of the paper, we focus on the
WINNER-DETERMINATION problem, in order to single out
tractable classes of MMUCAs complementing those defined
in [Conitzer et al., 2004; Gottlob and Greco, 2007] for CAs:

(4) On the one hand, WINNER-DETERMINATION emerges
to be intractable under most kinds of qualitative restric-
tions, for it inherits all the intractability results that hold
with FEASIBILITY as well as with classical CAs.

(5) However, on the other hand, we show that if qualitative
restrictions are combined with suitable structural restric-
tions (on a hypergraph encoding the interactions), then a
tractable class of instances can be identified, which truly
generalizes on MMUCAS the largest class of tractable CAs
singled out in the literature [Gottlob and Greco, 2007]. In
particular, for this class, a polynomial-time solution algo-
rithm is proposed and its properties are analyzed.

The rest of the paper is organized as follows. Section 2 re-
ports a few preliminaries on MMUCAs. The complexity of
FEASIBILITY under qualitative and structural restrictions is
discussed in Section 3 and Section 4, respectively. Tractabil-
ity islands for the WINNER-DETERMINATION problem are
isolated in Section 5, and conclusions are drawn in Section 6.

2 Mixed Multi-Unit Combinatorial Auctions

Let G be a set of types of goods. For each vector W € NI¢I,

we denote by W(g) the element of W referring to any good
g € G. Sometimes, WV will be viewed as a multi-set over G.

Let A = (G, T,U;n,Upu:) be a MMUCA instance. Solv-
ing A amounts to deciding which transformations have to be
accepted, and in which order to implement them.

135

Formally, consider a sequence of transformations o
<Zl, 01,p1>, . <Ik, Ok;pk> such that <Ii, Oi;pi> e 7T, for
eachi € {1,...,k}. Let My = U, denote the quantities of
goods initially hold by the auctioneer, and let M; € NICI
be the quantities owned after the i-th transformation, i.e.,
Vg € G, Mi(g) = Mi-1(g) + Oi(g) — Ti(9).

Then, o is legal w.rt. A if M;_1(g) > Z;(g), for each
i €{1,...,k} and g € G. The revenue of the auctioneer with
o is the sum of the payments associated with each transfor-
mation in it, i.e., the value Zle p;. Under the free disposal
assumption, a legal sequence of transformations o is a solu-
tionto Aif Vg € G, My(g) > Uput(g). An optimal solution
is a solution providing the auctioneer with the maximum rev-
enue over all the possible solutions.

Throughout the paper we shall always look for (optimal)
solutions under the free disposal assumption.

Bidding Languages. In the basic setting above, there is a
one-to-one correspondence between bidders and transforma-
tions. However, in many practical cases, bidders may want to
exploit more expressive languages to submit bids, in place of
submitting atomic transformations only. Thus, as commonly
done in the literature, we assume that bidders may submit
multi-sets of transformations under conditions of two kinds.

An OR-condition on a multi-set S C 7 states that the bid-
der may accept any transformations in S at the sum of the
respective prizes; instead, a XOR-condition states that she is
prepared to accept at most one of them. Equipping A with a
set L of c-conditions (with ¢ € {or, x0r}, Jgc, S = 7, and
SNS" =0,VS,8" € L)is denoted by Az .

3 FEASIBILITY and Qualitative Restrictions

In this section, we start the analysis of the complexity of FEA-
SIBILITY, by taking into account various qualitative proper-
ties of the underlying instances, as for they can formally be
measured in terms of the following parameters:

e in-var(A) = maxiz 0 et {Z(9) | g € G.Z(g) > 0}]
is the input variety of A, i.e., the maximum number of types
of goods required as input over all transformations. Sym-
metrically, the output variety is the value out-var(A) =

maxz, 0 per {O(9) |9 € G,O(g) > 0}|.

o in-mul(A) = maxiz o pyer,gec I(g) is the input mul-
tiplicity of A, i.e., the maximum quantity of any good re-
quired as input over all transformations. And, symmetri-
cally, the output multiplicity is the value out-mul(A)

max 7,0, pyer,gec O(9)-

o in-deg(A) = maxgec |{(Z,0,p) € T | O(g) > 0} is
the input degree of A, i.e., the maximum number of trans-
formations producing a given good over all goods. Symmet-
rically, the output degree of A is the value out-deg(A) =
maxgec |[{(Z,0,p) € T | Z(g) > 0}].

Below, C(iv, ov,im, om, id, od) will denote the class of in-
stances A such that: in-var(A) < iv, out-var(A) < ov,
in-mul(A) < im, out-mul(A) < om, in-deg(A) < id, and
out-deg(A) < od. Also, the symbol oo is used to denote that
no bound is issued on some given parameter.



[iv]ov]im [om | id | od ]| Result (OR) |
1 1 1 1 o | oo in P
0 | oo | oo | 0 1 o0 in P
o | oo | oo | ool o0 1 in P
2 1 1 1 2 2 NP-complete
1 2 1 1 2 2 NP-complete
1 1 2 1 2 2 NP-complete
1 1 1 2 2 2 NP-complete
[iv [ ov [ im [ om [ id | od || Result (XOR) ]
© | o | o | 1 o0 in P
1 1 1 1 2 1 NP-complete

Figure 1: FEASIBILITY and Qualitative Restrictions.

Results. A summary of our analysis is reported in Figure 1:
Our results clearly depict a tractability frontier, since relaxing
any condition in a tractable scenario leads to intractability and
since FEASIBILITY trivializes when turning some parameter
from 1 to O (details on these trivial cases are omitted). Note
also that the expressiveness of the XOR-language [Cerquides
et al., 2007] is payed in terms of a smaller tractability island.

In the remainder, we overview the proofs of these results,
by starting with OR-conditions. In particular, we shall con-
sider a “normal form” for MMUCAs where for each good
g € G such that U,y (g) > 0 (resp., Uin(g) > 0), there is
no transformation (Z, O, p) € T such that Z(g) > 0 (resp.,
O(g) > 0) holds—indeed, any instance can be modified in
polynomial time as to meet this requirement.

3.1 Tractable Instances (OR-conditions)

We next illustrate the good news on the tractability of FEASI-
BILITY. We start by considering the case where every trans-
formation requires and produces an item of one good at most.

Theorem 3.1 Let A = (G, T ,Uin,Uout)(z,0r) be a MMUCA
such that A € C(1,1,1,1,00,00). Then, FEASIBILITY can
be solved in time O (|G|?) .

Proof. (Sketch). Based on A, consider the directed graph
(N, E) built as follows. The set N of the nodes contains a
node g for each good g € G, plus the distinguished node
n. There is an edge (g,¢’) from g to ¢’ in E if there is a
transformation (Zy,, O, py) € T such that Z,(g) > 0 and
On(g') > 0; and, there is an edge (g,n) € E foreach g € G.

The idea is now to consider (N, E) as a demand flow net-
work (see, e.g., [Kleinberg and Tardos, 2005]) where:

(i) each edge (g,¢’) has capacity u(g,g’) = 1, and each
edge (g, n) has capacity u(g,n) = U, (g); and,

(ii) each node g has demand d(g) = Upui(g) — Uin(g), while
n has demand d(n) = > (Uin(9) — Uout (9))-

It can be shown that .4 has a solution if and only if there is
a circulation on (N, E), i.e., a function f : E — R such that
f(v,v") < wufv,v’) foreach (v,v") € E,and Y f(s,v) —
Yoien f(v,t) = d(v), foreachv € N.

Eventually, the existence of a circulation can be checked
in O(|G|?), where (|G| + 1) is the number of nodes in N. In
fact, note that OR-conditions do not play any role here. O
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Let us now turn to the scenario where every type of good
is produced by one transformation at most, i.e., let us assume
that the input degree is unitary at most. Moreover, let A =
maxy(Uin(9) + 37,0, pyer O(9)) be an upper bound on the
number of any good produced over all solutions.

Theorem 3.2 Let A = (G, T ,Uin, Uout)[,0r] be a MMUCA
such that A € C(00,00,00,00,1,00). Then, FEASIBILITY
can be solved in time O(|T|? x |G| x log A).

Proof. (Sketch). Let 7, C T denote the set of all the neces-
sary transformations w.r.t. some good g with Uy, (g) > 0,
built as follows. Initially, 7, includes all the transformations
that may produce output goods only; then, 7, is iteratively
updated (until the fixed point is reached) by including those
transformations that may produce goods required in input by
some transformation already in 7. Since in-deg(A) < 1,
A admits a solution if and only if it is possible to execute
all the transformations in 7,.. Thus, we may simple start
applying transformations in 7, till a step k is reached
such all the transformations in 7, are applied (thereby
witnessing that there is a solution to .4), or there is some
transformation in 7, that cannot be applied (so that there is
no solution to .4). In particular, note that the application of
any transformation does not interfere with the applicability
of other transformations (since in-deg(.A) < 1). Hence, the
execution order of applicable transformations is not relevant.
Eventually, O(|7|) steps are required, each one feasible in
O(]T| x |G| x logA), where in particular the logarithmic
factor accounts for the complexity of executing algebraic ma-
nipulations over the numbers involved in the computation. O

A complementary reasoning (i.e., applying transformations
from input goods till there is an applicable transformation)
shows the tractability of unitary output degree instances.

Theorem 3.3 Let A = (G, T ,Uin, Uout)[,0r] be a MMUCA
such that A € C(00, 00,00,00,00,1). Then, FEASIBILITY
can be solved in time O(|T|? x |G| x log A).

3.2 Hard Instances (OR-conditions)

Hardness results are next provided as reductions from the
SATISFIABILITY of Boolean formulas in conjunctive normal
form. In particular, recall that deciding whether a Boolean
formula in conjunctive normal form ® = ¢; A ... A ¢, Over
the variables X1, ..., X, is satisfiable is NP-hard. Below, we
state the intractability of a specific class of Boolean formulas.

Lemma 3.4 SATISFIABILITY is NP-hard, even if each vari-
able occurs positively in at most two clauses and negatively
in at most one other clause, and if each clause contains three
variables at most.

Theorem 3.5 FEASIBILITY is NP-complete, even under
atomic bids and restricted on the class C(1,2,1,1,2,2).

Proof. (Sketch). Membership in NP was show in [Cerquides
et al., 2007] for the whole class C (00, 00, 00, 00, 00, 00).

As for the hardness, let  be a formula satisfying the con-
ditions in Lemma 3.4, and A(®) (G, T ,Uin, Uput) be
such that: G = (Ji_{X;, X, X} U{er,.yem} U{c |
X, oceursin ¢}, Uin, = { X1, ..., Xn}s Uout = {1,y em ),
and 7 = U?:l 7;, where 7; (for 1 < i < n) is defined next.
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Figure 2: Hardness results: 7; in the various reductions.
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For each variable X; occurring positively in the clauses ¢,
and cg while occurring negatively in c., the set 7; consists
of the transformations® graphically depicted in Figure 2—
adaptations to the cases where X; does not negatively occur
in a clause and positively in two further clauses are trivial and,
hence, omitted. Observe that two transformations occur in 7;
requiring X; as input, one that produces X/ and another that
produces X'. These transformations are meant to encode the
selection of a truth value assignment to the variable X; and, in
fact, they are mutually exclusive in any solution, since there
is just one copy of X; in A(®). Eventually, one may check
that it is possible to produce the output goods {ci, .., ¢, } if
and only if all the various selections encode a satisfying as-
signment to ®. Thus, ® is satisfiable < A(P) has a solution.

Actually, observe that A(®) belongs to C(1,2,1,1,3,2),
but not necessarily to C(1, 2,1, 1, 2, 2) since a clause ¢; may
contain three variables X;, X;/, and X;~. In order to face
this case, we may add one further good ¢;, and replace the
two transformations ({ci },{c;}) and ({c} },{c;}) with the
transformations: ({c! },{&}), ({¢ },{&}), and ({&}, {e; }).
Clearly, the resulting auction has input degree equals to
2, while keeping unchanged the values of all the other
parameters and the properties of the reduction. O

The other hardness results can be shown with a similar line
of reasoning, provided the modifications on the auction A(®)
that are graphically illustrated in Figure 2. Thus, the follow-
ing holds, whose proof is omitted due to space constraints.

Theorem 3.6 FEASIBILITY is NP-complete, even under
atomic bids and restricted on the classes C(1,1,1,2,2,2),
€(1,1,2,1,2,2), and C(2,1,1,1,2,2).

3.3 Results for the XOR-language

We now conclude the analysis by considering the case of
XOR-conditions. Firstly, we observe that the proof of The-
orem 3.2 can easily be adapted to deal with XOR-conditions,
based on the fact that executing necessary transformations is
mandatory as to solve the instance at hand; thus, if some nec-
essary transformation cannot be executed because of some

2Given our interest in the FEASIBILITY problem, we shall omit
the indication of the payments in the various transformations.
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given XOR-condition (whose check is a source of additional
complexity), then no solution exists.

Theorem 3.7 Let A = (G, T,Uin,Uout) |, xor] be a MMUCA

such that A € C(00, 00,00, 00,1,00). Then, FEASIBILITY
can be solved in time O(|T|? x (|G| x log A + |T))).

Interestingly, the above tractability cannot be extended on
the dual class C (oo, 00, 00, 00, 00, 1), since XOR conditions
may be used to simulate scenarios where every type of good
is required as input by more than one transformation.

Theorem 3.8 FEASIBILITY is NP-complete under XOR-
conditions, even restricted on the class C(1,1,1,1,2,1).

4 Structural Restrictions (Alone) Do Not Help

Many NP-hard problems can efficiently be solved when re-
stricted to instances that can be modeled via (nearly)acyclic
graphs. Thus, one may expect that these structural restrictions
are also beneficial to isolate tractable MMUCAs. This is next
investigated, by modeling interactions among bidders in an
instance A via the transformations and the goods graph of A,
denoted by TG(.A) and GG(.A), respectively—see Section 1.
In addition, we shall consider their undirected versions, de-
noted by TG(A) and GG(.A), respectively.

Beforehand, note that some of the qualitative restrictions
studied in Section 3 induce structural restrictions on the trans-
formations and goods graphs. Indeed, it is easily checked that
unitary input (or output) degree instances are guaranteed to
be associated with graphs that are basically acyclic—cycles
there cannot contribute to producing goods. In fact, these
cases are tractable (cf. Theorem 3.2 and Theorem 3.3). In
general, however, acyclicity does not guarantee tractability.
Indeed, the undirected transformations graph associated with
the MMUCA instance built in the proof of Theorem 3.5 is
acyclic, while still encoding an NP-complete problem. Thus:

Corollary 4.1 FEASIBILITY is NP-complete, even restricted
on the class { A | TG(A) is acyclic} (and, hence, on the class
{A| TG(A) is acyclic}) and under atomic bids.

In addition, the (directed) goods graph in the proof of The-
orem 3.5 is also acyclic. Thus:

Corollary 4.2 FEASIBILITY is NP-complete, even restricted
on the class { A | GG(A) is acyclic} and under atomic bids.

In particular, the above result is rather interesting in the
light that instances with (directed) acyclic goods graphs cor-
respond to natural transformation processes (cf. [Ottens and
Endriss, 2008]). Thus, transformation processes emerge to be
as hard as arbitrary trades and exchanges of goods.

In order to complete our analysis, we shall show that
FEASIBILITY remains NP-hard on nearly-acyclic undirected
goods graphs—formally, graphs of bounded treewidth. To
this end, we recall here that a tree decomposition of a graph
G = (V,E) is a pair (T, x), where T = (N, F) is a tree,
and x is a labeling function assigning to each vertexp € N a
set of vertices x(p) C V, such that the following conditions
are satisfied: (/) for each node b of G, there exists p € N
such that b € x(p); (2) for each edge (b, d) € E, there exists
p € N such that {b,d} C x(p); and, (3) for each node b of
G, theset {p € N | b € x(p)} induces a connected subtree.



The width of (T, x) is the number max,en (|x(p)| — 1).
The treewidth of G, denoted by tw(G), is the minimum width
over all its tree decompositions. It is well-known that an undi-
rected graph G is acyclic if and only if tw(G) = 1.

Theorem 4.3 FEASIBILITY is NP-complete, even restricted
on the class { A | tw(GG(A)) = 2} and under atomic bids.

Proof. (Sketch). Deciding whether there is a way to partition
amulti-set S = {s1, s2, ..., s, } of integers into two multi-sets
S1 and S5 such that the sum of the numbers in S; equals the
sum of the numbers in S5 is a well-known NP-hard problem.
Let m > si. Consider the auction A(S)
(G, T ,Uin,Upyz) such that: G = {g1, ..., gn, 1,2}, Uin, =
{91, gn}s Uoww = UZi{a} UUZ{c2}, and T =
U?:l 7;. In particular, for each number s;, the set 7; consists
of the transformations: ({g;}, ;" {c1}), {9}, Ui {c2}).
Since the transformation ({g;}, |J;"; {c1}) is alternative to
({g:}, Ui {c2}) (where ¢; and ¢ are meant to encode S
and Ss, respectively), a partition of S exists < A(S) has a
solution. Eventually, we also note that the undirected goods
graph associated with .A(S) has treewidth equals to 2, which
is witnessed by the tree decomposition 7" whose root  is such
that x(r) = {c1,ca}, and where for each good s;, exactly
one (leaf) child ¢; of r is in T with x(¢;) = {c1,¢2,¢9:;}. O

We leave the section by noticing that XOR-conditions may
be used to state in the above proof that ({g;}, U, {c1}) is
alternative to ({g.}, ;- {c2}), where g is a copy of g; also
available in input. Thus, one may easily derive the following:

Theorem 4.4 FEASIBILITY is NP-complete under XOR-
conditions, even on the class {A | GG(A) is acyclic}.

5 'Tractable WINNER-DETERMINATION

When turning to WINNER-DETERMINATION, we firstly ob-
serve that this problem inherits all the hardness results de-
rived for FEASIBILITY. In addition, computing the optimal
solution remains hard even if there is no transformation pro-
ducing (or requiring) goods. In fact, the result below follows
by adapting classical results on combinatorial auctions (see,
e.g., [Lehmann et al., 2006)).

Theorem 5.1 WINNER-DETERMINATION is NP-hard, even
restricted on the classes {A | in-deg(A) = 0} and {A |
out-deg(A) = 0}, and under atomic bids.

The reason for the above intractability is that interactions
among bidders may be too complex to be analyzed. To bound
these interactions, we next consider a structural restriction
based on a hypergraph encoding, which is more general than
graph (near)acyclicity. In particular, we define the auction hy-
pergraph AH(A) = (7, H) as the hypergraph whose nodes
are in one-to-one correspondence with the transformations in
A, and where for each good g € G, there is a hyperedge in
H such that: hy, = {(Z,0,p) € T | Z(g9) + O(g) > 0}—
in the following, for any hypergraph H, the set of its nodes
(resp., edges) is denoted by N (H) (resp., £(H)). On such
hypergraphs, the idea is to consider the hypertree decomposi-
tion [Gottlob et al., 2002] approach to isolate nearly acyclic
auction hypergraphs.
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Formally, a hypertree for a hypergraph H is a triple
(T, x,\), where T = (N, E) is arooted tree, and x and A are
labeling functions, which associate each vertex p € N with
two sets x(p) € N(H) and A\(p) C E(H). For a set of edges
H C E(H), N (H) denotes the set | J,,c ;; h. f T" = (N', E')
is a subtree of T', we define x(7") = (J,c 5+ X(v). We denote
the set of vertices IV of T' by vertices(T'). Moreover, for any
p € N, T}, denotes the subtree of T" rooted at p.

Definition 5.2 (cf. [Gottlob et al., 2002]) A (complete) hy-
pertree decomposition of H is a hypertree HD = (T, x, \)
for ‘H satisfying the following conditions:

1. for each edge h € E(H), there exists a leaf p €
vertices(T') such that h C x(p), and h € A(p);

for each node Y € N(H), the set {p € vertices(T) |
Y € x(p)} induces a (connected) subtree of T';

3. for each p € vertices(T), x(p) € N(A(p));
4. for each p € vertices(T), N(A(p)) N x(Tp) < x(p).

The width of a hypertree decomposition (T, x,\) is
MATpevertices(T) |A(D)]|. The hypertree width hw(H) of H
is the minimum width over all its hypertree decompositions.

Computing a k-width decomposition of H (or stating that
it does not exist) is feasible in O(|E(H)|?* x [N (H)|?). O

Actually, we have noticed in Section 4 that structural re-
strictions does not suffice to single out tractable classes of in-
stances. In particular, acyclic instances may still require com-
plex reasoning tasks on the transformations that have to be ac-
tivated, because of the large number of goods in the scenario.
Thus, in addition to considering (generalizations of) acyclic-
ity, we must also define a bound the number of transforma-
tions producing a given good g (as to easily control its avail-
ability in any solution); plus either a bound on the maximum
quantity of g that can be produced over solutions, or a bound
on the number of transformations requiring g (as to easily
control the consumption of g). This is formalized via the
measure of intricacy of an instance A = (G, T, U;n, Uout),
that is: maxgec([{{Z,0.p) | O(g) > 0}[+ min{lhsn(g) +
S zomer 09), HZ.0.p) [ Z(9) > 0}1}).

Putting It All Together. Let C*(h, k) denote the class of
instances whose intricacy is bounded by h and whose auction
hypergraphs have hypertree width bounded by k.

We next show that WINNER-DETERMINATION is tractable
on C*(h, k), by means of the algorithm SolveMMUCA, j,
shown in Figure 3. In the algorithm, any sequence o is en-
coded as a set of pairs of the form (¢,7) where t € T and
1 is the step where ¢ is executed, by assuming w.l.o.g. that
transformations can be applied in parallel (¢ = 0 means
that ¢ is not applied in o). Moreover, we say that o is le-
gal over a good g € G if M;_1(9) > Z;(g), for each
((Z,0,p),i) € o with i > 0, and if My(g) > Uow(g)
where k is the last step in o. And, finally, for each ¢/ C o,
we define pay(o’) = >>((7.0, ) i)cor,i>0 P-

The algorithm receives a k-width hypertree decomposition
HD = (T=(N, E), x, \) of AH(A). Firstly, for each vertex
v € N, it computes the set [, of all the v-solutions, where
{(t,7) | (t,i) € o At € x(v)} is a v-solution if there is a
sequence o that is legal over each good g such that by € A(v).



Input: A k-width decomposition HD = (T'=(N, E), x, A) of AH(A);
Output: An optimal solution to WINNER-DETERMINATION on A4;
var o™ : optimal solution;

lgv : real number, for each v-solution o, € H,,;

gy, © c-solution in H., for each v-solution o, and (v, ¢) € E;

H,, := the set of all the v-solutions, for eachv € N;
Done := the set of all the leaves of T;
while 3v € T'\ Done such that {c | cis childof v} C Done do
H, :=H, —{o, | 3(v,c) € EAN Bo. € Hos.t. oy, & 0c};
for each o, € H, do
Ly, = pay(oy);
for each (v, ¢) € E do

. v materteom oo (£5, — pay(o. 0100)
Coy,c i= Oc; ZZU = @ZU + égc — pay(G. Noy);
end for

end for

Done := Done U {v};
end while
let r be the root of T'; if H,- = () then HALT answering ‘no solution’;
G := argmaxXe, c H, l:;r, and o™ := &,
TopDown(r,o,);
return o *;

Procedure TopDown(v : vertex of N, 5, € H,);

begin
foreachc € N s.t. (v,c) € E do
Gc i= 0gy,c; 0" :=0" Ude;
TopDown(c,d.);
end for
end;

Figure 3: Algorithm SolveMMUCA}, ;.

Then, it manipulates v-solutions, at each vertex v, by look-
ing for their “conformance” with c-solutions in H, for each
child ¢ of v in T, where o, € H, conforms with 6. € H,
(0p = 00)if ¥Vt € x(v) N x(c), (t,1) € 0y & (t,1) € O¢.

In particular, in the first phase, vertices of 1" are processed
from the leaves to the root r as to filter v-solutions that do not
conform with any solution at some child of v, and as to update
the weight /¢ of each remaining v-solution o,. Intuitively,
¢y stores the maximum revenue over all potential solutions
restricted on transformations in x (77, ). Indeed, if v is a leaf,
then £y = pay(o,). Otherwise, for each child ¢ of v in T,
¢y is incremented by the maximum of £5 — pay(o. N o)
over all c-solutions conforming with o,,. The c-solution over
which the maximum is achieved is stored in o, .. In a sec-
ond phase, T' is processed starting from the root: The solution
o* is defined as the r-solution in H,. with the maximum pay-
off, and procedure T'opDown extends o*, at each vertex v,
with the ¢-solution o, . for each (v,c) € E.

As to analyze SolveMMUCA, ;, the crucial observation is
that for each vertex v, |H,| < (|7| 4 1)2X"xF,

Theorem 5.3 WINNER-DETERMINATION can be solved in
O(|G|?¥ x (|T| 4 1)**"*k+2 x 1og A) under OR-conditions
and on C*(h, k)—with the uniform cost model for payoffs.

As a final remark, observe that SolveMMUCA,, ;, can be
used even under XOR-conditions, after encoding them in
terms of transformations. For instance, if ¢t; and ¢y are al-
ternative because of a XOR-condition, we may simply add
one good ¢ 2 and force ¢; and ¢, to require gy 2 for their ap-
plication. Moreover, the restriction of SolveMMUCA,, ;. on
h = 1 can be used to solve the tractable class of CA instances
(where one item of each type is available at most, and no good
can be produced) identified in [Gottlob and Greco, 2007].
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6 Conclusion

The problem of identifying tractability islands for MMUCAs
has been faced, by complementing tractability results that
were derived for classical CAs. Our results paves the way
for the implementation of solution algorithms for arbitrary
MMUCA instances, which may take advantage of structural
and qualitative properties of some of their portions. In addi-
tion, interesting avenues of further research are to chart the
tractability frontier under lack of free disposal (i.e., when the
auctioneer wants to end up exactly with the goods in Uyt ),
to consider more involved kinds of bidding languages, for in-
stance where bidders preferences are taken into account, and
to look for approximability results for the various NP-hard
scenarios we have singled out, in the spirit of the thorough
analysis recently carried for combinatorial exchange prob-
lems [Babaioff et al., 2008].
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