
Factored Planning

Eyal Amir and Barbara Engelhardt
Computer Science Division, University of California at Berkeley

Berkeley, CA 94720-1776, USA
{eyal,bee}@cs.berkeley.edu

Abstract
We present a general-purpose method for dynami­
cally factoring a planning domain, whose structure
is then exploited by our generic planning method
to find sound and complete plans. The planning al­
gorithm's time complexity scales linearly with the
size of the domain, and at worst exponentially with
the size of the largest subdomain and interaction be­
tween subdomains. The factorization procedure di­
vides a planning domain into subdomains that are
organized in a tree structure such that interaction
between neighboring subdomains in the tree is min­
imized. The combined planning algorithm is sound
and complete, and we demonstrate it on a represen­
tative planning domain. The algorithm appears to
scale to very large problems regardless of the black
box planner used.

1 Introduction
Many planning algorithms use independencies or loose in­
teractions between components in the planning domain to
find plans more efficiently. For example, hierarchical plan­
ners divide a goal into subgoals (high-level operators) using
a decomposition of the domain into loosely interacting parts
(e.g., [Knoblock, 1990; Erol et ai, 1994]). Planning is done
at each level separately, and later the subplans are pieced to­
gether to build a valid plan. Other planners that use domain
decomposition (e.g., [Lansky and Getoor, 1995]) are not lim­
ited to domains with explicit hierarchical structure, but re­
quire backtracking across subdomains, and often replan for
subgoals that already have valid plans. In general, domain-
decomposition planning does not scale well because back­
tracking between subdomains can dominate the complexity
of the search, and the domain decomposition is often ad hoc.

In this paper we present an approach to planning that scales
to very large domains by taking advantage of domain struc­
ture. This approach is composed of two procedures: factoring
and planning. The factoring procedure partitions a planning
domain into loosely interacting subdomains that are orga­
nized in a tree structure. Our factoring procedure uses decom­
position algorithms from graph theory, and our contribution
in this matter is in translating the planning-problem decompo­
sition task into a graph decomposition task. After factoring,

our planning procedure finds plans for multiple subgoals in
each of the subdomains separately, using a generic black box
planner. It searches over possible plans using complex action
descriptors from each of the subdomains to form a plan for
the overall goal. The planning procedure uses dynamic pro­
gramming principles, and backtracking occurs only within a
subdomain as part of the black box planner.

We prove that our planning procedure runs in time linear in
the number of subdomains and takes time that is at most ex­
ponential in the size of the largest subdomain and the number
of dependencies between subdomains. The type of factoring
that we select is justified by this complexity result. We also
prove that the combined algorithm is sound and complete,
and that it can be applied to solve any planning problem us­
ing any generic black box planner for planning within subdo­
mains. The complexity is upper bounded by the complexity
of the black box planner on the unpartitioned domain.

We implemented and tested our planning algorithm on a
simple domain to guide further development. We created two
implementations, one with the IPP planning system [Koehler
and Hoffmann, 2000] and one with the FF planner [Hoffmann
and Ncbel, 2001]. We compared the results of our algorithm
with those of IPP and FF, and have shown that for a single do­
main our results scale much better than these planners alone.
The example validates our analytical results and shows that
our planner's performance scales linearly with the size of the
domain for this problem, motivating further development.

2 Factored Planning
In this section we present an algorithm for planning with a
partitioned planning domain, where the subdomains are ar­
ranged in a rooted tree. Each subdomain corresponds to a
subset of the fluents, or single states, in the domain and a
subset of the actions which use only those fluents. Neighbor­
ing subdomains may share fluents and actions, and the ideal
partition has the smallest number of shared fluents. We ana­
lyze this algorithm computationally and present a procedure
for finding a tree partition with close-to-optimal properties.

2.1 Partitioned Planning Problems
We restrict ourselves to partitioned planning problems that
are described using a simple propositional action language.
A partitioned domain description is a labeled graph that de­
scribes a set of subdomains and the connections between the

PLANNING 929

subdomains. Formally, a partitioned domain description is a
labeled graph with

• vertices: for all is a
planning domain description with

a set of propositional //MeflAv (features of our do­
main that may change value over time),

a set of action (operator) definitions over
• Edges E over and
• A labeling / of the edges in E. For every

is a subset of fluents from

The label includes at least the fluents shared be­
tween but it may include other (e.g.
global) fluents. We use the convention that action refers
to the action definition (also called action schema) and that at
denotes the instantiation of the action in a plan. We say that
action is in subdomain iff it is defined in

We specify the preconditions and effects of actions in Ai
using the simple language of situation calculus (with preposi­
tional fluents), and allow actions to have conditional effects.
We use the simple compilation technique of [Reiter, 2001]
to provide monotonic semantics for this language (and avoid
the frame problem). All of our results apply to the PDDL
language [Fox and Long, 2002] as well. PDDL is the repre­
sentation language used in our example (Section 3) to model
the domains, the subdomains, and the plans.

2.2 Planning Algorithm
Here we present our planning algorithm, PartPlan (Figure 2),
which finds plans in a partitioned domain. We use the follow­
ing notation. For P a set of propositional fluents, is the
language of P, i.e., the set of propositional sentences that can
be built with P.

High-Level Overview
PartPlan processes a partitioned domain tree iteratively from
the leaves to the root (the subdomain that holds the goal of
PartPlan). It selects a leaf subdomain, tries to build plans for
each of a set of possible preconditions and goals (Step 2b),
records the successful attempts, adds them as new (macro­
like) actions to this leaf's single parent subdomain (Step 2c),
and removes that leaf subdomain from the graph.

The result of planning in each subdomain is not a complete
plan, but rather a compilation of capabilities, which contain
both subdomain actions and capabilities of descendant sub-
domains. Generally, every subdomain's capabilities are those
plans that it can find (using its own actions and capabilities of
its neighbors) that affect the fluents that it shares with its par­
ent subdomain in the tree. Capabilities of a subdomain are
shared by sending a message to the parent domain containing
a complex action describing the capability.

When the tree is reduced to the single subdomain (after the
iterative processing and removal of leaves) that contains the
problem goal, we perform planning in that node to achieve
the goal condition, based on the capabilities from the (elim­
inated) child subdomains (Step 3). Then, the plan found by
this subdomain is expanded into a plan that achieves the over­
all problem goal, using the actions of this subdomain along

with the reported capabilities of the children in the tree. Ev­
ery capability that appears in this plan is expanded into a sub-
plan by the subdomain that reported it. Those subplans can
themselves contain capabilities that are then expanded, and
the process continues until the plan contains only the original
domain actions.
The Simple Algorithm is Incomplete
The view presented above leaves the exact nature of plan­
ning in each subdomain unspecified. It suggests, roughly, that
planning in each subdomain takes the form of finding a plan
that starts from some initial state of local fluents and reaches
a specified end state of local fluents. Unfortunately, limiting
ourselves to this kind of message from children subdomains
to parents is incomplete, as demonstrated in the following ex­
ample (see Figure 1 for an illustration).

Charger
Actions:
charge, switch

Fluents:
battery I full
battery 2 full
second_power_line
upgraded

battery l_full
battery2_full
second_powe line

Robot
Actions-

add_line_segment

Fluents:
battery 1 ..full
battery 2_iu II
sccond_power_lme
one_segment
two_scgments

Figure 1: Subdomains for upgrading a battery charger.

Consider a scenario in which we have a charger that can
charge batteries and a robot that can connect power cables to­
gether and that uses two batteries. Initially, every charge ac­
tion of the charger charges exactly one battery, so two charge
actions are required to charge both of the robot's batteries.
However, if the charger is connected to an additional power
source, then a single charge action charges two batteries at
once. Our task is to upgrade the charger so that it can charge
two batteries at once. For this, the robot needs to build a
power line that is long enough to reach the charger, and the
charger needs to switch to using both sources. Thus, build­
ing this line requires multiple charges interleaved with adding
lines. A plan that solves this problem needs to charge the
robot's batteries, add a line segment, charge again, add an­
other line segment, charge again, add the final line segment,
and switch the charger to the new mode.

We want our factored-planning approach to apply to any
given planning problem and be complete (i.e., find a plan if
there is one) regardless of the plan partition. We will show
that there is a partitioning of this problem so that simple mes­
sages of the form "if X holds, then 1 can make Y hold" are
not sufficient in a directed tree to find a complete plan. Mes­
sages of the form "if holds, then 1 can cause if you
subsequently make hold, then 1 can cause to hold" are
required for domains with interleaved interactions as in this
example. These complex messages can be extended for larger
numbers of interleaved preconditions and effects, and the al­
gorithm we present allows that type of message.

One possible partitioning of the example above is pre­
sented in Figure 1. On the left-hand side we include the

930 PLANNING

actions charge and switch, and the features battery I. full,
battery2.full, second jpotver. and upgraded. The ac­
tion charge has the following effects and preconditions:

Action switch has the following effects and preconditions:
• If second .power dine, then switch causes upgraded.
On the right-hand subdomain we include the ac­

tion add dine .segment, and the features
­­­­­­­­­­­­­­­ one.segment, and
two.segments. The action add dine.segment has the fol­
lowing effects and preconditions:

Now, consider all the possible simple messages, i.e., mes­
sages of the form "if X, then 1 can cause Y to hold". We
require each of those X and Y to be a combination of flu­
ent values for fluents that are shared between the two subdo-
mains. In our case, those shared fluents are
battery2.full, and second.power.line.

Assume that we chose the root node in our partition to be
the left-hand side subdomain. The only non-trivial message
that the right-hand side can send is

then 1 can cause

We would like to find a plan in the root subdomain (the
left-hand side subdomain) that uses these messages and that
results in the charger being upgraded. Note that this is not
possible with only simple messages.

One way to resolve this problem is to allow more complex
messages. Particularly, in our example, we can allow the fol­
lowing message to be sent:

If our planner on the left-hand subdomain can handle such
complex actions, then it can use such a message to find a
plan that succeeds in upgrading the charger. Indeed allow­
ing this kind of messages makes our planning algorithm com­
plete. This is consistent with results achieved by [Amir and
Mcllraith, 2000; Mcllraith and Amir, 2001] for inference in
first-order logic, and is also consistent with [Amir, 2002] that
presented results for projection in factored domains.

An alternative to using such long messages is to include in­
ternal (i.e., not shared) fluents in shorter messages. However,
this has the effect of breaking the encapsulation and structure

that we strive to employ, reducing our problem to that of tradi­
tional planning on the entire domain and forcing backtracking
across different subdomains.
Detailing the Planning Algorithm
Procedure PartPlan is presented in Figure 2 and its subrou­
tines are presented in Figures 3 and 4. PartPlan is given a
partitioned planning domain a
set of initial conditions indexed by subdomain
such that is the initial state for the fluents in a goal
state condition in for root node , and search pa­
rameters (interactions) and d (depth). It returns a plan for
achieving the specified goal conditions in the given domain,
if such a plan exists under the search constraints. Notice that
we show goals that can be represented in a single subdomain.
We illustrate how to get around this restriction in Section 2.5.

Figure 2: Planning with Subdomains

We discuss two of the subroutines of PartPlan in detail.
The first, SinglePlan, is presented in Figure 3. It determines
whether there is a plan with at most actions in subdomain

that starts with the state described by the initial state
and arrives at a state that satisfies We require the plan to
have preconditions interleaved within effects, corre­
sponding to the number of interleaved conditions in the mes­
sage (e.g., in (1), the message sent in our example above,

To find such an interleaving message the planner
uses fluent-setting actions, which set the fluents in
to a truth assignment in one of They correspond
to (yet undetermined) action sequences that can be performed
in ancestor (or cousin) subdomains. If the parent subdomain
wishes to use the result of this planning, it will need to find a
sequence of actions that replaces these fluent-setting actions.

PLANNING 931

Every fluent-setting action, can be used at most once,
and all of must have been used before this ac­
tion. Also, prior to using this fluent-setting action,
must hold. This condition corresponds to the state that is
required by the other subdomain's complex action as a pre­
condition for the subsequent complex action.

Figure 3: Planning in a single subdomain, and storing a plan.

Subroutine SendMessage (Figure 4) takes a plan found by
subdomain (stored in table T by subroutine StorePlan)
and adds a new complex action definition in the parent sub-
domain, whose initial state and goal are fluents found
in This new action contains complex action definitions
from child subdomains and actions local to Plans execute
sequentially to ensure that the preconditions for complex ac­
tions are satisfied at the appropriate times.

2.3 Properties of PartPlan
In this section we prove the completeness and soundness of
PartPlan and analyze its computational behavior. We pursue
the intuition that our planning algorithm can find a plan more
efficiently if the number of interactions between subdomains
is small. The maximum shared fluents across the partition
determines the time complexity of the algorithm.

Definition 2.1 (Width of a Plan) Let be
a partitioned planning domain tree, and
sequence of actions. The width of for G is the largest

932

Figure 4: Sending a message, and expanding a plan.

(minus one) for which there is subsequence of actions and
an edge in G such t h a t a r e in subdomains
on different sides of
The plan-width k for our partitioned domain is the least that
will allow PartPlan to find a plan. In our example in Figure 1

4 because for 4 there is no message that we can send
that will allow us to find a plan in the left-hand subdomain.
Also, notice that every plan for D has width at most

A tree decomposition of planning domain D is a parti­
tioned domain description tree satisfying the run­
ning intersection property: if a fluent / appears in and also
in Pj, then all the edge-labels on the path between in
G must include /.

Theorem 2.2 Let G(D, E,l), be a tree decomposition of
planning domain D with m subdomains. PartPlan(G, I, Q,
k, d) returns a plan n of that achieves Q in D starting from
I, if and only if one exists with width at most 2k and at most
d • m actions.

The role of d is to bound the length of the complex actions
to at most d interactions; bounding this variable can be used in

PLANNING

an iterative deepening algorithm to find plans with the short­
est possible complex actions. The parameter can be used
similarly, and its role is to restrict the length of messages that
are sent from children subdomains to parent subdomains.
Corollary 2.3 Iterative deepening of search parameters
in PartPlan is sound and complete planning algorithm.

The time bound for procedure PartPlan is exponential in
the number of fluents in the links between subdomains and
the plan-width of the partitioned-planning problem, but is lin­
ear in the number of subdomains.
Theorem 2.4 PartPlan terminates in time

being the largest
number of action symbols and largest number of fluent sym­
bols in any subdomain, respectively, and I being the largest
number of symbols in for all subdomains

2.4 Automatic Factoring
Theorem 2.2 assumes that a tree decomposition G(B, E,l/) is
given. For a planning domain D we can build the decomposi­
tions by hand, adding a knowledge-engineering and planning
perspectives to the domain description. We can also find a de­
composition automatically using graph decomposition tech­
niques. In this section we describe such an algorithm.

The notion of tree decomposition in planning domains is
a special case of tree decomposition in graphs [Robertson
and Seymour, 1986]. The width of a tree-decomposition is
the width of the largest subset in the tree minus one. The
treewidth of a graph G(V, E) is the minimum width over all
tree-decompositions of G minus one

Finding optimal tree decompositions is NP-hard. Nonethe­
less, there are several algorithms that find close-to-optimal
tree decompositions (e.g., [Becker and Geiger, 1996; Amir,
2001]), and there are also some heuristics (e.g., [Kjaerulff,
1993]) that have been applied successfully in inference algo­
rithms for Bayesian networks and theorem proving.

The reduction of the planning decomposition problem into
a graph decomposition problem is as follows. We create a
graph G(V, E) with a vertex V for every propositional
fluent in our domain D. E is the set of edges in this graph, and
it includes an edge between V if and only if there is an
action definition that includes both v, u (either as a precondi­
tion or as an effect). In the next step we find a tree decompo­
sition (5, T), for this graph
using one of the algorithms mentioned above. Finally, we cre­
ate a partitioned domain description as
follows: The vertices (domain descriptions)
are chosen such that includes all the fluents in and

includes all the action definitions that can be expressed
with the fluents in The edges in ED are the tree edges,
F, in T. The labeling I of a edge is the set
of fluents that are shared between the vertices , i.e.,

This algorithm complexity is taken up by the decomposi­
tion of the graph G(V,E). Most heuristics are at most O
and one approximation algorithm [Amir, 2001] takes time

(fc is the treewidth of G, and is typ­
ically much smaller than n). This is an upper bound on the
time taken by the planning domain decomposition algorithm.

2.5 Distribution of the Goal
So far we have assumed that the goal is represented in the set
of fluents of a single subdomain. In many planning problems
the goal consists of a conjunction of conditions on many dif­
ferent fluents. If we create a single subdomain that includes
all those fluents, then the width of the tree decomposition will
be high, and so will be the planning time. Instead, we can dis­
tribute the goal between subdomains, as we show here.

Assume that we are given a tree decomposition G(D, E, I)
of domain with Let a goal condition be

where Qx is a part of the goal represented with the
fluents in Pi. Arbitrarily, choose a single subdomain, as
the root of the tree. To each subdomain we add a new
fluent symbol, and a new action, For every leaf sub-
domain, precondition is and its effect is qt. For every
internal node in the tree, with c h i l d r e n s pre­
condition is and its effectis

When planning with this revised decomposition we use a
single goal, in subdomain The revised planning prob­
lem in this tree decomposition is equivalent to the original
one, and we have reduced a (worst case) exponentially large
problem down to a linear one.

3 An Extended Example
Consider the following domain, where a robot can move
around in a set of rooms connected by doors as a ring [Cimatti
and Roveri, 2000]. Each room has a window which can be
open, closed, or locked. The robot has four possible actions:
move clockwise, move counterclockwise, close the window
of the current room, and lock the window of the current room
if the window is already closed. The goal state is that the win­
dows of all the rooms are locked. The start state is the robot in
one of the rooms and some configuration of windows open,
closed, and locked. In this simple example we assume that
the state of windows and the location of the robot are known.
In other words, the initial condition is one of possible
initial configurations.

Define the following set of fluents:
• Agent location:
• Windows closed:
• Windows locked:
• Windows locked from room 1 up to room

The fluents represent conjunctions of the
fluents from parent and ancestor

subdomains in the tree, as in the previous section. Define the
following set of actions and corresponding effect axioms:

• Actions: close,
• Effect axioms:

PLANNING 933

In the last set of axioms we use the convention that addition
and subtraction are modulo the number of rooms in the ring.
In other words, the next room after is mod

For the ring of rooms, an obvious partition turns out to be
a good one. Specifically, we associate each subdomain with
one room, letting the fluents and actions for subdomain Dt be

Each subdomain contains all actions whose preconditions
and effects mention only fluents in that subdomain.

Figure 5: Subdomains for Ring of Rooms.

The graph of subdomains is not a tree (see Figure 5). One
way to turn it into a tree decomposition is by removing one of
the edges completing a cycle and adding (in the worst case)
the label of that edge to the rest of the edges in this graph (this
is an example of a more general algorithm that is outside the
scope of this paper; see [Amir and Mcllraith, 2000]). The re­
sult is presented in Figure 6. The graph G connects every two
consecutive subdomains but , for m being the num­
ber of rooms (and subdomains). The labeling on the edges is
originally After
transforming to graph into a tree we get the labeling

Figure 6: Tree decomposition for Ring of Rooms.

We show how PartPlan finds a plan for this domain. We
set the goal to be which is expressed in the fluents of
subdomain rn. We set t — to be the root of the tree.

We take node whose parent in the tree is = 2,
and find all the plans possible with One such
plan is "if the robot is in room 1 and the window is open, then
close, lock and move clockwise." We find a plan for D\:

Both pre1,eff2 are complete state descriptions in
There is a plan that SinglePlan(D 1, I1, (pre1), (ef 1>, ett 2,

d) will return. Thus, one message that is sent to subdomain
is "if in some state the robot is in room 1, then D\ has

a sequence of actions that results in all 1 being true and the
robot moving to room 2." In more precise terms, the defi­
nition for this capability is added to subdomain by
subroutine SendMessage.

Now, we take node whose parent in the tree is
3, and find all the plans possible with One
such plan is, "if in some state the robot is in room 2, then
move counter-clockwise, execute a subdomain-1-action, then
close, lock and move clockwise." We find a plan for Do-

These are all complete state descriptions in Z'(2,3). There
is a plan that S i n g l e P l a n (e f f ^ ,
d) will return. The message that is sent to subdomain . _ is
roughly speaking "if the robot is in room 2, then D2 has a
sequence of actions that results in all2 being true". In more
precise terms, the definition for action is added to subdo­
main by subroutine SendMessage.

This method continues for all the subdomains up to
that contains the goal. Subdomain can conclude that there
exists a plan for closing and locking all the windows, satisfy­
ing allm. If the initial condition of our problem specifies that
the robot is in room r, then starting in subdomain Dr wc will
already have a plan independent of the position of the robot.
This will lead to a complete plan in subdomain m.

When the plan is found in subdomain the algorithm then
goes on to expanding the complex actions into their capabil­
ity plans. For example, when the complex action c2,i of sub-
domain 1 is encountered in the plan it is expanded into a
segment that is placed instead of r 2 t i in
plan It results in a sequence of actions that is between the
state satisfying condition eff 1 (i.e., when the robot appears in
room 1) and the state satisfying eff2.

Using this domain and associated tree decomposition
above we implemented our algorithm to see that the run time
scaled linearly as the number of rooms increased. The re­
sults are compared in figure (7), which shows four different
planning algorithm on this domain as the size of the domain
grows. For all runs, the optimal-sized plans were found. In
very small domains, there is some constant time overhead in­
volved in the PartPlan algorithm, but asymptotically the Part-
Plan algorithms begin to dominate because of the linear scal­
ing with respect to the number of rooms. Although this exam­
ple is not rigorous enough to show the empirical dominance
of the PartPlan algorithm for every domain, it does motivate
further development of the ideas in real-world domains.

4 Related Work
Some of the techniques that we apply have been used be­
fore in automated reasoning. Best known are methods for
reasoning with probabilistic graphical models [Pearl, 1988J),
logical theories [Dechter and Rish, 1994; Amir and Mcll­
raith, 2000] and constraint satisfaction problems [Dechter and
Pearl, 1989]. The common principle for those applications is
the advantage taken of low treewidth available in many do­
mains. With a tree decomposition of close-to-optimal width,

934 PLANNING

Figure 7: Comparison of run time for IPP, FF, PartPlan-IPP,
and PartPlan-FF. The figure on the left is for 0-150 rooms,
the figure on the right is for 0-500 rooms. The scale on the
;y-axis is in milliseconds.

these reasoning algorithms use two sweeps of the tree, an evi­
dence collection and evidence distribution sweep, and the en­
tire process is linear in the number of nodes.

Similar techniques to these have also been used in prob­
abilistic planning to find approximate policies for factored
MDPs (e.g., LGuestrin et al., 2002]), and also in the context of
multi-agent stochastic planning with MDPs. The main differ­
ence with this approach is that we find an exact solution, and
we act in domains that do not have universal reachability (all
states are reachable from all states), as is assumed in MDPs.

Section 1 discusses approaches for multi-agent planning
LLansky and Getoor, 1995; Ephrati and Rosenschein, 1994;
Wolverton and desJardins, 1998].

5 Conclusions
Two contributions of our work are automated planning do­
main decomposition by minimizing subdomain interactions,
and an algorithm to plan in this decomposed domain with
no backtracking. The planning algorithm is sound and com­
plete, and exploits a low treewidth partition for a particular
planning domain, enabling planning to scale linearly with the
domain size. Our automatic factoring algorithm for a plan­
ning domain attempts to optimize the run-time complexity of
the planner. Theoretical results and empirical examples show
that the planning algorithm scales well in domains with de­
composable structure.

Directions for future work in this area include the devel­
opment of algorithms for richer domains and description lan­
guages, such as nondeterministic planning actions, stochas­
tic actions, and actions involving duration and numerical pa­
rameters. Our approach is built on the language of situation
calculus (in which we developed our first version of the al­
gorithms), leading us to believe that it wil l extend to these
directions and more. Our work connects automated reason­
ing and planning, and we expect to extend this connection to
allow first-order decomposition of planning and other related
problems, such as diagnosis and reactive control.

Acknowledgments
The first author is supported under an ONR MURI Funds
N00014-01-1-0890, and N00014-00-1-0637, and NSF grant

ECS-9873474. The second author is supported under an NSF
Graduate Research Fellowship.

References
[Amir and Mcllraith, 2000] E. Amir and S. Mcllraith. Paritition-

based logical reasoning. In Prvc. KR '00, pages 389-400. MK,
2000.

[Amir, 2001] E. Amir. Efficient approximation for triangulation of
minimum treewidth. In Prvc. UAI '01, pages 7-15. MK, 2001.

[Amir, 2002] E. Amir. Projection in decomposed situation calculus.
In Proc. KR '02, pages 315-326. MK, 2002.

[Becker and Geiger, 1996] A. Becker and D. Geiger. A sufficiently
fast algorithm for finding close to optimal junction trees. In Proc.
UAI '96, pages 81-89. MK, 1996.

[Cimatti and Roveri, 2000] A. Cimatti and M. Roveri. Conformant
planning via symbolic model checking. JAIR, 13:305-338, 2000.

[Dechter and Pearl, 1989] R. Dechter and J. Pearl. Tree clustering
for constraint networks. AU, 38:353-366, 1989.

[Dechter and Rish, 1994] R. Dechter and I. Rish. Directional reso­
lution: The davis-putnam procedure, revisited. In Proc. KR '94,
pages 134-145. Morgan Kaufmann, 1994.

[Ephrati and Rosenschein, 1994] E. Ephrati and J. S. Rosenschein.
Divide and conquer in multi-agent planning. In Proc. AAA I '94,
pages 375-380. AAAI Press, 1994.

[Erol etal, 1994] K. Erol, J. Hendler, and D. S. Nau. HTN plan­
ning: Complexity and expressivity. In Proc. AAAI '94, pages
1123 1128. AAAI Press, 1994.

[Fox and Long, 2002] M. Fox and D. Long. PDDL2.1: An ex­
tension to PDDL for expressing temporal planning domains.
http://www.dur.ac.Uk/d.p.long/IPC/pddl.html, 2002.

[Guestrin et ai, 2002] C. Guestrin, D. Koller, and R. Parr. Multia-
gent planning with factored mdps. In Proc. NIPS"01. MIT, 2002.

[Hoffmann andNebel, 2001] J. Hoffmann and B. Nebel. The FF
planning system: Fast plan generation through heuristic search.
JAIR, 14:253-302,2001.

[Kjacrulff, 1993] U. KjaerulfT. Aspects of efficiency imporvement
in bayesian networks. PhD thesis, Aalborg University, 1993.

[Knoblock, 1990] Craig A. Knoblock. Learning abstraction hierar­
chies for problem solving. In Prvc. AAAI '90, 1990.

[Kochler and Hoffmann, 2000] J. Koehler and J. Hoffmann. On
reasonable and forced goal orderings and their use in an agenda-
driven planning algorithm. JAIR, 12:339 386, 2000.

[Lansky and Getoor, 1995] A. L. Lansky and L. C. Getoor. Scope
and abstraction: Two criteria for localized planning. In Prvc.
1JCA1 '95, pages 1612-1618, 1995.

[Mcllraith and Amir, 2001] Sheila Mcllraith and Eyal Amir. Theo­
rem proving with structured theories. In Proc. IJCA1 '01, pages
624 631. MK, 2001.

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in Intelligent Sys­
tems : Networks of Plausible Inference. MK, 1988.

[Reiter, 2001] R. Reitcr. Knowledge In Action. MIT, 2001.
[Robertson and Seymour, 1986] N. Robertson and P. D. Seymour.

Graph minors. II: algorithmic aspects of treewidth. J. of Algo-
rithms, 7:309-322, 1986.

[Wolverton and desJardins, 1998] M. Wolverton and M. desJardins.
Controlling communication in distributed planning using irrele­
vance reasoning. In Proc. AAAI '98, pages 868- 874, 1998.

PLANNING 935

