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Abstract

We study the problem of computing a leximin-
optimal solution of a constraint network. This prob-
lem is highly motivated by fairness and efficiency
requirements in many real-world applications im-
plying human agents. We compare several generic
algorithms which solve this problem in a constraint
programming framework. The first one is entirely
original, and the other ones are partially based on
existing works adapted to fit with this problem.

1 Introduction

Many advances have been done in recent years in modeling
and solving combinatorial problems with constraint program-
ming (CP). These advances concern, among others, the abil-
ity of this framework to deal with human reasoning schemes,
such as, for example, the expression of preferences with soft
constraints. However, one aspect of importance has only re-
ceived a few attention in the constraints community to date:
the way to handle fairness requirements in multiagent combi-
natorial problems.

The seek for fairness stands as a subjective but strong re-
quirement in a wide set of real-world problems implying hu-
man agents. It is particularly relevant in crew or worker
timetabling and rostering problems, or the optimization of
long and short-term planning for firemen and emergency ser-
vices. Fairness is also ubiquitous in multiagent resource al-
location problems, like, among others, bandwidth allocation
among network users, fair share of airspace and airport re-
sources among several airlines or Earth observing satellite
scheduling and sharing problems [Lemaitre er al., 1999].

In spite of the wide range of problems concerned by fair-
ness issues, it often lacks a theoretical and generic approach.
In many Constraint Programming and Operational Research
works, fairness is only enforced by specific heuristic local
choices guiding the search towards supposed equitable solu-
tions. However, a few works may be cited for their approach
of this fairness requirement. [Lemaitre et al., 1999] make
use of an Earth observation satellite scheduling and sharing
problem to investigate three ways of handling fairness among
agents in the context of constraint satisfaction. More recently
[Pesant and Régin, 2005] proposed a new constraint based on
statistics, which enforces the relative balance of a given set of

variables, and can possibly be used to ensure a kind of equity
among a set of agents. Equity is also studied in Operational
Research, with for example [Ogryczak and Sliwiﬁski, 20031,
who investigate a way of solving linear programs by aggre-
gating multiple criteria using an Ordered Weighted Average
Operator (OWA) [Yager, 1988]. Depending on the weights
used in the OWA, this kind of aggregators can provide equi-
table compromises.

Microeconomy and Social Choice theory provide an im-
portant literature on fairness in collective decision making.
From this theoretical background we borrow the idea of rep-
resenting the agents preferences by utility levels, and we
adopt the leximin preorder on utility profiles for conveying
the fairness and efficiency requirements. Being a refinement
of the maximin approach!, it has an inclination to fairness,
while avoiding the so-called drowning effect of this approach.

Apart from the fact that it conveys and formalizes the con-
cept of equity in multiagent contexts, the leximin preorder is
also a subject of interest in other contexts, such as fuzzy CSP
[Fargier et al., 1993], and symmetry-breaking in constraint
satisfaction problems [Frisch er al., 2003].

This contribution is organized as follows. Section 2 gives a
minimal background in social choice theory and justifies the
interest of the leximin preorder as a fairness criterion. Sec-
tion 3 defines the search for leximin-optimality in a constraint
programming framework. The main contribution of this pa-
per is Section 4, which presents three algorithms for com-
puting leximin-optimal solutions, the first one being entirely
original, and the other ones adapted from existing works.
The proposed algorithms have been implemented and tested
within a constraint programming system. Section 5 presents
an experimental comparison of these algorithms.

2 Background on social choice theory

We first introduce some notations. Calligraphic letters (e.g.
X)) will stand for sets. Vectors will be written with an arrow
(e.g. ), or between brackets (e.g. (z1,...,2,)). f(T) will
be used as a shortcut for (f(z1),..., f(x,)). Vector 7 will
stand for the vector composed by each element of 7 rear-
ranged in increasing order. We will write IZT the i compo-
nent of vector 2 |. Finally, the interval of integers between k
and [ will be written [k, [].

"Trying to maximize the utility of the unhappiest agent.
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2.1 Collective decision making and welfarism

Let A be a set of n agents, and S be a set of admissible
alternatives concerning all of them, among which a benevo-
lent arbitrator has to choose one. The most classical model
describing this situation is welfarism (see e.g. [Keeney and
Raiffa, 1976; Moulin, 1988]): the choice of the arbitrator is
made on the basis of the utility levels enjoyed by the indi-
vidual agents and on those levels only. Each agenti € N
has an individual utility function u, that maps each admissi-
ble alternative s € S to a numerical index wu;(s). We make
here the classical assumption that the individual utilities are
comparable between the agents®. Therefore each alternative s
can be attached to a single utility profile {u1(s),...,un(s)).
According to welfarism, comparing two alternatives is per-
formed by comparing their respective utility profiles.

A standard way to compare individual utility profiles is to
aggregate each of them into a collective utility index, stand-
ing for the collective welfare of the agents community. If g is
a well-chosen aggregation function, we thus have a collective
utility function uc that maps each alternative s to a collec-
tive utility level uc(s) = g(u1(s),...,un(s)). An optimal
alternative is one of those maximizing the collective utility.

2.2 The leximin preorder as a fairness and
efficiency criterion

The main difficulty of equitable decision problems is that
we have to reconcile the contradictory wishes of the agents.
Since generally no solution fully satisfies everyone, the ag-
gregation function g must lead to fair and Pareto-efficient®
compromises.

The problem of choosing the right aggregation function g
is far beyond the scope of this paper. We only describe the
two classical ones corresponding to two opposite points of
view on social welfare*: classical utilitarianism and egalitar-
ianism. The rule advocated by the defenders of classical util-
itarianism is that the best decision is the one that maximizes
the sum of individual utilities (thus corresponding to g = +).
However this kind of aggregation function can lead to huge
differences of utility levels among the agents, thus ruling out
this aggregator in the context of equitable decisions. From
the egalitarian point of view, the best decision is the one that
maximizes the happiness of the least satisfied agent (thus cor-
responding to ¢ = min). Whereas this kind of aggregation
function is particularly well-suited for problems in which fair-
ness is essential, it has a major drawback, due to the idempo-
tency of the min operator, and known as “drowning effect” in
the community of fuzzy CSP (see e.g.[Dubois and Fortemps,
1999]). Indeed, it leaves many alternatives indistinguishable,
such as for example the ones with utility profiles (0, ..., 0)
and (1000, . .., 1000, 0), even if the second one appears to be

*In other words, they are expressed using a common utility scale.

3A decision is Pareto-efficient if and only if we cannot strictly
increase the satisfaction of an agent unless we strictly decrease the
satisfaction of another agent. Pareto-efficiency is generally taken as
a basic postulate in collective decision making.

*Compromises between these two extremes are possible. See e.g.
[Moulin, 2003, page 68] or [Yager, 1988] (OWA aggregators).

much better than the first one. In other words, the min ag-
gregation function can lead to non Pareto-optimal decisions,
which is not desirable.

The leximin preorder is a well-known refinement of the or-
der induced by the min function that overcomes this draw-
back. It is classically introduced in the social choice literature
(see [Moulin, 1988]) as the social welfare ordering that rec-
oncile egalitarianism and Pareto-efficiency, and also in fuzzy
CSP [Fargier et al., 1993]. It is defined as follows:

Definition 1 (Ieximin preorder [Moulin, 1988]) Ler = and
Y be two vectors of N*. T and 7 are said leximin-
indifferent (written T ~lemimin ?) if and only if?>T = 7?
The vector ? is leximin-preferred to T (Written T <jegimin
Y) if and only if 3i € [0,n — 1] such that ¥j € [1,i],
ZCJT = yjT and ZCZT_H < yZ-TH. We write T =iegimin ?for

— —
T <leximin Yy or T ~leximin Y-

<leximin IS a total preorder.

The binary relation

In other words, the leximin preorder is the lexicographic pre-
order over ordered utility vectors. For example, we have
<47 11 57 1> <lezimin <27 21 17 2>

A known result is that no collective utility function can rep-
resent the leximin preorder?, unless the set of possible utility
profiles is finite. In this latter case, it can | be represented by
the following non-linear functions: g1 : @’ + — > i, n =%
(adapted for leximin from a remark in [Frisch et al., 2003])
and go : T — — » ,x; %, where ¢ > 0 is large enough
[Moulin, 1988]. Using this klnd of functions has however
a main drawback: it rapidly becomes unreasonable when the
upper bound of the possible values of 7 increases. Moreover,
it hides the semantics of the leximin preorder and hinders the
computational benefits we can possibly take advantage of.

In the following, we will use the leximin preorder as a
criterion for ensuring fairness and Pareto-efficiency, and we
will be seeking the non-dominated solutions in the sense of
the leximin preorder. Those solutions will be called leximin-
optimal. This problem will be expressed in the next section
in a CP framework.

3 Constraint programming and
leximin-optimality

The constraint programming framework is an effective and
flexible tool for modeling and solving many different com-
binatorial problems such as planning and scheduling prob-
lems, resource allocation problems, or configuration prob-
lems. This paradigm is based on the notion of constraint
network [Montanari, 1974]. A constraint network consists
of a set of variables X = {X3,...,X,} (in the following,
variables will be written with uppercase letters), a set of asso-
ciated domains D = {Dx,, ..., Dx, }, where Dy, is the set
of possible values for X;, and a set of constraints C, where
each ¢ € C specifies a set of allowed tuples R(c) over a set of
variables X'(c). We make the additional assumption that all
the domains are in N, and we will use the following notations:
X = min(Dx) and X = max(Dx).

5In other words there is no ¢ such that T =<ieceimin ¥ <

9(T) < g(¥). See [Moulin, 1988].
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An instantiation v of a set S of variables is a function that
maps each variable X € S to a value v(X) of its domain Dx.
If § = A, this instantiation is said to be complete, otherwise
it is partial. If &’ C S, the projection of an instantiation of
S over &’ is the restriction of this instantiation to S’ and is
written v|s/. An instantiation is said to be consistent if and
only if it satisfies all the constraints. A complete consistent
instantiation of a constraint network is called a solution. The
set of solutions of (X, D, C) is written sol(X, D, C). We will
also write v[X « q] the instantiation v where the value of X
is replaced by a.

Given a constraint network, the problem of determining
whether it has a solution is called a Constraint Satisfaction
Problem (CSP) and is NP-complete. The CSP can be clas-
sically adapted to become an optimization problem in the fol-
lowing way. Given a constraint network (X,D,C) and an
objective variable O € X, find the value m of Do such
that m = max{v(0) | v € sol(X,D,C)}. We will write
maz(X,D,C, O) for the subset of those solutions that maxi-
mize the objective variable O.

Expressing a collective decision making problem with a
numerical collective utility criterion as a CSP with objective
variable is straightforward: consider the collective utility as
the objective variable, and link it to the variables represent-
ing individual utilities with a constraint. However this cannot
directly encode our problem of computing a leximin-optimal
solution, which is a kind of multicriteria optimization prob-
lem. We introduce formally the MaxLeximinCSP problem
as follows :

Definition 2 (MaxLeximinCSP problem)
Input: a constraint network (X, D, C); a vector of variables

U= (Uy,...,U,) € X", called an objective vector.
Output: “Inconsistent” if sol(X,D,C) = 0. Otherwise a so-
— —
lution v such that Vv € sol(X,D,C), v(U) =ieximin 0(U).
We describe in the next section several generic constraint
programming algorithms that solve this problem. The first

one is entirely original, and the other ones are based on exist-
ing works that are adapted to fit with our problem.

4 Proposed algorithms

4.1 Using a cardinality combinator

Our first algorithm is based on an iterative computation of the
components of the leximin-optimal vector. It first computes
the maximal value y; such that there is a solution v with V4,
y1 < v(U;), orin other words ) .(y1 < v(U;)) = n, where
by convention the value of (y; < v(U;)) is 1 if the inequality
is satisfied and O otherwise®. Then, after having fixed this
value for y;, it computes the maximal value y» such that there
is a solution v with " .(y2 < v(U;)) > n — 1, and so on
until the maximal value y,, such that there is a solution v with
>, (yn < 0(U)) > 1.

To enforce the constraint on the y;, we make use of the
meta-constraint AtLeast, derived from a cardinality com-
binator introduced by [Van Hentenryck et al., 1992], and
present in most of CP systems:

®This convention is inspired by the constraint modeling language
OPL [Van Hentenryck, 1999].

Definition 3 (Meta-constraint AtLeast) Ler I' be a set of p
constraints, and k € [1, p| be an integer. The meta-constraint
AtLeast(T, k) holds on the union of the scopes of the con-
straints in I, and allows a tuple if and only if at least k con-
straints from I" are satisfied.

Due to its genericity, this meta-constraint cannot provide
very efficient filtering procedures. In our case where the
constraints of I' are linear, this meta-constraint is simply a
counting constraint, and bound-consistency can be achieved
in O(n). The specific meta-constraint AtLeast can also
be implemented with a set of linear constraints [Garfinkel
and Nembhauser, 1972, p.11], by introducing n 0-1 variables
{Ay,...,A,}, and a set of linear constraints { X; + A;Y >
Yooty Xn +AY >V, 50 A <n—k}.

Our first approach for computing a leximin-optimal solu-
tion is presented in algorithm 1.

Algorithm 1: Computation of a leximin-optimal solution
using a cardinality combinator.
input : A const. network (X, D,C); (Ui, ...,Un) € X"
output: A solution to the MaxLeximinCSP problem

1 if solve(X,D,C) = “Inconsistent” return “Inconsistent”,
2 (X07D(,)7CO) - (X7D7 C)’

3 fori < 1tondo

4 Xi — XioaU{Yih

s | Di — Dj_1U{Dy,} with Dy, = [min; (U;), max; (U;)];
6 Ci—Ci—1 U

{AtLeast({Y; < Ui,...,Yi <U,},n—i+1)};
7 U(;) < maximize(X;, D;,Cs, Ys);

8 D: «— D; with 'Dyi — {i)\(i) (Y;)},

9 return U,) x;

The functions solve and maximize (the detail of which is
the concern of solving techniques for constraints satisfaction
problems) of lines 1 and 7 respectively return one solution
v € sol(X,D,C) (or “Inconsistent” if such a solution does
not exist), and an optimal solution v € max(X;, D;,C;, Ys)
(or “Inconsistent” if sol(X;, D;,C;) = (). We assume — con-
trary to usual constraint solvers — that these two functions do
not modify the input constraint network.

The following example illustrates

a1 | a2 | a
the behavior of the algorithm. It is a o1 31 32 33
simple resource allocation problem, o 519 [ 7
where 3 objects must be allocated Oz =173 1

to 3 agents, with the following con-
straints: each agent must get one and only one object, and
one object cannot be allocated to more than one agent (i.e. a
perfect matching agent/objects). A utility is associated with
each pair (agent,object) with respect to the array above.

This problem has 6 feasible solutions (one for each permu-
tation of [1, 3]), producing the 6 utility profiles shown in the
columns of the following array:

P1 | P2 | P3 | P4 | P5 | Ps
up | 3 3 5 5 7 7
us | 9 8 3 8 3 9
Uus 1 7 1 3 7 3
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The algorithm runs in 3 steps: Step 1: After having intro-
duced one variable Y7, we look for the maximal value g7 of
Y} such that each (at least 3) agent gets at least Y;. We find
1 = 3. The variable Y] is fixed to this value, implicitly re-
moving profiles p; and p3. Step 2: After having introduced
one variable Y5, we look for the maximal value g3 of Y5 such
that at least 2 agents get at least Y>. We find g2 = 7. The vari-
able Y is fixed to this value, implicitly removing profile py.
Step 3: After having introduced one variable Y3, we look for
the maximal value g3 of Y3 such that at least 1 agent gets at
least Y3. We find g3 = 9. Only one instantiation maximizes
Y3: pg. Finally, the returned leximin-optimal allocation is:
ay] < 03, A < 02 and as < 01.

Proposition 1 If the two functions maximize and solve
are both correct and both halt, then algorithm 1 halts and
solves the MaxLeximinCSP problem.

In the next proofs, we will write sol; and sol for respec-
tively sol(X;, D;,C;) and sol(X;, D}, C;). We will also write
(sol;)|x; and (sol})|x, for the same sets of solutions pro-
jected on & (with j < 7). We can notice that soly

sol(X,D,C), and that Vi, sol; C sol;.

Lemma 1 Let T be a vector of size n. At least n — i + 1

components of T are greater than or equal to xl

The proof of this useful lemma is obvious, so we omit it.

Lemma 2 If soly # ) then V() is well-defined and not equal
to “Inconsistent”.

Proof: Let i € [1,n], suppose that sol;_; # 0, and let v(; €
sol;_;. Then extending v(;) by instantiating Y; to min;(U;) leads
to a solution of (X;, D;, C;) (only one constraint has been added and
it is satisfied by the latter instantiation). Therefore sol; # ) and, if
maximize is correct, U(;y # “Inconsistent” and ¥(;y € solj. So,
sol} # (. It proves lemma 2 by induction. H

Lemma 3 If solg # (), then (V(,,)) | x, € sol;, Vi € [0,n].

from (X;, D;,C;) to (Xit1, Dit1,Cit1) we just add a constraint).
More generally, (sol;)x, C (soli)jx;, and (solit1)x;, C
(s0l),x;, as soon as j < . Hence, (Un))1x;, € (s0ly)1x, C
(soln)ix; C -+ C (soli+1),x; C sol; C sol;. A

Proof: We have sol; C sol;, and (soliy1),x, C solj (since

Lemma 4 If solo # 0, 0, () is equal to Uy, (ﬁ)T

Proof: For all i € [1,n], (¥(n)),x, is a solution of sol;

by lemma 3. By lemma 1, (U(n)) ;Y — U (ﬁ)g] satis-
fies the cardinality constraint of iteration 4, and is then a solu-
tion of sol;. By definition of function maximize, we thus have

Bay(Ys) > Bny(U)]. Since 9y (Yi) = Bm)(¥i), we have
Ty (Y) 2 0y (D).

Since @(n) is a solution of sol,, at least n — ¢ + 1 numbers from
vector Uy, (U)) are greater than or equal to U, (Y;). At least the
n — 4+ 1 greatest numbers from ¥,,) (U)) must then be greater than
or equal to U(,)(Y:). These components include ¥, (ﬁ)z, which
leads to U, (Yi) < Vp) (U))ZT, proving the lemma. W

We can now put things together and prove proposition 1.

Proof of proposition 1: If sol(X,D,C) = 0, and if solve
is correct, then algorithm 1 obviously returns “Inconsistent”. Other-
wise, following lemma 2, it outputs an instantiation (?,,) ) x which
is, according to lemma 3, a solution of (X, Do, Co) = (X, D, C).

Suppose that there is a v € sol(X,D,C) such that

0(T) >tewimin Dny (U ). Then following definition 1, 3i € [1, n]
. TN o (TAVT AT < o (T
such that Vj < 4, v(U); = Dny(U); and v(U); > Uy (U ); .

J J
Let v(t.) be the extension of v respectively instantiating Yi,...Y;—1

t0 U(p) (Y1), ... D(ny(Yi-1) and ¥; to v(ﬁ)j Following lemma 4,

Vi, Oiny (Y5) = Uy (ﬁ)]T By gathering all the previous equalities,
. . - — —

we have Vj < i v(t.) (V) = 0y (Y5) = v(U)JT. = (UZ)(U))JT We

L) = U(U))T = (v ﬁ))T By lemma 1, V] < i at

(iy\1i) — i i BY ,Vp<tal

also have v i )
least n — j + 1 numbers from (vzg)(

ﬁ)) are greater than or equal to

v(t) (Y;), proving that ”U(t.) satisfies all the cardinality constraints at

iteration 4. Since it also satisfies each constraint in C and maps each

variable of X to one of its possible values, it is a solution of sol;,
- —~ B d ~ .

and ”U(t.) () = o(U)] > D(ny(U)! = 93y (Y2). Tt contradicts the

definition of maximize, proving the proposition 1. l

4.2 Using a sorting constraint

Our second algorithm is directly based on the definition 1 of

the leximin preorder, which involves the sorted version of the

objective vector. This can be naturally expressed in the CP
—

paradigm by introducing a vector of variables Y and enforc-

ing the constraint Sort(ﬁ, ?) which is defined as follows:

Definition 4 (Constraint Sort) Let X and X' be two vec-
tors of variables of the same length, and v be an instantiation.

The constraint Sort()_f7 X ) holds on the set of variables be-
— —
ing either in X orin X', and is satisfied by v if and only if
— —
v(X') is the sorted version of v(X ) in increasing order.

This constraint has been particularly studied in two works,
which both introduce a filtering algorithm for enforcing
bound consistency on this constraint. The first algorithm
comes from [Bleuzen-Guernalec and Coanerauer, 1997] and
runs in O(nlogn) (n being the size of X). [Mehlhorn and
Thiel, 2000] designed a simpler algorithm that runs in O(n)

plus the time required to sort the interval endpoints of )—5,
which can asymptotically be faster than O(n log n).

Algorithm 2: Computation of a leximin-optimal solution
using a sorting constraint.
input : A const. network (X, D,C); (U1, ...,Un) € A"
output: A solution to the MaxLeximinCSP problem
if solve(X, D, C) = “Inconsistent” return “Inconsistent”,
X —XxXu{v,...,., )
D' —~DU {Dvi,..., Dy, }, Dy; = [min; (ﬂ% max; (U;)];
C'—cCuU {Sort(ﬁ, ?)},
for i — 1tondo
L V() < maximize(X’, D’,C',Y;);
Dy, — {vs) (Yo}
return v, | x;

@ NSRS W N -
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Proposition 2 If the two functions maximize and solve
are both correct and both halt, then algorithm 2 halts and
solves the MaxLeximinCSP problem.

Proof: If sol(X,D,C) = 0 and if solve is correct, then al-
gorithm 2 obviously returns “Inconsistent”. We will suppose in the
following that sol(X', D, C) # () and we will use the following nota-
tions: sol; and sol; are the sets of solutions of (X', D’,C’) respec-
tively at the beginning and at the end of iteration .

We have obviously Vi € [[1,n — 1] sol;+1 = sol;, which proves
that if sol; # 0, then the call to maximize at line 6 does not
return “Inconsistent”, and sol;+1 # (). Thus @(n) is well-defined,
and obviously (), x is a solution of (X', D,C).

We note ¥ = 7%, the instantiation computed by the last
maximize in algorithm 2. Suppose that there is an instantiation

v € s0l(X,D,C) such that 5(U ) <ieximin v(U). We define v+
-
the extension of v that instantiates each y; to v(U)!. Then, due

to constraint Sort, ﬁ(?) and v (Y) are the respective sorted ver-
—

sion of H(U') and v (U). Following definition 1, there is an i €
[0,n — 1] such that V5 € [1,i], 5(Y;) = v (Y;) and 5(Yig1) <
v*(YiH). Due to line 7, we have U(Yiy1) = Uy (Yig1)
U(i+1)(Yig1). Thus v is a solution in maz(X’,D’,C’,Yit1)
with objective value vng) (Yiy1) strictly greater than U 41 (Yiy1),
which contradicts the hypothesis about maximize. B

4.3 Using a multiset ordering constraint

Our third algorithm computing a leximin-optimal solution is
perhaps the most intuitive one. It proceeds in a pseudo branch
and bound manner: it computes a first solution, then tries to
improve it by specifying that the next solution has to be better
(in the sense of the leximin preorder) than the current one, and
so on until the constraint network becomes inconsistent. This
approach is based on the following constraint:

Definition 5 (Constraint Leximin) Let )_5 be a vector of
—
variables, \ be a vector of integers, and v be an instanti-
— —
ation. The constraint Leximin( X\, X)) holds on the set of
—
variables belonging to X, and is satisfied by v if and only if
— —
A <leximin U(X)

Although this constraint does not exist in the literature, the
work of [Frisch et al., 2003] introduces an algorithm for en-
forcing generalized arc-consistency on a quite similar con-
straint: the multiset ordering constraint, which is, in the con-
text of multisets, the equivalent of a leximax’ constraint on
vectors of variables. At the price of some slight modifica-
tions, the algorithm they introduce can easily be used to en-
force the latter constraint Leximin.

Proposition 3 [fthe function solve is correct and halts, then
algorithm 3 halts and solves the MaxLeximinCSP problem.

The proof is rather straightforward, so we omit it.

4.4 Other approaches

In the context of fuzzy constraints, two algorithms dedicated
to the computation of leximin-optimal solutions have been
published by [Dubois and Fortemps, 1999]. These algorithms

"The leximax is based on an increasing reordering of the values,
instead of a decreasing one for leximin.

Algorithm 3: Computation of a leximin-optimal solution
in a branch and bound manner.

input : A const. network (X, D,C); (Ui, ...,Un) € X"
output: A solution to the MaxLeximinCSP problem
U « null; v «— solve(X, D, (C);
while v # “Inconsistent” do

U «— v;

= =
C «— CU{Leximin(®(U), U)};
v « solve(X,D,(C);

if ¥ # null then return v else return “Inconsistent”;

X s (S S

work by enumerating, at each step, all the subsets of fuzzy
constraints (corresponding to our agents) having a property
connected to the notion of consistency degree.

[Ehrgott, 2000, p. 162] describes two very simple algo-
rithms for solving the closely related “Lexicographic Max-
Ordering” problem (that could be called “leximax-optimal”
in our terms). However, they do not seem realistic in the con-
text of combinatorial problems, since they are based on an
enumeration of all utility profiles.

S Experimental results

The algorithms 1, 2, 3 and the first algorithm proposed
in [Dubois and Fortemps, 1999] have been implemented and
tested using the constraint programming tool CHOCO [Labur-
the, 2000]. So as to test them on realistic instances, we have
extracted, from a real-world problem, a simplified multiagent
resource allocation problem. In this problem, the resource is a
set of objects O, that must be allocated to some agents under
volume and consumption constraints. The individual utility
functions are specified by a set of weights w, , (one per pair
(agent, object)): given an allocation of the objects, the indi-
vidual utility of an agent 7 is the sum of the weights w; , of
the objects o that she receives. The weights can be generated
uniformly or can be concentrated around some powers of 10,
so as to simulate some kind of priorities®.

We have developed a customizable generator of random
instances, available online”. We tested our algorithms on sev-
eral instances, with very different characteristics, leading to
very different kind of problems. Here is a brief description
of each kind of instances appearing in table 1 (by default, the
weights are non-uniformly distributed, and the constraints are
of medium tightness):

(1) 10 agents, 100 objects. (2) 4 agents, 100 objects. (3) 20
agents, 40 objects. (4) 10 agents, 100 objects, low-tightness
constraints. (5) 10 agents, 100 objects, hard-tightness con-
straints. (6) 10 agents, 30 objects, uniform weights (with low
values), hard-tightness constraints. (7) 4 agents, 150 objects.

The results from table 1 show that algorithm 1 has the best
running times with most of the instances, followed by algo-
rithm 2 which is almost as fast, but is less efficient when the
number of agents increases (instances of kind 3), whereas al-
gorithm 3 is better on this kind of instances. As expected, the
algorithm from [Dubois and Fortemps, 1999] explodes when

8 Approximating the conditions of our real-world application.
*http://www.cert.fr/dcsd/THESES/sbouveret/benchmark/
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ki Algorithm 1 (AtLeast) Algorithm 2 (Sort) Algorithm 3 (Leximin) [Dubois and Fortemps, 1999]
ind - . - -
avg min max N% | avg min max N% | avg min max N% | avg min max N%
1 07 06 1.8 100 09 07 1.1 100 3 02 345 100 9 8.8 9.6 100
2 06 02 177 100| 07 02 19.1 100| 6.9 1.3 439 100 | 25 2 18.5 100
3 202 1.5 117 100|979 2 551 100 | 16.7 04 99.2 100 | 600 600 600 0
4 08 07 12 100 09 0.8 1 100 2 0.5 8 100 | 9.1 8.9 9.2 100
5 42 08 579 100 39 08 835 100| 64 02 1866 100 | 124 9.1 537 100
6 21 06 43 100 21 07 43 100]| 0.7 0.1 1.2 100 | 218.2 475 4574 100
7 101 03 600 92 | 103 03 600 92 | 320 4.3 600 60 | 1552 24 600 84

Table 1: CPU times (in seconds) and percentage of instances solved within 10 minutes for each algorithm. Each algorithm has
been run on 50 instances of each kind, on a 1.6GHz Pentium M PC under Linux.

the number of equal components in the leximin-optimal vec-
tor increases (kinds (3) and (6)).

These results must however be considered with care, since
they are subject to our implementation of the filtering al-
gorithms. In particular, not every optimizations given in
[Mehlhorn and Thiel, 2000] for the constraint Sort have been
implemented yet. Moreover, the running times are highly af-
fected by the variable choice heuristics. In our tests, we used
the following particular heuristics, that are specially efficient:
choose as the next variable to instantiate the one that will the
most increase the lowest objective value (in our application
problem we first allocate the objects that have the highest
weight for the currently least satisfied agent).

6 Conclusion

The leximin preorder cannot be ignored when dealing with
optimization problems in which some kind of fairness must
be enforced between utilities of agents or equally important
criteria. This paper brings a contribution to the computa-
tion of leximin-optimal solutions of combinatorial problems.
It describes, in a constraint programming framework, three
generic algorithms solving this problem. The first one, based
on a cardinality combinator, is entirely new, and gives slightly
better results than two algorithms based on the sort and lex-
imin constraints.
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