
Aggregate Functions in Disjunctive Logic Programming:
Semantics, Complexity, and Implementation in DLV*

Tina Dell 'Armi
Dept. of Mathematics,

Univ. of Calabria
87030 Rende (CS), Italy
dellarmi@mat.unical.it

Wolfgang Faber
Inst. f. Informationssysteme 184/3,

TU Wien
A-1040Wien, Austria
faber@kr.tuwien.ac.at

Giuseppe Ielpa
Dept. of Mathematics,

Univ. of Calabria
87030 Rende (CS), Italy

ielpa@mat.unical.it

Nicola Leone Gerald Pfeifer
Dept. of Mathematics, Univ. of Calabria Inst. f. Informationssysteme 184/2, TU Wien

87030 Rende (CS), Italy A-1040 Wien, Austria
leone@unical.it pfeifer@dbai.tuwien.ac.at

Abstract

Disjunctive Logic Programming (DLP) is a very
expressive formalism: it allows to express every
property of finite structures that is decidable in the
complexity class E^ (NPN H) . Despite the high ex­
pressiveness of DLP, there are some simple proper­
ties, often arising in real-world applications, which
cannot be encoded in a simple and natural manner.
Among these, properties requiring to apply some
arithmetic operators (like sum, times, count) on a
set of elements satisfying some conditions, can­
not be naturally expressed in DLP. To overcome
this deficiency, in this paper we extend DLP by
aggregate functions. We formally define the se­
mantics of the new language, named DLP-4. We
show the usefulness of the new constructs on rel­
evant knowledge-based problems. We analyze the
computational complexity of DLP"4, showing that
the addition of aggregates does not bring a higher
cost in that respect. We provide an implementation
of the DLP-4 language in D L V - the state-of-the-
art DLP system - and report on experiments which
confirm the usefulness of the proposed extension
also for the efficiency of the computation.

1 Introduction

Expressiveness of DLP. Disjunctive Logic Programs (DLP)
are logic programs where (nonmonotonic) negation may oc­
cur in the bodies, and disjunction may occur in the heads of
rules. This language is very expressive in a precise math­
ematical sense: it allows to express every property of fi­
nite structures that is decidable in the complexity class Ep

2

(NPN P) . Therefore, under widely believed assumptions,

*This work was supported by the European Commission under
projects IST-2002-33570 INFOMIX, IST-2001-32429 ICONS, and
FET-2001-37004WASP.

DLP is strictly more expressive than normal (disjunction-
free) logic programming, whose expressiveness is limited to
properties decidable in NP. DLP can thus express problems
which cannot be translated to Satisfiability of CNF formu­
las in polynomial time. Importantly, besides enlarging the
class of applications which can be encoded in the language,
disjunction often allows for representing problems of lower
complexity in a simpler and more natural fashion (see [Eiter
et al., 2000]).

The problem. Despite this high expressiveness, there are
some simple properties, often arising in real-world applica­
tions, which cannot be encoded in DLP in a simple and nat­
ural manner. Among these are properties requiring to apply
some arithmetic operator (e.g., sum, times, count) on a set of
elements satisfying some conditions. Suppose, for instance,
that you want to know if the sum of the salaries of the em­
ployees working in a team exceeds a given budget (see Team
Building, in Section 3). To this end, you should first order
the employees defining a successor relation. You should then
define a sum predicate, in a recursive way, which computes
the sum of all salaries, and compare its result with the given
budget. This approach has two drawbacks: (1) It is bad from
the KR perspective, as the encoding is not natural at all; (2) it
is inefficient, as the (instantiation of the) program is quadratic
(in the cardinality of the input set of employees). Thus, there
is a clear need to enrich DLP with suitable constructs for the
natural representation and to provide means for an efficient
evaluation of such properties.

Contribution. We overcome the above deficiency of DLP.
Instead of inventing new constructs from scratch, we extend
the language with a sort of aggregate functions, first studied
in the context of deductive databases, and implement them
in DLV [Eiter el al.f 2000] - the state-of-the-art Disjunctive
Logic Programming system. The main contributions of this
paper are the following.
• We extend Disjunctive Logic Programming by aggregate
functions and formally define the semantics of the resulting

NONMONOTONIC REASONING 847

mailto:dellarmi@mat.unical.it
mailto:faber@kr.tuwien.ac.at
mailto:ielpa@mat.unical.it
mailto:leone@unical.it
mailto:pfeifer@dbai.tuwien.ac.at

language, named DLP*4.
• We address knowledge representation issues, showing the
impact of the new constructs on relevant problems.
• We analyze the computational complexity of DLP*4. Im­
portantly, it turns out that the addition of aggregates does
not increase the computational complexity, which remains the
same as for reasoning on DLP programs.
• We provide an implementation of DLP*4 in the DLV sys­
tem, deriving new algorithms and optimization techniques for
the efficient evaluation.
• We report on experimentation, evaluating the impact of the
proposed language extension on efficiency. The experiments
confirm that, besides providing relevant advantages from the
knowledge representation point of view, aggregate functions
can bring significant computational gains.
• We compare DLP*4 with related work.
We present the most relevant aspects of DLP*4 and of its im­
plementation here, referring the interested reader to a techni­
cal report with all details [Del lArmi et al, 2003].

2 The DLP A Language
In this section, we provide a formal definition of the syntax
and semantics of the DLP*4 language - an extension of DLP
by set-oriented functions (also called aggregate functions).
We assume that the reader is familiar with standard DLP; we
refer to atoms, literals, rules, and programs of DLP, as stan­
dard atoms, standard literals, standard rules, and standard
programs, respectively. For further background, see [Gelfond
and Lifschitz, 1991; Eiter etal, 2000].

2.1 Syntax
A (DLP*4) set is either a symbolic set or a ground set. A
symbolic set is a pair , where Vars is a list
of variables and Coiij is a conjunction of standard literals.1

A ground set is a set of pairs of the form , where
l is a list of constants and Conj is a ground (variable free)
conjunction of standard literals. An aggregate function is of
the form , where 5 is a set, and / is a function name
among An aggre­
gate atom is ~ ~ where f(S) is an aggregate
function, , and Lg and Rg (called
left guard, and right guard, respectively) are terms. One of

can be omitted. An atom is cither a
standard (DLP) atom or an aggregate atom. A literal L is an
atom A or an atom A preceded by the default negation symbol
not; if A is an aggregate atom, L is an aggregate literal,

rule r is a construct

where a \, • • •, an are standard atoms, b1, • • •, bm are atoms,
and The disjunction a.\

is the head of r, while the conjunction
bu...,bk, not is the body of r. A (DLP*4;
program is a set of DLP*4 rules.
Syntactic Restrictions and Notation

'intuitively, a symbolic set stands
for the set of A'-values making true, i.e.,

. Note that also negative liter­
als may occur in the conjunction Conj of a symbolic set.

For simplicity, and without loss of generality, we assume
that the body of each rule contains at most one aggregate
atom. A global variable of a rule r is a variable appearing
in some standard atom of r; a local variable of r is a variable
appearing solely in an aggregate function in r.

Safety. A rule r is safe if the following conditions hold: (i)
each global variable of r appears in a positive standard literal
in the body of r; (ii) each local variable of r' appearing in a
symbolic set , also appears in a positive literal
in Conj\ (iii) each guard of an aggregate atom of r* is either
a constant or a global variable. A program is safe if all of its
rules are safe.
Example 1 Consider the following rules:

The first rule is safe, while the second is not, since both local
variables Z and S violate condition (ii). The third rule is not
safe cither, since the guard T is not a global variable, violating
condition (iii).

Stratification. A DLP*4 program V is aggregate-stratified
if there exists a function , called level mapping, from the
set of (standard) predicates of V to ordinals, such that for each
pair a and b of (standard) predicates of , and for each rule

appears in the head of r, and 6 appears in an
aggregate atom in the body of r, then , and (ii) if
a appears in the head of r, and b occurs in a standard atom in
the body of r, then
Example 2 Consider the program consisting of a set of facts
for predicates a and b, plus the following two rules:

The program is aggregate-stratified, as the level mapping
satisfies the required

conditions. If we add the rule b(X):-p(X), then no legal
level-mapping exists and the program becomes aggregate-
unstratificd.

Intuitively, aggregate-stratification forbids recursion
through aggregates, which could cause an unclear se­
mantics in some cases. Consider, for instance, the
(aggregate-unstratified) program consisting only of rule

. Neither p(a) nor is
an intuitive meaning for the program. We should probably
assert that the above program does not have any answer set
(defining a notion of "stability" for aggregates), but then
positive programs would not always have an answer set if
there is no integrity constraint. In the following we assume
that DLP*4 programs are safe and aggregate-stratified.

2.2 Semantics
Given a DLP*4 program denote the set of constants
appearing in the set of the natural numbers oc­
curring in Up and B-p the set of standard atoms constructive
from the (standard) predicates of V with constants in Up.
Furthermore, given a set denotes the set of all multi­
sets over elements from X. Let us now describe the domains
and the meanings of the aggregate functions we consider:

count: defined over , the number of elements in the set.

848 NONMONOTONIC REASONING

sum: defined over , the sum of the numbers in the set.

t imes: over the product of the numbers in the set.2

min, max: defined over the mini­
mum/maximum element in the set; if the set contains also
strings, the lexicographic ordering is considered.3

If the argument of an aggregate function does not belong to its
domain, the aggregate evaluates to false, denoted as J_ (and
our implementation issues a warning in this case).

A substitution is a mapping from a set of variables to the
set Up of the constants appearing in the program V. A sub­
stitution from the set of global variables of a rule r (to U-p)
is a global substitution for r; a substitution from the set of
local variables of a symbolic set 5 (to Up) is a local substi­
tution/or 5. Given a symbolic set without global variables
5 = { Vars : Conj}, the instantiation of set 5 is the follow­
ing ground set of pairs inst(S):

A ground instance of a rule r is obtained in two steps: (1)
a global substitution a for r is first applied over r; (2) ev­
ery symbolic set S in o(r) is replaced by its instantiation
inst(S). The instantiation Ground(V) of a program V is
the set of all possible instances of the rules of V.

Example 3 Consider the following program V\:

The instantiation Ground(V\) is the following:

An interpretation for a DLP*4 program V is a set of stan­
dard ground atoms . The truth valuation I {A), where
A is a standard ground literal or a standard ground conjunc­
tion, is defined in the usual way. Besides assigning truth val­
ues to the standard ground literals, an interpretation provides
the meaning also to (ground) sets, aggregate functions and ag­
gregate literals; the meaning of a set, an aggregate function,
and an aggregate atom under an interpretation, is a multiset,
a value, and a truth-value, respectively. Let f(S) be a an ag­
gregate function. The valuation I(S) of set 5 w.r.t. / is the
multiset of the first constant of the first components of the ele­
ments in S whose conjunction is true w.r.t. J. More precisely,
let Conj is true
w.r.t. I } , then I(S) is the multiset
The valuation I(f(S)) of an aggregate function f(S) w.r.t. /
is the result of the application of the function / on 7(5). (If
the multiset 7(5) is not in the domain o f / ,

An aggregate atom . is true
w.r.t. I if: and, (ii) the relationships

hold whenever they
are present; otherwise, A is false.

Using the above notion of truth valuation for aggregate
atoms, the truth valuations of aggregate literals and rules, as

sum and times applied over an empty set return 0 and 1,
respectively.

3The latter is not yet supported in our f\ rst implementation.
4Given a substitution a and a DLP*4 object Obj (rule, conjunc­

tion, set, etc.), with a little abuse of notation, we denote by a (Obj)
the object obtained by replacing each variable X in Obj by (X).

well as the notion of model, minimal model, and answer set
for DLP*4 are an immediate extension of the corresponding
notions in DLP [Gelfond and Lifschitz, 1991],

Example 4 Consider the aggregate atom A — #sum{(l :
p(2 , l)) , (2 : p(2,2))} > 1 from Example 3. Let 5 be
the ground set appearing in A. For interpretation I =
{r/(2),/;(2,2),t(2)j , I(S) = [2], the application of #sum
over [2] yields 2, and A is therefore true w.r.t. 7, since 2 > 1.
I is an answer set of the program of Example 3.

3 Knowledge Representation in DLP*4

In this section, we show how aggregate functions can be used
to encode relevant problems.

Team Building. A project team has to be built from a set of
employees according to the following specifications:
(pi) The team consists of a certain number of employees.
(p2) At least a given number of different skills must be
present in the team.
(p3) The sum of the salaries of the employees working in the
team must not exceed the given budget.
(p/i) The salary of each individual employee is within a spec­
ified limit.
(pr}) The number of women working in the team has to reach
at least a given number.
Suppose that our employees are provided by a number of facts
of the form emp(EmpId,Sex,Skill,Salary); the size of the team,
the minimum number of different skills, the budget, the max­
imum salary, and the minimum number of women are speci­
fied by the facts nEmp(N), nSkill(N), budget(B), maxSal(M),
and women(W). We then encode each property pj above by an
aggregate atom A^ and enforce it by an integrity constraint
containing not At.

Intuitively, the disjunctive rule "guesses" whether an em­
ployee is included in the team or not, while the five con­
straints correspond one-to-one to the five requirements p i -
P5. Thanks to the aggregates the translation of the specifi­
cations is surprisingly straightforward. The example high­
lights the usefulness of representing both sets and multi­
sets in our language (a multiset can be obtained by spec­
ifying more than one variable in Vans of a symbolic set
{Vars : Conj}). For instance, the encoding of p2 re­
quires a set, as we want to count different skills; two em­
ployees in the team having the same skill, should count
once w.r.t. p-2- On the contrary, p3 requires to sum the ele­
ments of a multiset; if two employees have the same salary,
both salaries should be summed up for p3. This is ob­
tained by adding the variable I to Vars. The valuation
of {5a, 7 : c?7?p(7,5x,5fc, 5a) , in(1) } yields the set 5 =
{ (5a, 7) : Sa is the salary of employee I in the team}.
Then, the sum function is applied on the multiset of the first
components Sa of the tuples (5a, 7) in 5 (see Section 2.2).

Seating. We have to generate a sitting arrangement for
a number of guests, with ra tables and n chairs per table.

NONMONOTONIC REASONING 849

Guests who like each other should sit at the same table; guests
who dislike each other should not sit at the same table.

Suppose that the number of chairs per table is specified
by nChairs(X) and that person(P) and table(T) represent
the guests and the available tables, respectively. Then, we can
generate a seating arrangement by the following program:

% Guess whether person P sits at tabic T or not.
at(P, T) V not.at(P, T).-person(P), table(T).
% The persons sitting at a table cannot exceed the chairs.
:-table{T)rnChairs(C),not count{P : at(P,T)} C.
% A person is seated at precisely one table; equivalent
% to :-person(P),at(P9T),at{P, U),T U.
:-peraon(P),not count{T : at(P,T)} = 1.
% People who like each other should sit at the same table...
:-like(Pl,P2),at(Pl1T)inotat(P2,T).
% ...while people who dislike each other should not.
:-dislikc(Ph P2),at(Pl,T),at(P2,T).

4 Computational Complexity of DLP*4

As for the classical nonmonotonic formalisms [Marek and
Truszczyhski, 1991], two important decision problems, cor­
responding to two different reasoning tasks, arise in DLP-4:

(Brave Reasoning) Given a D L P 4 program V and a
ground literal L, is L true in some answer set of p?

(Cautious Reasoning) Given a DLP*4 program V and a
ground literal L, is L true in all answer sets of V?

The following theorems report on the complexity of the
above reasoning tasks for propositional (i.e., variable-free)
DLP*4 programs that respect the syntactic restrictions im­
posed in Section 2 (safety and aggregate-stratification). Im-
portantly, it turns out that reasoning in DLP -4 does not bring
an increase in computational complexity, which remains ex­
actly the same as for standard DLP. (See [Dell'Armi et al.,
2003] for the proofs.)

Theorem 5 Brave Reasoning on ground DLP*4 programs is
-complete.

Theorem 6 Cautious Reasoning on ground DLP-4 programs
is -complete.

5 Implementation Issues
The implementation of DLP*4 required changes to all mod­
ules of DLV. Apart from a preliminary standardization phase,
most of the effort concentrated on the Intelligent Grounding
and Model Generator modules.

Standardization. After parsing, each aggregate A is trans­
formed such that both guards are present and both and

are set to . The conjunction Conj of the symbolic
set of A is replaced by a single, new atom Aux and a rule
Aux:-Conj is added to the program (the arguments of Aux
being the distinct variables of Conj).

Instantiation. The goal of the instantiator is to generate
a ground program which has precisely the same answer sets
as the theoretical instantiation Ground(V)f but is sensibly
smaller. The instantiation proceeds bottom-up following the
dependencies induced by the rules, and, in particular, respect­
ing the ordering imposed by the aggregate-stratification. Let
"H:—B,aggr" be a rule, where H is the head of the rule,
B is the conjunction of the standard body literals, and aggr

is an aggregate literal over a symbolic set
First we compute an instantiation for the literals in B;
this binds the global variables appearing in Aux. The (par­
tially bound) atom is then matched against its exten­
sion (since the bottom-up instantiation respects the stratifica­
tion, the extension of is already available), all match­
ing facts are computed, and a set of pairs

is generated, where
is a substitution for the local variables in such

that is an admissible instance of (recall that
DLV's instantiator produces only those instances of a predi­
cate which can potentially become true [Faber et al, 1999a;
Leone et al., . Also, we only store those elements of
the symbolic set whose truth value cannot be determined yet
and process the others dynamically, (partially) evaluating the
aggregate already during instantiation. The same process is
then repeated for all further instantiations of the literals in B.

Example 7 Consider the following rule r:

The standardization rewrites r to:

Suppose that the instantiation of the rule for aux gener­
ates 3 potentially true facts for aux: aux(l,a), aux(l,b), and
aux(2,c). If the potentially true facts for q are </(l) and q(2),
the following ground instances are generated:6

Duplicate Sets Recognition. To optimize the evaluation,
we have designed a hashing technique which recognizes mul­
tiple occurrences of the same set in the program, even in dif­
ferent rules, and stores them only once. This saves memory
(sets may be very large), and also implies a significant per­
formance gain, especially in the model generation where sets
are frequently manipulated during the backtracking process.
Example 8 Consider the following two constraints:

Our technique recognizes that the two sets are equal, and
generates only one instance which is shared by c1 and c2-

Now assume that both constraints additionally contain a
standard literal p(X). In this case, c\ and c-2 have n instances
each, where n is the number of facts for p(X). By means
of our technique, each pair of instances of c1 and c2 shares a
common set, reducing the number of instantiated sets by half.

Model Generation. We have designed an extension of
the Deterministic Consequences operator of the DLV system
[Faber et al., 1999b] for DLP*4 programs. The new opera­
tor makes both forward and backward inferences on aggre­
gate atoms, resulting in an effective pruning of the search
space. We have then extended the Dowling and Gallier al­
gorithm [Dowling and Gallier, 1984] to compute a fixpoint of

5 A ground atom A can potentially become true only if we have
generated a ground instance with A in the head.

6Note that a ground set contains only those aux atoms which are
potentially true.

850 NONMONOTONIC REASONING

this operator in linear time using a multi-linked data struc­
ture of pointers. Given a ground set T9 say,

, this structure allows us to
access T in O(1) whenever some Aux1 changes its truth
value (supporting fast forward propagation); on the other
hand, it provides direct access from T to each Aux1 atom
(supporting fast backward propagation).

6 Experiments and Benchmarks
To assess the usefulness of the proposed DLP extension and
evaluate its implementation, we compare the following two
methods for solving a given problem:
• DLV-4. Encode the problem in DLP-4 and solve it by using
our extension of DLV with aggregates.
• DLV. Encode the problem in standard DLP and solve it by
using standard DLV.

To generate DLP encodings from DLP-4 encodings, suit­
able logic definitions of the aggregate functions are employed
(which are recursive for count, sum, and times).

We compare these methods on two benchmark problems:
Time Tabling is a classical planning problem. In partic­

ular, we consider the problem of planning the timetable of
lectures which some groups of students have to take. We
consider a number of real-world instances at our University,
where instance k deals with k groups.

Seating is the problem described in Section 3. We con­
sider 4 (for small instances) or 5 (for larger instances) seats
per table, with increasing numbers of tables and persons (with
numPersons — numSeats * numTables). For each prob­
lem size (i.e., seats/tables configuration), we consider classes
with different numbers of like resp. dislike constraints, where
the percentages are relative to the maximum number of like
resp. dislike constraints such that the problem is not over-
constrained7. In particular, we consider the following classes:
-) no like/dislike constraints at all; -) 25% like constraints;
-) 25% like and 25% dislike constraints; -) 50% like con­
straints; -) 50% like and 50% dislike constraints. For each
problem size, we have randomly generated 10 instances for
each class above.

For Seating we use the DLP-4 encoding reported in Sec­
tion 3; all encodings and benchmark data are also avail­
able on the web at h t t p : / / w w w . d l v s y s t e m . c o m /
e x a m p l e s / i j c a i 0 3 . z i p .

Figure 1: Experimental Results for Timetabling

7Beyond these maxima there is trivially no solution.

Figure 2: Experimental Results for Seating

We ran the benchmarks on AMD Athlon 1.2 machines with
512MB of memory, using FreeBSD 4.7 and GCC 2.95. We
have allowed a maximum running time of 1800 seconds per
instance and a maximum memory usage of 256MB. Cumu­
lated results are provided in Figures 1 and 2. In particular, for
Timetabling we report the execution time and the size of the
residual ground instantiation (the total number of atoms oc­
curring in the instantiation, where multiple occurrences of the
same atom are counted).8 For Seating, the execution time is
the average running time over the instances of the same size.
A "-" symbol in the tables indicates that the corresponding
instance (some of the instances of that size, for Seating) was
not solved within the allowed time and memory limits.

On both problems, DLV-4 clearly outperforms DLV. On
Timetabling, the execution time of DLV-4 is one order of
magnitude lower than that of DLV on all problem instances,
and DLV could not solve the last instances within the allowed
memory and time limits. On Seating, the difference becomes
even more significant. DLV could solve only the instances
of small size (up to 16 persons - 4 tables, 4 seats); while
DLV-4 could solve significantly larger instances in a reason­
able time. The information about the instantiation sizes pro­
vides an explanation for such a big difference between the
execution times of DLV and DLV*4. Thanks to the aggre­
gates, the DL?A encodings of Timetabling and Seating are
more succinct than the corresponding encodings in standard
DLP; this succinctness is also reflected in the ground instan­
tiations of the programs. Since the evaluation algorithms are
then exponential (in the worst case) in the size of the instan­
tiation, the execution times of DLV-4 turn out to be much
shorter than the execution times of DLV.

7 Related Works
Aggregate functions in logic programming languages ap­
peared already in the 80s, when their need emerged in de­
ductive databases like LDL [Chimenti et al, 1990] and were
studied in detail, cf. [Ross and Sagiv, 1997; Kemp and Ra-
mamohanarao, 1998]. However, the first implementation in
Answer Set Programming, based on the Smodels system, is
recent [Simons et ai, 2002].

Comparing DLP-4 to the language of Smodels, we observe
a strong similarity between cardinality constraints there and

count. Also sum and weight constraints in Smodels are
8 Note that also atoms occurring in the sets of the aggregates are

counted for the instantiation size.

NONMONOTONIC REASONING 851

http://www.dlvsystem.com/

similar in spirit. Indeed, the DLpA encodings of both Team
Building and Seating can be easily translated to Smodels' lan-
guage. However, there are some relevant differences. For
instance, in DLP*4 aggregate atoms can be negated, while
cardinality and weight constraint literals in Smodels cannot.
Smodels, on the other hand, allows for weight constraints in
the heads of rules, while DLP"4 aggregates cannot occur in
heads. (The presence of weight constraints in heads is a pow­
erful KR feature; however, it causes the loss of some seman­
tic property of nonmonotonic languages [Marek and Rem-
mel, 2002].) Observe also that DLP*4 aggregates like min,

max, and t imes do not have a counterpart in Smodels.
Moreover, DLP-4 provides a general framework where fur­
ther aggregates can be easily accommodated (e.g., any and

avg are already under development). Furthermore, note
that symbolic sets of DLP*4 directly represent pure (math­
ematical) sets, and can also represent multisets rather nat­
urally (see the discussion on Team Building in Section 3).
Smodels weight constraints, instead, work on multisets, and
additional rules are needed to encode pure sets; for instance.
Condition p>2 of Team Building cannot be encoded directly
in a constraint, but needs the definition of an extra predicate.
A positive aspect of Smodels is that, thanks to stricter safety
conditions (all variables are to be restricted by domain pred­
icates), it is able to deal with recursion through aggregates,
which is forbidden in DLP^ . Finally, note that DLP-4 deals
with sets of terms, while Smodels deals with sets of atoms.
As far as the implementation is concerned, also Smodels is
endowed with advanced pruning operators for weight con­
straints, which are efficiently implemented; we are not aware,
though, of techniques for the automatic recognition of dupli­
cate sets in Smodels.

DLP-4 also seems to be very similar to a special case of the
semantics for aggregates discussed in [Gelfond, 2002], which
we are currently investigating.

Another interesting research line uses 4-valued logics and
approximating operators to define the semantics of aggregate
functions in logic-based languages [Denecker et aL, 2001;
2002; Pelov, 2002]. These approaches are founded on very
solid theoretical grounds, and appear very promising, as they
could provide a clean formalization of a very general frame-
work for arbitrary aggregates in logic programming and non­
monotonic reasoning, where aggregate atoms can also "pro­
duce" new values (currently, in both DLP-4 and Smodels the
guards of the aggregates need to be bound to some value).
However, these approaches sometimes amount to a higher
computational complexity [Pelov, 2002], and there is no im­
plementation available so far.

8 Conclusion
We have proposed DLP-4, an extension of DLP by aggregate
functions, and have implemented DLP*4 in the DLV system.
On the one hand, we have demonstrated that the aggregate
functions increase the knowledge modeling power of DLP,
supporting a more natural and concise knowledge represen­
tation. On the other hand, we have shown that aggregate
functions do not increase the complexity of the main rea­
soning tasks. Moreover, the experiments have confirmed that

the succinctness of the encodings employing aggregates has
a strong positive impact on the efficiency of the computation.

Future work wil l concern the introduction of further aggre­
gate operators, the relaxation of the syntactic restrictions of
DLP A , and the design of further optimization techniques and
heuristics to improve the efficiency of the computation.

We thank the anonymous reviewers for their thoughtful
comments and suggestions for improvements of this paper.

References
[Chimenti et al, 1990] D. Chimcnti, R. Gamboa, R. Krishna-

murthy, S. Naqvi, S. Tsur, and C. Zaniolo. The LDL System
Prototype. IEEE TKDE, 2(1), 1990.

[DeirArmie/a/.,2003] T. Dell'Armi, W. Faber, G. Ielpa,
N. Leone, and G. Pfeifer. Semantics and Computation of Ag­
gregate Functions in Disjunctive Logic Programming. Technical
Report INFSYS RR-1843-03-07, TU Wien, April 2003.

[Denecker etal, 2001] M. Denecker, N. Pelov, and
M. Bruynooghe. Well-Founded and Stable Model Seman­
tics for Logic Programs with Aggregates. ICLP-2001, pp.
212-226. Springer, 2001.

[Denecker et aL, 2002] M. Denecker, V. Marek, and
M. Truszczynski. Ultimate Approximations in Monotonic
Knowledge Representation Systems. KR-2002, pp. 177-188.

[Dowling and Gallier, 1984] W. F. Dowling and J. H. Gallicr.
Linear-time Algorithms for Testing the Satisfability of Proposi-
tional Horn Formulae. JLP, 3:267-284, 1984.

[Eiter et al., 2000] T. Eiter, W. Faber, N. Leone, and G. Pfeifer.
Declarative Problem-Solving Using the DLV System. Logic-
Based Artificial Intelligence, pp. 79-103. Kluwer, 2000.

[Faber et al, 1999a] W. Faber, N. Leone, C. Mateis, and G. Pfeifer.
Using Database Optimization Techniques for Nonmonotonic
Reasoning. DDLP '99, pp. 135-139.

[Faber etal, 1999b] W. Faber, N. Leone, and G. Pfeifer. Pushing
Goal Derivation in DLP Computations. LPNMR'99, pp. 177-
191. Springer.

[Gelfond and Lifschitz, 1991] M. Gelfond and V. Lifschitz. Classi­
cal Negation in Logic Programs and Disjunctive Databases. New
Generation Computing, 9:365-385, 1991.

[Gelfond, 2002] M. Gelfond. Representing Knowledge in A-
Prolog. Computational Logic. Logic Programming and Beyond,
number 2408 in LNCS, pp. 413-451. Springer, 2002.

[Kemp and Ramamohanarao, 1998] D. B. Kemp and K. Ramamo-
hanarao. Effi cient Recursive Aggregation and Negation in De­
ductive Databases. IEEE TKDE, 10:727-745, 1998.

[Leone et aL, 2001] N. Leone, S. Perri, and F. Scarcello. Improving
ASP Instantiators by Join-Ordering Methods. LPNMR '01, LNAI
2173. Springer, September 2001.

[Marek and Remmel, 2002] V.W. Marek and J.B. Remmel. On
Logic Programs with Cardinality Constraints. NMR '2002, pp.
219-228, April 2002.

[Marek and Truszczynski, 1991] V.W. Marek and M. Truszczynski.
Autoepistemic Logic. JACM, 38(3):588-619, 1991.

[Pelov, 2002] N. Pelov. Non-monotone Semantics for Logic Pro­
grams with Aggregates, h t t p : / /www. cs . ku leuven. ac.
be/~pelov/papers /nma.ps .gz.,October 2002.

[Ross and Sagiv, 1997] K. A. Ross and Y. Sagiv. Monotonic Aggre­
gation in Deductive Databases. Journal of Computer and System
Sciences, 54(l):79-97, February 1997.

[Simons etal, 2002] P. Simons, I. Niemela, and T. Soininen. Ex­
tending and Implementing the Stable Model Semantics. Artificial
Intelligence, 138:181-234, June 2002.

852 NONMONOTONIC REASONING

