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Abstract

This paper characterizes the complexity of the core
in coalitional games. There are different propos-
als for representing coalitional games in a compact
way, where the worths of coalitions may be com-
puted in polynomial time. In all those frameworks,
it was shown that core non-emptiness is a co-NP-
hard problem. However, for the most general of
them, it was left as an open problem whether it
belongs to co-NP or it actually is an harder prob-
lem. We solve this open problem in a positive way;
indeed, we are able to show that, for the case of
transferable payoffs, the problem belongs to co-NP
for any compact representation of the game where
the worths of coalitions may be computed in poly-
nomial time (also, non-deterministic polynomial
time), encompassing all previous proposals of this
kind. This is proved by showing that games with
empty cores have small infeasibility certificates.
The picture is completed by looking at coalitional
games with non-transferable payoffs. We propose
a compact representation based on marginal contri-
bution nets. Also in this case, we are able to set-
tle the precise complexity of core non-emptiness,
which turns out to be 3£’ -complete.

1 Introduction

Coalitional games model situations where groups of players
can cooperate in order to obtain certain worths, and have been
extensively used to study applicative scenarios in economics
and social sciences [Aumann and Hart, 1992]. Also, coali-
tional games are interesting in distributed Al, multi-agent
systems and electronic commerce [leong and Shoham, 2005;
Conitzer and Sandholm, 2004].

In coalitional games, a nonempty set of players joining to-
gether is called a coalition. The coalition including all the
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players is called grand-coalition. The players know the worth
that any coalition would get. A feasible solution for a coali-
tional game is an allowed way to assign worths (also payoffs)
to all players. In the literature, a number of definitions of a
feasible solution have been described. Each of them propose
some way to assign worths to single players. Note that, in this
formal context, the actions taken by players are not modeled.

There are two basic types of coalitional games [Osborne
and Rubinstein, 1994]: Coalitional Games with transferable
payoffs (or TU Games) and Coalitional Games with non-
transferable payoffs (or NTU Games). In the former type
of games, players forming a coalition can obtain a certain
amount of worth they can distribute among themselves. In
the latter type, a coalition guarantees a specific set of conse-
quences that assign to its players a set of possible payoffs.

For both game types, a fundamental issue is distributing
payoffs amongst participating players, which mirrors in sev-
eral interesting applications [Aumann and Hart, 1992]. And,
in fact, several ways of distributing utilities have been pro-
posed, which are usually referred to as solution concepts (see,
e.g., [Aumann and Hart, 1992] for a list of definitions). One
solution concept is that of the core, which forces distribu-
tions that are, in a sense, “stable”, that is, no subsets of play-
ers improve their worths by leaving the grand-coalition. The
core, which can be seen as an analogous of the Nash equilib-
rium for coalitional games [Osborne and Rubinstein, 1994],
is probably the most important solution concept defined for
such games (see, e.g., [Aumann, 2005]). Therefore, it is a
significant issue singling out those games featuring a non-
empty core, that are, games where the worth distribution can
be arranged in such a way that the grand-coalition is “stable”.
On the other hand, analyzing the computational complexity
of solution concepts of games is an important class of prob-
lems for computer science [Papadimitriou, 2001].

In order to represent and reason about coalitional games,
a way to represent the associations of coalitions with their
worths is needed: doing it explicitly is unfeasible, since list-
ing all those associations would require exponential space in
the number of players. In this sense, the literature proposes a
number of compact representation schemes of the worth func-
tion. For instance, Papadimitriou and Deng (1994) consider
TU games where players are encoded as nodes in an arc-
weighted graph, and the worth of a coalition s is computed
as the sum of the weights of the arcs connecting players in s.
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A more general and more expressive representation for
TU games has been recently proposed by Ieong and Shoham
(2005), where the encoding is done using marginal contribu-
tion nets, i.e., finite sets of weighted rules, where the coali-
tion worth is given by the sum of the weights of the logical
rules triggered by its members. In both these settings, check-
ing non-emptiness of the core was shown to be co-NP-hard,
whereas in the latter—more general—setting it was left as an
open problem to settle its precise complexity.

In dealing with this open question, this paper provides
an answer to the rather more general question of establish-
ing the complexity of checking core non-emptiness (in both
the transferable and the non-transferable payoffs settings) for
all those compact game representations satisfying the (quite
weak) constraint that the associated worth function is com-
putable in FNP (and, thus, as a special case, in polynomial
time, as in the two above mentioned frameworks).

Note that our representation scheme encompasses all other
compact schemes we are aware of but the one described in
[Conitzer and Sandholm, 2006] for TU games, where com-
puting the worth of a coalition is harder than FNP—the inter-
ested reader is referred to that paper for a thorough overview
about compact representation schemes. Note, moreover, that
for some of such compact representation schemes, the com-
plexity of checking core non-emptiness was already estab-
lished [Conitzer and Sandholm, 2006; Deng and Papadim-
itriou, 1994] (for instance, it is shown to be co-NP-complete
in the setting given in [Deng and Papadimitriou, 1994]).

In order to prove our complexity results for TU games, we
show that if the game core is empty, then there exists a small
infeasibility certificate that proves it, thereby showing that for
games of the quite general form we consider here, the prob-
lem of checking core non-emptiness is in co-NP (Note that
this provides the answer to the problem left open in [Ieong
and Shoham, 20051). This is done by providing some results
about the properties of polyhedra induced by games.

Furthermore, we consider NTU games, by defining a
new compact game form, which is obtained by generalizing
marginal contribution nets [[eong and Shoham, 2005] to the
non-transferable payoffs setting. For such games, we are able
to show that checking core non-emptiness is ¥4 -hard, and
also that this problem can be solved in X1 even for general
games of this form, thereby settling the %5 -completeness of
the problem in the non-transferable payoffs setting.

2 Preliminaries

In this section we define our formal framework of reference.

2.1 Transferable Payoffs

Games of interest in this paper are formally defined next.

Definition 2.1. A Coalitional Game with transferable payoffs
is a pair (N, v) where

e N is the finite set of players;

e v is a function that associates with every coalition s a
real number v(s) (the worth of s) (v: 2V — R).

An outcome for a coalitional game specifies payoffs for all
players. A solution concept is a way to select “reasonable”

outcomes for a coalitional game: the core is one of the best
known, as it represents a stable solution, from which players
have no incentive to deviate. Let n = |N|. A profile & for N
is a vector of reals (Z1, . .., Z,), which represents a possible
way to assign payoffs to players. For a coalition of players
s C N, define Z(s) = ) ;.. ;. Then, T is said a feasible
payoff profile if Z(N) = v(N), that is, payoffs distributed
among the players should be equal to the payoff available for
the grand-coalition. The core is defined as follows:

Definition 2.2. The core of a coalitional game with transfer-
able payoffs (N, v) is the set of all feasible payoff profiles T
such that, for all coalitions s C N, Z(s) > v(s).

It immediately follows from the definition above that the
core is the set of all vectors z € R™ that satisfy the following
2™ inequalities:

inZv(s), VsCNAs#D 2.1)
i€s
> i <o(N), 2.2)
iEN

where the last inequality, combined with its opposite in (2.1),
enforces the feasibility of computed profiles.

2.2 Non-transferable Payoffs

In coalitional NTU games each coalition is associated to a set
of possible outcomes or consequences:

Definition 2.3. A Coalitional Game without transferable
payoff is a four-tuple (N, X, v, (i), )» Where:

e N is afinite set of players;
e X is the set of all possible consequences;

e v: s — 2% is a function that assigns, to any coalition
s C N of players, a set of consequences v(s) C X;

(Z4);en is the set of all preference relations 7; on X,
for each player i € V.

It is easy to see that coalitional games with transferable
payoffs can be seen as special cases of coalitional games
without transferable payoffs [Osborne and Rubinstein, 1994].
Also, the definition of the core for those latter games is an ex-
tension of that given in definition 2.2:

Definition 2.4. The core of the coalitional game without
transferable payoffs (N, X, v, (Zi);cn) is the set of all T €
v(N) such that there is no coalition s C N with a § € v(s)
such that y >; z forall ¢ € s.

3 Compact Representations

We now discuss compact representation forms, beginning
with marginal contribution nets [Ieong and Shoham, 2005].
Rules in a marginal contribution net are in the form

pattern — value

where a pattern is a conjunction that may include both posi-
tive and negative literals, with each literal denoting a player.
A rule is said to apply to a coalition s if all the player liter-
als occurring positively in the pattern are also in s and all the
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player literals occurring negatively in the pattern do not be-
long to s. When more than one rule applies to a coalition, the
value for that coalition is given by the contribution of all those
rules, i.e., by the sum of their values. Vice versa, if no rule
applies to a given coalition, then the value for that coalition is
set to zero by default. For example, with rules:

aANb—5H, b—2, aA-b—3

we obtain v({a}) = 3 (the third rule applies), v({b}) = 2
(the second rule applies), and v({a,b}) = 5+ 2 = 7 (both
the first and the second rules apply). Using this representa-
tion scheme, games can be much more succinct than the so
called characteristic form, where all the 2" — 1 values of the
worth function should be explicitly listed. In any case, given
such a game encoding G and any coalition s, the worth v(s)
can be computed in linear time, that is, in O(||G]| + [|s]]).
which is also O([|G]||), where ||G|| denotes the size of G. As
observed in [Ieong and Shoham, 2005], their representation
scheme is fully expressive, in that it allows to represent any
TU coalitional game, and there are games where it is expo-
nentially more succinct than previous proposals, such as the
multi-issue representation of [Conitzer and Sandholm, 2004].
For completeness, note that there are games where the size of
any possible marginal nets encoding has almost the same size
as the characteristic form.

Next, we are going to introduce a new and general compact
representation scheme of coalitional games, a scheme where
it is just required the worth function to be computable in FNP,
that is, computable in polynomial time by a non-deterministic
Turing transducer [Papadimitriou, 1994].

Formally, let C be a class of games with transferable (resp.,
non-transferable) payoffs as defined by a certain given encod-
ing scheme. Define the worth (consequence) relation for C as
the set of tuples We = {(G,s,w) | G € C,vg(s) = w}
(resp., We = {(G,s,w) | G € C,w € vg(s)}). We say that
W is polynomial-time computable if there is a positive inte-
ger k and a deterministic polynomial time transducer M that,
given any game encoding G € C and a coalition s of players
of G, outputs a value w (resp. all consequences w) such that
(G, s,w) € Wc in at most ||(G, s)||* steps.

We say that W¢ is non-deterministically polynomial-time
computable if there is a positive integer &k such that W¢ is k-
balanced and k-decidable, as defined below. A worth (conse-
quence) relation W¢ is k-balanced if ||w|| < ||(G, s)||¥, while
it is said k-decidable if there is a non-deterministic Turing
machine that decides W in at most ||(G, s, w)||* time. It then
follows that there is a non-deterministic Turing transducer M
that may compute in O(|[(G, s)||*) time the worth v(s) (resp.
some consequence in v(s)) of any coalition s of players of
G. Indeed, M guesses such a value w and a witness y of the
correctness of this value (note that W € NP), and then ver-
ifies in deterministic polynomial time that (G, s,w) € W,
possibly exploiting the witness y.

Definition 3.1. Let C(R) be the class of all games encoded
according to some compact representation X. We say that R
is a (non-deterministic) polynomial-time compact representa-
tion if the worth relation for C(R) is (non-deterministically)
polynomial-time computable.

For instance, the extension of the marginal nets framework
to games with non-transferable payoffs, presented in Sec-
tion 6, is a non-deterministic polynomial-time compact rep-
resentation, whereas both the above mentioned schemes of
[Deng and Papadimitriou, 1994] and of [Teong and Shoham,
2005] are polynomial time representations since, given a
game G encoded either as a weighted graph, or as a marginal
contribution net, and given any coalition s, the worth of s in
G can be computed in polynomial time in the size of G and s.

Our membership proofs for the core non-emptiness prob-
lem will be given in the most general setting of non-determin-
istic polynomial-time compact representations.

4 Separating Polyhedra

Because of (2.1) and (2.2), the core of a coalitional game with
transferable payoffs and n players is a polyhedral set of R".
In this section, we prove some nice properties of polyhedral
sets that will be useful to deal with such games.

4.1 Preliminaries on Polyhedral Sets

We next give some useful definitions and facts about polyhe-
dral sets. We refer the interested reader to any book on this
subject for further readings (see, e.g., [Griinbaum, 1967]).

Let n > 0 be any natural number. A Polyhedral Set (or
Polyhedron) P of R™ is the intersection of a finite set .S of
closed halfspaces of ®". Note that in this paper we always
assume, unless otherwise stated, that n > 0. We denote this
polyhedron by Pol(.S) and we denote S by Half(P).

Recall that a hyperplane H of R™ is a set of points {x €
R"|aTz = b}, where a € R™ and b € R. The closed half-
space H™ is the set of points {z € R"|aTz > b}. We say
that these points satisfy H*. We denote the points that do not
satisfy this halfspace by H—,i.e.,, H- = R\ H* = {z €
R"la’x < b}. Note that H~ is an open halfspace. We say
that H determines H and H~. Define the opposite of H as
the set of points H = {z € R"|a'Tz = b'}, wherea’ = —1-a
and b’ = —1 - b. Note that HT = H~ U H, since it is the set
of points {z € R"|a’z < b}.

Let P be a polyhedron and H a hyperplane. Then, H cuts
Pifboth H and H ™~ contain points of P, and we say that H
passes through P, if there is a non-empty touching set C' =
H N P. Furthermore, we say that H supports P, or thatitis a
supporting hyperplane for P, if H does not cut P, but passes
through P, i.e., it just touches P, as the only common points
of H and P are those in their intersection C'.

Moreover, we say that H™ is a supporting halfspace for P
if H is a supporting hyperplane for P and P C H*. Note
that P C Pol(S) for any set of halfspaces S C Half(P),
since the latter polyhedron is obtained from the intersection
of a smaller set of halfspaces than P. We say that such a
polyhedron is a supporting polyhedron for P.

Recall that, for any set A C R”, its dimension dim(A) is
the dimension of its affine hull. For instance, if A consists
of two points, or it is a segment, its affine hull is a line and
thus dim(A) = 1. By definition, dim(()) = —1, while single
points have dimension 0.

A set F' C Pisaface of P if either F = (), or ' = P, or
if there exists a supporting hyperplane Hr of P such that F
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Figure 1: Construction of an infeasibility certificate for the core.

is their touching set, i.e., F' = Hp N P. In the latter case, we
say that F' is a proper face of P. A facet of P is a proper face
of P with the largest possible dimension, that is, dim(P) — 1.
The following facts are well known [Griinbaum, 1967]:

1. For any facet F' of P, there is a halfspace Ht € Half(P)
such that F' = H* N P. We say that H™ generates I

2. For any proper face F' of P, there is a facet F of P such
that F C F.

3. If F and F” are two proper faces of P and F' C F’, then
dim(F') < dim(F").

4.2 Separating Polyhedra from a Few Supporting
Halfspaces

Lemma 4.1. Let P be a polyhedron of R™ with dim(P) = n,
and H;: a supporting halfspace of P whose touching set is
F. Then, there exists a set of halfspaces Hr C Half(P) such
that |[Hp| < n — dim(F), H}: is a supporting halfspace of
Pol(Hr), and their touching set C'is such that F C C.

Proof. (Rough Sketch.) The proof is by induction. Base
case: If dim(F') = n — 1 we have that the touching face F' =
H}L N P is a facet of P. Thus, from Fact 1, F' is generated by
some halfspace HT C Half(P) such that HT N P = F, as
for Hp. Since dim(F) = dim(H) = dim(Hp) =n — 1, it
easily follows that in fact H = Hp holds. Thus, H I',f 18 triv-
ially a supporting halfspace of H ™, and this case is proved:
just take Hp = {H "} and note that |[Hr| = 1.

Inductive step: By the induction hypothesis, the property
holds for any supporting halfspace H;E, of P such that its
touching face F” has a dimension d < dim(F’) < n — 1, for
some d > 0. We show that it also holds for any supporting
halfspace H ;5 of P, whose touching face F' has a dimension
dim(F') = d— 1. For space limitations, we just give the proof
idea, with the help of Figure 1. Since F' is not a facet, from
Fact 2 there exists a facet F’ of P such that /' C F’. In the
three-dimensional example shown in Figure 1, I is the ver-
tex at the bottom of the diamond, and F' is some facet on its
“dark side.”” Let C' = Hr N Hpg, and consider the rotation
of Hy about C' on the opposite direction w.r.t. Hp that first

touches P, say Hp. As shown in Figure 1, the face F'—an
edge of the diamond—yproperly includes F' and its dimension
is at least d > dim(F'), by fact 3. It can be shown that, given
such a pair of halfspaces H}, and H;f,,, it holds that H;C

is a supporting halfspace of the polyhedron Pol( H I',f,, H I',f/,),
which is called roof. Formally, the proof proceeds by exploit-
ing the induction hypothesis. Intuitively, consider Hg»: we
want a set Hr supported by I I',f and consisting of just half-
spaces taken from Half(P), and H I',f/, does not belong to this
set, because it does not generate a facet of P. However, we
can see that it is a supporting halfspace for H +1,, NH ;Eé,—the
roof, which correspond to faces having higher dimension than
F”. In the running example, they are both facets of the dia-
mond, and hence the property immediately holds (base case).
In general, the procedure may continue, encountering each
time at least one facet by fact 2, and one more face with a
higher dimension than the current one by fact 3. Eventually,

in our example we get Hp = {H;C, , H;E,,, H ;,f,, }. Moreover,

1 2
recall that dim(F’) = n—1and dim(F"") > dim(F) = d—1.
Then, by the induction hypothesis, |[Hg| < |Hp |+ |[Hp/| =
1+|Hpr| < 14n—dim(F") < 1+n—d = n—dim(F). O

5 Small Emptiness Certificates for the Core

In this section, we prove our main results on TU games.

With a little abuse of notations, since coalitions correspond
to the inequalities (2.1) and hence to the associated halfspaces
of 1", hereafter we use these terms interchangeably.

Definition 5.1. Let G = (N, v}vbe a game with transferable
payoffs. A coalition set S C 2% is a certificate of emptiness
(or infeasibility certificate) for the core of G if the intersection
of Pol(.S) with the grand-coalition halfspace (2.2) is empty.

The definition above is motivated by the following obser-
vation. Let P be the polyhedron of R™ obtained as the inter-
section of all halfspaces (2.1). Since S is a subset of all pos-
sible coalitions, P C Pol(.S). Therefore, if the intersection of
Pol(.S) with the grand-coalition halfspace (2.2) is empty, the
intersection of this halfspace with P is empty, as well.
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Theorem 5.2. Let G = (N, v) be a game with transferable
payoffs. If the core of G is empty, there is a certificate of
emptiness S for it such that |S| < |N|.

Proof. (Sketch.) Let n = |N| and P be the polyhedron of
R™ obtained as the intersection of all halfspaces (2.1). Since
we are not considering the feasibility constraint (2.2), there is
no upper-bound on the values of any variable x;, and thus it
is easy to see that P # () and dim(P) = n.

Let H ; be the halfspace defined by the grand-coalition in-
equality (2.2). If the core of G is empty, the whole set of
inequalities has no solution, that is, P N H =

Let H} be the halfspace parallel to Hj that first touches
P, that is, the smallest relaxation of H ;5 that intersect P.
Consider the opposite H}. of H}-, as shown in Figure 1, on
the left. By construction, H;g N H;C =0, Hr = Hr isa
supporting hyperplane of P, and H;C is a supporting halfs-
pace of P. Let F be the touching set of Hr with P, and let
d = dim(F’). In Figure 1, it is the vertex at the bottom of
the diamond P. From Lemma 4.1, there is a set of halfspaces
S C Half(P), with |S| < n — d, such that H}. is a support-
ing halfspace for Pol(S). It follows that H}; N Pol(S) = 0,
whence S is an infeasibility certificate for the core of G. Fi-
nally, note that the largest cardinality of S is n, and corre-
sponds to the case dim(F) = 0, that is, to the case where the
face F' is just a vertex. Therefore the maximum cardinality of
the certificate is n. In our three-dimensional example, such a
certificate is {H}, H;El,, : H;Eé,}, as shown in Figure 1. [

Note that the above proof is constructive and has a nice
geometrical interpretation. However, for the sake of com-
pleteness, we point out that—as we have recently found—the
above result on infeasibility certificates may be also obtained
as a consequence of Helly’s Theorem on the intersection of
families of convex sets [Danzer ef al., 1963], whose proof is
rather different, as it relies on algebraic techniques.

Exploiting the above property, we can now state our gen-
eral result on the complexity of core non-emptiness for any
(non-deterministic) polynomial-time compact representation.

Theorem 5.3. Let R be a non-deterministic polynomial-time
compact representation. Given any coalitional game with
transferable payoffs G € C(R), deciding whether the core
of G is not empty is in co-NP.

Proof. Let G = (N, v) be a game with transferable payoffs.
If its core is empty, from Theorem 5.2, there is an infeasibility
certificate S, with |S| < n, where n is the number of players
of G. For the sake of presentation, let us briefly sketch the
case of a polynomial-time deterministic representation R. In
this case, a non-deterministic Turing machine may check in
polynomial time that the core is empty by performing the fol-
lowing operations: (i) guessing the set S, i.e., the coalitions
of players corresponding to the halfspaces in .S; (ii) compu-
tating (in deterministic polynomial time) the worth v(s), for
each s € S, and for the grand-coalition N; and (iii) checking
that Pol(S) N Hy = ), where H}, is the halfspace defined
by the grand-coalition inequality (2.2). Note that the last step
is feasible in polynomial time, as we have to solve a linear
system consisting of just n + 1 inequalities.

The case of a non-deterministic polynomial-time compact
representation R is a simple variation where, at step (ii), for
each s € S, the machine should also guess the value w =
v(s) and a witness y that (G, s, w) € We(r). O

The above result settles the precise complexity of the core
non-emptiness problem for marginal contribution nets, as
asked for in [Teong and Shoham, 2005].

Corollary 5.4. Given a coalitional game with transferable
payoffs encoded as a marginal contribution net, deciding
whether its core is not empty is co-NP-complete.

6 Non-Transferable Payoffs Increase the
Complexity

For games where the payoffs cannot be transferred among the
players, core non-emptiness turns out to be harder than in the
case of transferable payoffs we have studied above.

First, for NTU games we next define a notation similar
to that of marginal contribution nets, to describe the conse-
quences of these games in a compact form.

Also here, games are described by associating player pat-
terns with consequences, a coalition worth being thus char-
acterized by the sums of the contributions of the rules whose
patterns are satisfied by the players in the coalition.

Definition 6.1. A marginal contribution net for game with
non-transferable payoffs is a finite set of rules of the form

pattern — consequences,

where pattern is a conjunction of positive and negative player
literals, and consequences is a set of possible payoff addenda
for the players in the coalition that trigger this rule, that is, for
players occurring as positive literals in pattern.

Formally, given such a rule r, we say that a coalition s of
players meets its pattern, if each player occurring positively
in pattern also occurs in s, and none of the players occur-
ring negatively in pattern occurs in s. The consequences of r
are a set of vectors assigning an increment (either positive or
negative) to some players occurring positively in pattern. All
other players get no increment out of this vector. Syntacti-
cally, we thus specify only the contributions for the players to
be incremented (see example below). For each player p, there
is a default implicitly specified rule, which is triggered by the
player p and assigns to it the (initial) value 0. Then, the only
consequence of coalitions that do not meet any non-default
rule is the outcome assigning payoff 0 to all their players.

Let s be a coalition and R the set of rules that s meets.
The set of consequences v(s) of s is the set of all imputation
vectors that can be obtained by taking the sum of any tuple
of vectors Z1, ..., T|g|, with each T; belonging to the conse-
quences of some rule r; € R.

Example 6.2. Let us consider a game involving players a, b
and c. Then, consider the rules
aANb— [a+=1], [a+=2, b+=1]
bA—c— [b+=4].

Then the set of consequences v({a}) is the singleton
{(0,0,0)}, since only the implicit default rules apply. On
the other hand, v({a,b}) = {(1,4,0),(2,5,0)}, v{b,c} =
{(0,0,0)},and v({a, b, c}) = {(1,0,0),(2,1,0)}.
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Theorem 6.3. Let R be a non-deterministic polynomial-time
compact representation. Given any coalitional game with
non-transferable payoffs G € C(R), deciding whether the
core of G is not empty is in X5, In particular, it is XL-
complete if R is the marginal contribution nets framework.
However, if R is a deterministic polynomial-time compact
representation, the problem is in co-NP.

Proof. (Rough Sketch.) (Membership in ). Let G =
(N, X,v,(Zi);cn) be agame in C(R) with non-transferable
payoffs. A non-deterministic Turing machine with an ora-
cle in NP may decide in polynomial time that the core is not
empty as follows: (i) guessing the profile w € v(IN) and of
a witness y that w is a consequence of v(NN); (ii) exploiting
y, checking in polynomial time that (G, N, w) € We(); and
(iii) exploiting the oracle, checking that w belongs to the core.
Indeed, it is easy to see that the latter problem is in co-NP.

(Membership in co-NP). If R is a deterministic polyno-
mial-time compact representation, a non-deterministic Tur-
ing machine M may decide in polynomial time that the core
is empty as follows. It computes in polynomial time all
consequences of the grand-coalition and guesses, for each
w € v(N), a witness ¥, that w is not in the core. Then,
exploiting these witnesses, M checks in polynomial time that
all such profiles do not belong to the core.

( EQP -hardness). The reduction is from the problem of de-
ciding the validity of 2QBF formulae in 3DNF. Let ® =
JavVB¢(a, 3), where o and 3 are vectors of boolean vari-
ables, and ¢(ca, 3) is a boolean formula in 3DNF. From ®,
we build in polynomial time the following NTU game G,
encoded as a marginal contribution net. The players of G
are: two players a! and al’, called existential players, cor-
responding to each variable «; of ®; two players b] and b,
called universal players, for each variable 3; of ®; a player d;
for each disjunct §; of ®; and two more players sat and good,
where the former is related to the satisfiability of ¢(cx, 3),
while the latter is a player that receives a penalty — B in coali-
tions that do not behave as we would like to, where B is a
fixed number larger than any value that any coalitions may
achieve.

For any literal £ occurring in some disjunct of the formula,
denote by p(1) the corresponding player of the game. E.g., if
¢ = —q;, then p(¢) = al’; if £ = a;, then p(¢) = al. Then,
the consequences for coalitions in Gg are defined through the
following rules:

bl — [b] +=1]; b — [bf+=1]

al Nai — [a] +=1], [af +=1]

d; — [di+=1]; sat — [sat+=1]; good — [good+=1]
for each disjunct §; = ¢1 A U3 A L5 of ¢, B),

p(€1) A p(€a) Ap(€s) A —d; A good — [good+= — B]
d; N\ —sat A good — [good+= — B]

=dy A ... A =dp, A sat A good — [good+= — B

bl A —sat A good — [b] +=1, good+=1]

bE A =sat A good — [bF +=1, good+=1]

aj Aay — [af +=1); af A =i — [a] +=1]

4 4

—al A —al A good — [good+= — B
-b] A =bE A good — [good+= — B]

for all players p # good, p A —good — [p+= — B].

Then, it can be shown that ® is valid if and only Gg has
a non empty core. First note that any imputation vector for
the grand-coalition [V assigns 1 to universal players, disjunct
players, and to sat and good. For any pair of existential play-
ersal and af’, they get either O or 1 but never the same value.
Then, we can associate with such a configuration of existen-
tial players a truth-value assignment for the corresponding
boolean variables: if Z is an imputation vector, define oz such
that 0z(c;) = true if al takes 0 in Z, and 0z (a;) = false
if af takes 0 in Z. Intuitively, if the formula is valid then o5
is a witness of validity, and there is such an imputation vec-
tor Z in the core. Indeed, in this case, to improve the payoff
for all of its members, a coalition should avoid to include sat.
However, this is impossible if ® is valid. O
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