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Abstract 
The structural rigidity property, a generalization 
of Laman's theorem which characterizes rigid bar 
frameworks in 2D, is generally considered a good 
approximation of rigidity in geometric constraint 
satisfaction problems (GCSPs). However, it may 
fail even on simple GCSPs because it does not take 
geometric properties into account. 
In this paper, we question the flow-based algorithm 
used by Hoffmann et ai to identify rigid subGC-
SPs. We show that this algorithm may fail because 
of the structural rigidity, but also by design. We in-
troduce a new flow-based algorithm which uses Jer­
mann et al.'S characterization of rigidity. We show 
that this algorithm is correct in 2D and 3D, and can 
be used to tackle the major issues related to rigid­
ity: deciding whether a GCSP is rigid or not and 
identifying rigid (or over-rigid) subGCSPs. 
Keywords: Geometric Constraints, Rigidity char­
acterization, Flow algorithms 

1 Introduction 
Geometric constraint satisfaction problems (GCSPs) arise 
naturally in several areas, such as CAD, robotics and molec­
ular biology. The rigidity concept is in the heart of many of 
these problems: deciding whether a GCSP is rigid or not, de­
tecting rigid or over-rigid sub-parts, and so on. 

Several methods [Kramer, 1992; Bouma et ai, 1995; 
Dufourd et ai, 1998; Lamure and Michelucci, 1998; Hoff­
mann et ai, 2000; Jermann et ai, 2000; Jermann, 2002] for 
solving GCSPs have to deal with rigidity; e.g., geometric 
decompositions produce sequences of rigid subGCSPs to be 
solved separately and then assembled. 

The techniques used for rigidity detection can be classi­
fied in two categories: pattern-based approaches [Bouma et 
al, 1995; Kramer, 1992] depend on a repertoire of rigid 
bodies of known shape which cannot cover all practical 
instances; flow-based approaches [Hoffmann et ai, 1997; 
Lamure and Michelucci, 1998] use flow (or maximum match­
ing) machinery to identify subGCSPs verifying the structural 
rigidity, a property based on a degree of freedom count. 

The latter approaches are more general eventhough struc­
tural rigidity is only an approximation of rigidity. Heuristics, 

like ad-hoc geometric rules, have been proposed to enhance 
structural rigidity capabilities, none of which succeeded to 
cover the gap between structural rigidity and rigidity. In [Jer­
mann et al, 2002], we have defined the extended structural 
rigidity, a new approximation of rigidity which supersedes 
even the heuristically enhanced characterizations. 

In this paper, we focus on the algorithmic aspects of the 
structural characterization of rigidity. [Hoffmann et ai, 1997] 
have proposed a flow-based algorithm called Dense for this 
purpose. After providing the necessary background (Sec­
tion 2), we exemplify the limits of this algorithm and the ca­
pabilities of our new algorithm (Section 3). Section 4 presents 
the specificities of our new algorithm and explains its advan­
tages: it uses the extended structural rigidity instead of the 
structural rigidity and it is designed in a geometrically cor­
rect way. To conclude, we explain how this algorithm can be 
used to tackle the major issues related to rigidity. 

2 Background 
This section provides the necessary background for the pa­
per. It formally defines GCSPs, the rigidity concept and the 
structural characterizations of rigidity. 

Fig. 1-a presents a GCSP in 2D composed of 3 lines con­
strained by 2 parallelisms and 2 line-line distances; Fig. 1-b 
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depicts a GCSP in 3D composed of 1 line and 5 points bound 
by 4 point-line incidences and 5 point-point distances. 

We assume that geometric objects are indeformable (e.g., 
no circle with variable radius). Also geometric constraints 
must involve only positions and orientations of the objects 
and they must be independent from the global reference sys­
tem (i.e., constraints only fix objects relatively one to an­
other). These limitations make the structural characteriza­
tions of rigidity easier and are mandatory for geometric solv­
ing methods based on rigidity. 

According to these restrictions, a solution to a GCSP S — 
( 0 , C) is composed of one position and orientation for each 
object in O and satisfies all the constraints in C. For the solv­
ing purpose, a GCSP is translated into a system of equations: 
each object is represented by a set of unknowns (over the re­
als) which determine its position and orientation; each con­
straint becomes a system of equations on the unknowns of 
the objects it constrains. 

2.2 Rigidity 
Rigidity is defined w.r.t. movements. A movement in a 
GCSP is either a deformation ( i f it does not preserve the 
relative positions of the objects) or a displacement (rota­
tion+ translation). Intuitively, a GCSP is rigid if it admits 
no deformation, and all the displacements of the geometric 
space. It is under-rigid if it admits some deformations, and 
over-rigid if it does not admit some displacements or has no 
solution. More formal definitions of rigidity can be found 
in[Whiteley, 1987]. 

In Fig. 1-b, the subGCSP CDF is rigid since a triangle is 
indeformable and admits all translations and rotations in 3D. 
The subGCSP AF is under-rigid: point F can move indepen­
dently of line A since there is no constraint between them. 
The subGCSP ACDEF is over-rigid since it has no solution: 
generically, it is impossible to place a point at the intersection 
of the 3 spheres (= 3 distance constraints) which centers are 
aligned. 

2.3 Structura l Rig id i ty 

The structural rigidity corresponds to an analysis of degrees 
of freedom (DOF) in a GCSP. Intuitively, one DOF represents 
one independent movement in a GCSP. More formally: 

2.4 Extended St ructura l Rig id i ty 
The extended structural rigidity (es__rigidity in short) is based 
on the degree of rigidity (DOR) concept. The DOR of a sub­
GCSP is the number of independent displacements it admits; 
it depends on the geometric properties it verifies. For exam­
ple, the DOR of two lines in 2D is 3 if they are not parallel, 2 
if they are parallel; the parallelism property can be an explicit 
constraint, but it can also be induced by the constraints of the 
GCSP embedding these lines. In this second case, computing 
the DOR may be equivalent to geometric theorem proving. 

The principle behind the extended structural rigidity is the 
following: a GCSP is rigid if all its movements are displace­
ments. Hence, comparing its DOF to its DOR allows us to 
determine if it admits movements (DOF) which arc not dis­
placements (DOR), i.e., deformations. 
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Structural rigidity is a generalization of Laman's theo­
rem [Laman, 1970], which characterizes generic rigidity of 
2D bar frameworks. It is based on the following intuition: if 
a GCSP admits less (resp. more) movements than the num­
ber of independent displacements in the considered geometric 

The es_rigidity is superior to the s_rigidity (e.g., 
es_rigidity exactly corresponds to rigidity on every subGC-
SPs in Fig. 1). See [Jermann et al., 2002] for a comparison 
between s_rigidity and es_rigidity and details about the DOR 
concept. 



Figure 2: Object-constraint networks and flow distributions 

3 Overview 
In this section, we exemplify the contribution presented in 
this paper on the GCSPs in Fig. 1. We illustrate the two main 
differences between algorithm Dense and our algorithm: 

1. In our algorithm, the overflow depends on the geometric 
properties of the objects it is applied to, while it depends 
only on the dimension of the geometric space in Dense. 

2. In our algorithm, the overflow is applied via a dedicated 
node R which can be attached to any subset of objects, 
while it is applied directly via one constraint-node in 
Dense. 

Example 1 
The first example (Fig. 1-a; in 2D) highlights the first differ­
ence. Fig. 2-a presents the object-constraint network associ­
ated to this GCSP. In this picture, one can see the overload 
A' = 3 applied on the first constraint by algorithm Dense. 
This constraint is linked to two lines, A and B, which are 
parallel and lie at prescribed distance in the plane; AB is a 
rigid subGCSP. However, one can easily see that the overload 
cannot be distributed completely since a capacity 5 (two con­
straints plus the overload) is applied to two lines having only 
4 DOFs. Hence, the GCSP is identified as over-rigid since it 
contains a sub-GCSP with less than 3 DOFs. 

Fig. 2-b displays our algorithm behavior when the virtual 
constraint R is linked to the same subGCSP, AB. The value 
of the overflow K is computed according to the geometric 

properties of these lines: since they are parallel, K = 2 (in­
stead of 3 in algorithm Dense). Thus, the flow can be satu­
rated: a capacity 4 (two constraints plus the overflow) exactly 
matches the 4 DOFs of AB; the GCSP is not identified over-
rigid by our algorithm. Further overflow applications would 
allow to identify the GCSP as well-rigid. 

Example 2 
The second example (Fig. 1-b; in 3D) illustrates the second 
difference. Its object-constraint network is depicted in Fig. 2-
d. This figure shows the application of an overflow 6 via the 
virtual constraint 7? onto the 3 points C, E and F by our algo­
rithm; the overflow cannot be distributed completely, which 
signals an over-rigid subGCSP: ACDEF, found by adding 
reachable objects from R in the residual graph. 

Algorithm Dense applies the overflow directly through a 
constraint-node. Since all constraints are binary in this exam­
ple, Dense cannot apply an overflow to the same set of ob­
jects as our algorithm. More generally, Dense cannot apply 
the overflow to all subGCSPs and can miss rigid or over-rigid 
ones. Moreover, applying the overflow 6 to a pair of objects 
in this GCSP leads to an incorrect answer, as it was the case 
in the previous example; e.g., segments which are rigid would 
be identified over-rigid. 

These examples show that some simple and very common 
subGCSPs in 2D and 3D, like parallel lines, triangles or seg­
ments, cannot be treated correctly by algorithm Dense1. 

In the following section, we detail the differences between 
algorithm Dense and our new algorithm and we present their 
consequences. 

4 Algorithms 
In this section, we present Hoffmann et al.'s Dense algo­
rithm in comparison to our new algorithm. Both use flow 
machinery on the object-constraint network representing the 
GCSP. Our algorithm has two main differences with algo­
rithm Dense: 

• It uses es_rigidity instead of s_rigidity. 

• It distributes flow in a geometrically correct way in the 
network. 

These new features are achieved thanks to two major mod­
ifications in the D i s t r i b u t e function used by Dense (sec 
beginning of Section 3). 

We introduce first the principle of flow-based character­
ization of rigidity; then we present and discuss function 
D i s t r i b u t e which is the key to our contribution. Finally 
we explain how this function is used to design algorithms for 
the main problems related to rigidity. 

4.1 Flow-based Rig id i ty Detection 
From the geometric point of view, the principle of structural 
characterization of rigidity is to check if a GCSP admits only 
displacements. Hence, flow-based rigidity identification can 
be understood as follows: 

'in practice [Sitharam, 2000], Dense embeds heuristic rules to 
prevent this kind of simple failures, but more complicated examples 
can still mistake the algorithm since no rule-based approach can han­
dle all the singular cases. 
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1. remove K displacements from the GCSP by introducing 
A' DOFs on the constraint side; 

2. check if an over-constrained subGCSP S' exists by 
computing a maximum flow in the overloaded object-
constraint network; 

3. if so A" verifies DOF(S')<K 

Indeed, a maximum flow in the object-constraint network 
represents an optimal distribution of the DOFs of the con­
straints among the DOFs of the objects. If it does not satu­
rate all the arcs outgoing from the source, some constraints' 
DOFs cannot be absorbed by the objects, i.e., the GCSP is 
over-constrained. In this case, there exists a subGCSP S' 
such that DOF(S")<0. When an overflow K is applied in 
the network on the constraint side, the identified subGCSP S' 
verifies DOF(S")<A'. [Hoffmann et al., 1997] have proven 
that S' is then induced by the objects traversed during the last 
search for an augmenting path, i.e., by the objects reachable 
from the overloaded constraint-node in the residual graph. 

4.2 Function D i s t r i b u t e 

Function D i s t r i b u t e [Hoffmann et al., 1997] implements 
the principle presented above. We present our version of this 
function and explain why and how it differs from Hoffmann 
et al. 's one. 

As already said, applying an overflow A corresponds, from 
the geometric point of view, to removing A' displacements 
from the objects linked to this constraint. But nothing ensures 
that the subGCSP linked to a single constraint allows A' inde­
pendent displacements: removing K DOFs from a subGCSP 
iS" with DOR(S')<K is geometrically incorrect2. 

For instance, consider a subGCSP composed of 2 points 
linked by a point-point distance in 3D. This GCSP allows 
only 5 of the 6 independent displacements (3 rotations * 
3 translations) of the 3D space since they lack the rotation 
around the line going through them. Therefore, removing 6 
displacements from a couple of points is geometrically in-
correct. However, Hoffmann et al.'s function D i s t r i b u t e 
does so when the distance constraint binding the two points 
in 3D is overloaded with A' = 6. 

In order to distribute the flow in a geometrically correct 
way, we propose to introduce a Active constraint R, having 
DOF(R.)=A'. This constraint can be linked only to subset of 
objects ()' allowing K independent displacements, i.e. induc­
ing a subGCSP S" having DOR(S")> K. K and S' are two 
parameters of our function D i s t r i b u t e . 

Function O v e r l o a d e d - N e t w o r k returns the object-
constraint network corresponding to S where the fictive con­
straint 7?, set with capacity A', is linked to the objects of S". 
The maximum flow computation is achieved by a standard 

2Remember that the DOR represents the number of independent 
displacements admitted by a subGCSP. 

flow algorithm3 like F o r d F u l k e r s o n [Ford and Fulkerson, 
1962]. This function returns the set V of objects reachable 
from the virtual constraint R in the residual graph if the max­
imum flow cannot distribute the whole overload, an empty 
set V otherwise. Function O b j e c t - I n d u c e d - s u b G C S P 
returns the subGCSP S" induced by V. S" verifies 
DOF(S")<A" or S" is empty. 

The two differences between our version of the 
D i s t r i b u t e function and Hoffmann et a/.'s version have 
already been mentioned: the use of a dedicated constraint for 
overflow distribution, which allows to distribute the overflow 
to any subset of objects; and the adaptation of the overflow to 
the set of objects on which it is applied, which renders over­
flow application geometrically correct. 

Example: The call to D i s t r i b u t e (S,3,dAB) (Hoff­
mann et a/.'s version) for the GCSP in Fig. 1-a is presented 
in Fig. 2-a. Since the overflow cannot be fully distributed, the 
subGCSP AB is returned. This is correct from the flow point 
of view since DOF(AB)=2 is less than A' = 3. However, 
from the geometric point of view, it is incorrect to interpret 
this result as an over-rigidity in the GCSP. 

For the same subGCSP, our D i s t r i b u t e function 
is called differently: since DOR(,4S)=2, the overflow 
can be at most 2. Fig. 2-b presents the call to 
D i s t r i b u t e [S, 2, AB). The overflow can be distributed 
fully: no subGCSP is returned. Further similar calls would 
allow to conclude that this GCSP is not over-rigid. 

Time Complexity: The complexity of our func­
tion D i s t r i b u t e is dominated by that of function 
F o r d F u l k e r s o n ; it is 0(n2(n + m)) where n is the 
number of nodes and m the number of arcs. It is strictly 
equivalent to the complexity of Hoffmann et al.'s version. 

Note that if several calls to this function are performed, 
it could be modified to compute maximum flow in an 
incremental way, yielding a better complexity. 

4.3 A lgor i thms For Rig id i ty Detection 

Based on the D i s t r i b u t e function, several algorithms can 
be designed to tackle the major problems related to the rigid­
ity concept. [Hoffmann et al., 1997] have proposed the 
Dense and M i n i m a l _ D e n s e algorithms to identify a well 

3In [Hoffmann et al., 1997], function D i s t r i b u t e is specifi­
cally designed for binary constraints and flow distribution is merged 
with network construction and subGCSP identification. 
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or over-rigid subGCSP and minimize it (using a classical lin­
ear minimization process). These algorithms can be repro­
duced using our function D i s t r i b u t e . This allows us to 
tackle the same problems in a geometrically correct manner 
and with a better characterization of rigidity: the extended 
structural rigidity. We wil l show on algorithm Dense how to 
introduce our D i s t r i b u t e function in existing algorithms. 

A lgo r i thm D e n s e Versus A lgo r i t hm O v e r - R i g i d 
Schematically, algorithm Dense operates by calling the 
D i s t r i b u t e function for each constraint in the GCSP until 
a non-empty subGCSP is returned. The overload is induced 
by the dimension of the considered geometric space: it rep­
resents the maximum number of independent displacements 
in this space (3 in 2D, 6 in 3D). Dense is supposed to re­
turn only over-rigid subGCSPs since returned GCSPs do not 
admit all the displacements allowed by the considered geo­
metric space. 

In fact, Dense is incorrect since it may remove more 
DOFs than the number of displacements admitted by a sub­
GCSP. For instance, two parallel lines admit only 2 displace­
ments in 2D; hence, removing 3 displacements from two par­
allel lines is geometrically incorrect in 2D. 

To obtain a geometrically correct version of algorithm 
Dense, we propose to use the es_rigidity instead of the 
s_rigidity, i.e. the DOR is the overload; also, we use our 
D i s t r i b u t e function instead of Hoffmann et al 's one. 

This results in a new algorithm, called 
O v e r - R i g i d which performs one call to function 
D i s t r i b u t e (S, DOR (S') ,S')) for each S' C S to iden­
tify over-es_rigid subGCSPs. Indeed, if the call for a given S' 
returns a non-empty subGCSP S"\ then it verifies DOF(S") 
< DOR(5'), a sufficient condition for being over-es_rigid 
(see Def. 4). Unfortunately, the number of subGCSPs is 
exponential, which would lead to an exponential number of 
calls to function D i s t r i b u t e . However, we will show that 
it is sufficient and correct to apply this function only to the 
DOR-minimal subGCSPs (see Def. 6 below), which gives the 
following algorithm: 

subGCSPs generated by DOR-Min ima ls ( 5 ) . Algorithm 
O v e r - R i g i d then proceeds as follows: 

1. First turn, S' = BC and K =DOR(/?C)=5. Fig. 2(c) 
represents the call to D i s t r i b u t e ( S , 5 , 5 0 ) . Al l the 
arcs outgoing from the source being saturated, no over-
cs_rigid subGCSP is identified. 

2. At this turn, S' = CEF and K =DOR(CEF)--6. The 
call to D i s t r i b u t e (S,6,CEF) is represented in fig­
ure 2(d). This turn, the arc S --> R is unsaturated. Since 
the set of object-nodes traversed during the last search 
for an augmenting path is {A, C, D, E, F), the identi­
fied subGCSP is ACDEF which is over-es_rigid. 

On the same example, algorithm Dense would identify 
each segment (2 points + 1 distance) and each point on the 
line A as an over-rigid subGCSP, which is false. 

Properties o f a lgor i thm O v e r - R i g i d 

To prove the correctness and completeness of algorithm 
O v e r - R i g i d , we need the following lemmas which estab­
lish properties on the DOR concept and on flow distribution: 

Lemma 1 Let S he a GCSP and S' C S" C S two subGC-
SPs. Then DOR(S') < DOR(S"). 

Proof: Each unit of DOR in a GCSP represents an indepen­
dent displacement (translation or rotation). Adding a new 
object o with some constraints to a subGCSP Sf cannot re­
move the independent displacements already granted to S' 
since constraints are independent from the global reference 
system. Thus, DOR(S') < DOR(S' U {o}).U 

Proof: Let G$> be the object-constraint network overloaded 
for S" and Gs" the network overloaded for S". The only 
difference between these two networks resides in the fact that 
there are more arcs of the type R —* o in Gs' • Thus, it is 
more difficult to distribute an overflow in Gs" than in Gs,m. if 
a maximum flow in Gs' cannot saturate all the arcs outgoing 
from the source, a maximum flow in GS" cannot either.U 

We wil l now prove the completeness, correctness and dis­
cuss the time complexity of our algorithm. 
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Completeness of O v e r - R i g i d : 
Algorithm O v e r - R i g i d applies an overload only for 

each element in the set M of all DOR-minimal subGCSPs 
(computed by DOR-Min ima ls ( 5 ) ) . Lemma 2 ensures that 
if is sufficient to distribute an overload for each DOR-minimal 
subGCSP, since any non DOR-minimal subGCSP contains, 
by definition, DOR-minimal subGCSPs.D 

Time Complexity of O v e r - R i g i d : 
The complexity of algorithm O v e r - R i g i d depends on 

the number of DOR-minimal subGCSPs. We have proven by 
enumeration that the number of objects in a DOR-minimal 
subGCSP is 2 in 2D and 3 in 3D for GCSPs including points, 
lines and planes constrained by distances, angles, incidences 
and parallelisms. Thus, for GCSPs in this class, the number 
of DOR-minimal subGCSPs is where n is the number 
of objects and d the dimension of the geometric space (2 or 
3). 

Let us call the complexity of function 
DOR-Min ima ls , and that of function D i s t r i b u t e , 
discussed in the previous section. Then, the worst-case 
complexity of algorithm 

C1 is generally the complexity of geometric theorem prov­
ing, i.e., it is exponential. However, in some practical classes 
of GCSPs, like mechanisms or bar frameworks, it is polyno­
mial or even constant. Moreover, heuristic DOR computation 
can be used when geometric theorem proving is required but 
not affordable. In these cases, C\ can be neglected in com­
parison to C2. We end up with In com­
parison, the complexity of algorithm Dense is 0(m * n2 * 
(n + m)). Thus, the overhead to obtain a geometrically cor­
rect algorithm is approximately linear in 2D, and quadratic in 
3D. 

4.4 Other algorithms 
Function D i s t r i b u t e can be used in a similar way to 
tackle the major problems related to rigidity: identifying rigid 
subGCSPs (just by changing the value of the overflow in al­
gorithm O v e r - R i g i d ) , deciding if a GCSP is rigid (by one 
call to Over-Rigid and a DOF count), finding a minimal well-
or over-rigid subGCSP (by classical minimization step, as in 
Minimal__Dense). For all these problems, using our new 
algorithms and the es_rigidity instead of the s_rigidity leads 
to geometrically correct and more reliable algorithms. 

4.5 Conclusion 

The new design of function D i s t r i b u t e allows a more 
general use of this function: the flow distribution is now 
performed in a geometrically sound manner and allows for 
checking a better characterization of rigidity. The DOR-
minimal concept and its properties have appeared to be the 
key to obtain a new family of polynomial algorithms for the 
major problems related to rigidity. 

These new algorithms can handle GCSPs in 2D and 3D 
correctly with respect to the es_rigidity. They can handle GC­
SPs with constraints like parallelism or incidence, which was 
not possible with Hoffmann et al. 's algorithms. Indeed, these 
constraints introduce geometric properties in GCSPs, leading 

to subGCSPs with a DOR different from the number of in­
dependent displacements in d-space. This kind of constraints 
are ubiquitous in practical applications (architecture, CAD, 
mechanisms) and our new algorithms open a way for reliable 
industrial use in these domains. 
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