No	Co-authors	Article title	Keywords	Vol., No., pp.	DOI	Citation
1	Rechach, A., Ghoudelbourk, S., Aoulmi, Z., Djalel, D.	Smart Controls for Switched Reluctance Motor 8/6 Used for Electric Vehicles Underground Mining Security	direct torque control, artificial neural network controller, fractional order controller, switched reluctance motor, electrical vehicle, underground mines security	23, 6, 423-432	https://doi.org/10.18280/ejee.230601	Rechach, A., Ghoudelbourk, S., Aoulmi, Z., Djalel, D. (2021). Smart controls for switched reluctance motor 8/6 used for electric vehicles underground mining security. European Journal of Electrical Engineering, Vol. 23, No. 6, pp. 423-432. https://doi.org/10.18280/ejee.230601
2	Rahmoune, M., Chettih, S.	Forecasting of Electricity Demand by Hybrid ANN-PSO under Shadow of the COVID-19 Pandemic	particle swarm optimization, artificial neural network, short term load forecasting, COVID-19	23, 6, 433-438	https://doi.org/10.18280/ejee.230602	Rahmoune, M., Chettih, S. (2021). Forecasting of electricity demand by hybrid ANN-PSO under shadow of the COVID-19 pandemic. European Journal of Electrical Engineering, Vol. 23, No. 6, pp. 433-438. https://doi.org/10.18280/ejee.230602
3	Nesser, M., Maloberti, O., Salloum, E., Dupuy, J., Fortin, J.	Influence of a Laser Irradiation and Laser Scribing on Magnetic Properties of GO Silicon Steels Sheets Using a Nanosecond Fiber Laser	coercive field, grain-oriented, irradiation, laser scribing, magnetization properties, silicon steels	23, 6, 439-444	https://doi.org/10.18280/ejee.230603	Nesser, M., Maloberti, O., Salloum, E., Dupuy, J., Fortin, J. (2021). Influence of a laser irradiation and laser scribing on magnetic properties of GO silicon steels sheets using a nanosecond fiber laser. European Journal of Electrical Engineering, Vol. 23, No. 6, pp. 439-444. https://doi.org/10.18280/ejee.230603
4	Mini, Y., Nguyen, N.K., Semail, E.	Sensorless Control for Non-Sinusoidal Five-Phase Interior PMSM Based on Sliding Mode Observer	back-EMF observer, electrical integrated drive, five-phase interior permanent magnet synchronous machine, sensorless control, sliding mode observer	23, 6, 445-454	https://doi.org/10.18280/ejee.230604	Mini, Y., Nguyen, N.K., Semail, E. (2021). Sensorless control for non-simusoidal five-phase interior PMSM based on sliding mode observer. European Journal of Electrical Engineering, Vol. 23, No. 6, pp. 445-454. https://doi.org/10.18280/ejee.230604
5	Margot, G.L., Corinne, A., Bruno, J.	Identification of ESS Degradations Related to Their Uses in Micro-Grids: Application to a Building Lighting Network with VRLA Batteries	battery ageing mechanisms, cycle lifetime, charge protocol, energy storage, Lead-acid battery, micro-grid, PV, VRLA batteries	23, 6, 455-466	https://doi.org/10.18280/ejee.230605	Margot, G.L., Corinne, A., Bruno, J. (2021). Identification of ESS degradations related to their uses in micro-grids: Application to a building lighting network with VRLA batteries. European Journal of Electrical Engineering, Vol. 23, No. 6, pp. 455-466. https://doi.org/10.18280/ejee.230605
6	Azzoug, Y., Pusca, R., Sahraoui, M., Ammar, A., Ameid, T., Romary, R, Cardoso, A.J.M.	An Active Fault-Tolerant Control Strategy for Current Sensors Failure for Induction Motor Drives Using a Single Observer for Currents Estimation and Axes Transformation	direct torque control, fault-tolerant control, fault detection, induction motor drive, current estimation	23, 6, 467-474	https://doi.org/10.18280/ejee.230606	Azzoug, Y., Pusca, R., Sahraoui, M., Ammar, A., Ameid, T., Romary, R., Cardoso, A.J.M. (2021). An active fault-tolerant control strategy for current sensors failure for induction motor drives using a single observer for currents estimation and axes transformation. European Journal of Electrical Engineering, Vol. 23, No. 6, pp. 467-474. https://doi.org/10.18280/ejee.230606
7	Amor, Y.A., Didier, G., Hamoudi, F.	Protection of MTDC Network Using a Resistive Type Superconducting Fault Current Limiter	five terminal MTDC, resistive type SFCL, hybrid DC circuit breaker, DC fault, transient stability	23, 6, 475-480	https://doi.org/10.18280/ejee.230607	Amor, Y.A., Didier, G., Hamoudi, F. (2021). Protection of MTDC network using a resistive type superconducting fault current limiter. European Journal of Electrical Engineering, Vol. 23, No. 6, pp. 475-480. https://doi.org/10.18280/ejee.230607
8	Darques, K., Tounzi, A., Benabou, A., Shihab, S., Korecki, J., Boughanmi, W., Laloy, D.	Iron Loss Quantification in the Aim of the Estimation of Eddy Currents in Clamping Devices	iron losses, eddy currents, finite element method, end effects	23, 6, 481-486	https://doi.org/10.18280/ejee.230608	Darques, K., Tounzi, A., Benabou, A., Shihab, S., Korecki, J., Boughanmi, W., Laloy, D. (2021). Iron loss quantification in the aim of the estimation of eddy currents in clamping devices. European Journal of Electrical Engineering, Vol. 23, No. 6, pp. 481-486. https://doi.org/10.18280/ejee.230608
9	Harrabi, N., De Almeida, J.S., Laboudi, K.	Controller Design Approach for SVPWM- Regulated AC/DC Rectifier	SVPWM control, AC/DC converter, rectifier, decoupling control, three phase system	23, 5, 353-360	https://doi.org/10.18280/ejee.230501	Harrabi, N., De Almeida, J.S., Laboudi, K. (2021). Controller design approach for SVPWM-regulated AC/DC rectifier. European Journal of Electrical Engineering, Vol. 23, No. 5, pp. 353-360. https://doi.org/10.18280/ejee.230501
10	Mekki, M., Boulouiha, H.M., Allali, A., Denai, M.	Impact of the Integration of a STATCOM Controlled by LQG/H2 Regulator in an Energy System	LQG/H2 control, NPC inverter, power quality, reactive power, SVPWM, STATCOM, Three-level, THD	23, 5, 361-370	https://doi.org/10.18280/ejee.230502	Mekki, M., Boulouiha, H.M., Allali, A., Denai, M. (2021). Impact of the integration of a STATCOM controlled by LQG/H2 regulator in an energy system. European Journal of Electrical Engineering. Vol. 23, No. 5, pp. 361-370. https://doi.org/10.18280/ejee.230502
11	Attachie, J.C., Amuzuvi, C.K., Diamenu, G.	Stochastic Modelling and Stability Analysis of Large-Scale Wind Power Generation System with Dynamic Loads	chapman-kolmogorov equation, eigenvalue, master equation, stability, stochastic, transition rate, variable renewable energy	23, 5, 371-380	https://doi.org/10.18280/ejee.230503	Attachie, J.C., Amuzuvi, C.K., Diamenu, G. (2021). Stochastic modelling and stability analysis of large-scale wind power generation system with dynamic loads. European Journal of Electrical Engineering, Vol. 23, No. 5, pp. 371-380. https://doi.org/10.18280/ejee.230503
12	Ibrahim, K.H., Korany, N.R., Saleh, S.M.	Effects of VA Rating on the Fault Diagnosis of Power Transformer Using SFRA Test	SFRA, statistical parameters, VA rating, fault diagnosis, features	23, 5, 381-389	https://doi.org/10.18280/ejee.230504	Brahim, K.H., Korany, N.R., Saleh, S.M. (2021). Effects of VA rating on the fault diagnosis of power transformer using SFRA test. European Journal of Electrical Engineering, Vol. 23, No. 5, pp. 381-389. https://doi.org/10.18280/ejee.230504
13	Hadjira, A., Khalissa, B., Ziyad, B., Nadjat, Z.	MPPT for Photovoltaic System Using Adaptive Fuzzy Backstepping Sliding Mode Control	backstepping sliding mode control, adaptive fuzzy control, Lyapunov stability, MPPT, photovoltaic system, DC-DC converter	23, 5, 391-399	https://doi.org/10.18280/ejee.230505	Hadjira, A., Khalissa, B., Ziyad, B., Nadjat, Z. (2021). MPPT for photovoltaic system using adaptive fuzzy backstepping sliding mode control. European Journal of Electrical Engineering, Vol. 23, No. 5, pp. 391-399. https://doi.org/10.18280/ejee.230505
14	Yadav, M.P., Sujatha, P., Kumar, P.B.	Power Quality Improvement Using Dynamic Voltage Restorer on Grid- Connected Wind Energy System	renewable energy balanced faults, transient stability, dynamic voltage restorer (DVR), wind generator, power quality, space vector pulse with modulation	23, 5, 401-407	https://doi.org/10.18280/ejee.230506	Yadav, M.P., Sujatha, P., Kumar, P.B. (2021). Power quality improvement using dynamic voltage restorer on grid-connected wind energy system. European Journal of Electrical Engineering, Vol. 23, No. 5, pp. 401-407. https://doi.org/10.18280/ejee.230506
15	Arbi, I.B., Allag, A.	Sensorless Direct Torque Control of PMSM Based on Fuzzy Sliding Mode Control with Full Order Sliding Mode Observer	PMSM, DTC, attractiveness condition, Fuzzy Sliding Mode Controller (FSMC), Full Order Sliding Mode Observer (FOSMO), DTC-FSMC	23, 5, 409-415	https://doi.org/10.18280/ejee.230507	Arbi, I.B., Allag, A. (2021). Sensorless Direct Torque Control of PMSM based on Fuzzy Sliding Mode Control with Full Order Sliding Mode Observer: European Journal of Electrical Engineering, Vol. 23, No. 5, pp. 409-415. https://doi.org/10.18280/ejee.230507
16	Mohmmedali, A.F.G., Hamouda, M., Touhami, G.	Dynamic Impact Analysis of Integrating a 6 MW Solar Photovoltaic Power Plant into Medium Voltage Distribution Network	PV plant, dynamic analysis, PV integration, distribution network, Etap	23, 5, 417-422	https://doi.org/10.18280/ejee.230508	Mohmmedali, A.F.G., Hamouda, M., Touhami, G. (2021). Dynamic impact analysis of integrating a 6 MW solar photovoltaic power plant into medium voltage distribution network. European Journal of Electrical Engineering. Vol. 23, No. 5, pp. 417-422. https://doi.org/10.18280/ejee.230508
17	Carrillo-Santos, L.M., Ponce-Silva, M., Reyes-Severiano, Y., Cortés-García, C.	Implementation of the Three-Phase Inverter of Medium Power for Applications in Photovoltaic Pumping Systems Avoiding Oversizing	modulation technique, switching signals, starting current, induction motor operation mode, photovoltaic system, inverter	23, 4, 281-288	https://doi.org/10.18280/ejee.230401	Carrillo-Santos, L.M., Ponce-Silva, M., Reyes-Severiano, Y., Corté s-Garcia, C. (2021). Implementation of the three-phase inverter of medium power for applications in photovoltaic pumping systems avoiding oversizing. European Journal of Electrical Engineering. Vol. 23, No. 4, pp. 281-288. https://doi.org/10.18280/ejee.230401
18	Meriouma, T., Bessedik, S.A., Djekidel, R.	Modelling of Electric and Magnetic Field Induction under Overhead Power Line Using Improved Simulation Techniques	charge simulation method (CSM), current simulation technique (CST), electric field, magnetic induction, krill herd algorithm (KH), grasshopper optimization algorithm (GOA), COMSOL Multiphysics 4.3b	23, 4, 289-300	https://doi.org/10.18280/ejee.230402	Meriouma, T., Bessedik, S.A., Djekidel, R. (2021). Modelling of electric and magnetic field induction under overhead power line using improved simulation techniques. European Journal of Electrical Engineering, Vol. 23, No. 4, pp. 289-300. https://doi.org/10.18280/ejee.230402

19	Djelamda, I., Bouchareb, I., Lebaroud, A.	High Performance Hybrid FOC-Fuzzy-PI Controller for PMSM Drives	electric vehicle, permanent magnet synchronous motor (PMSM), field- oriented control (FOC), Fuzzy-PI controller	23, 4, 301-310	https://doi.org/10.18280/ejee.230403	Djelamda, L, Bouchareb, I, Lebaroud, A. (2021). High performance hybrid FOC-fuzzy-Pl controller for PMSM drives. European Journal of Electrical Engineering, Vol. 23, No. 4, pp. 301-310. https://doi.org/10.18280/ejee.230403
20	Donfack, C.K., Kom, C.H., Mandeng, J.J., Paune, F.	Design of a New Duty Cycle Modulation to Improve the Energy Quality of an Insulated Production System	three-phase inverter; PWM, DCM, harmonic distortions, symmetrical components, Park and Fortescue transformations	23, 4, 311-319	https://doi.org/10.18280/ejee.230404	Donfack, C.K., Korn, C.H., Mandeng, J.J., Paune, F. (2021). Design of a new duty cycle modulation to improve the energy quality of an insulated production system. European Journal of Electrical Engineering, Vol. 23, No. 4, pp. 311-319. https://doi.org/10.18280/eje.230404
21	Dastgeer, F., Gelani, H.E., Akram, M., Shabbir, Z.	Animate Prime Movers: A Prototype Based Methodology for Estimation of Renewable Power Production	animate prime mover, animal power, exercise energy generation, renewable energy, distributed generation	23, 4, 321-326	https://doi.org/10.18280/ejee.230405	Dastgeer, F., Gelani, H.E., Akram, M., Shabbir, Z. (2021). Animate prime movers: A prototype based methodology for estimation of renewable power production. European Journal of Electrical Engineering, Vol. 23, No. 4, pp. 321-326. https://doi.org/10.18280/ejee.230405
22	Li, Z., Wei, W.J., Wu, X.C., Liu, Y., Yu, J.B.	Running Status Diagnosis of S700K Turnout Based on VMD-KPCA and Fuzzy Clustering	railway engineering, running state diagnosis of \$700K turnout, variational mode decomposition, kernel principal component analysis, fuzzy cluster analysis	23, 4, 327-335	https://doi.org/10.18280/ejee.230406	Li, Z., Wei, W.J., Wu, X.C., Liu, Y., Yu, J.B. (2021). Running status diagnosis of \$700K turnout based on VMD-KPCA and fuzzy clustering. European Journal of Electrical Engineering. Vol. 23, No. 4, pp. 327-335. https://doi.org/10.18280/ejee.230406
23	Ghania, O., Hamza, H., Abderzak, G., Samir, B.	Frequency Response Analysis Technique of Short Circuit Faults Detection in Photovoltaic Single-Phase Inverter Experimental Study	short-circuit fault, single-phase inverter, frequency response analysis FRA, inverter HF model	23, 4, 337-343	https://doi.org/10.18280/ejee.230407	Ghania, O., Hamza, H., Abderzak, G., Samir, B. (2021). Frequency response analysis technique of short circuit faults detection in photovoltaic single-phase inverter experimental study. European Journal of Electrical Engineering, Vol. 23, No. 4, pp. 337-343. https://doi.org/10.18280/ejec.230407
24	Benheniche, A., Berrezzek, F.	Integral Backstepping Control of Induction Machine	induction motor, nonlinear control technique, integral backstepping control, flux estimator, Lyapunov stability	23, 4, 345-351	https://doi.org/10.18280/ejee.230408	Benheniche, A., Berrezzek, F. (2021). Integral backstepping control of induction machine. European Journal of Electrical Engineering, Vol. 23, No. 4, pp. 345-351. https://doi.org/10.18280/ejee.230408
25	Mohammed, M., Abdelmadjid, B., Djamila, B.	Comparative Study Between Integrator Backstepping and Fuzzy Logic Control Applied to an Electric Powered Wheelchair	electric powered wheelchair, PMSM, modelling, fuzzy logic, control, trajectory generation, integrator backstepping, tracking trajectory	23, 3, 165-174	https://doi.org/10.18280/ejee.230301	Mohammed, M., Abdelmadjid, B., Djamila, B. (2021). Comparative study between integrator backstepping and fuzzy logic control applied to an electric powered wheelchair. European Journal of Electrical Engineering, Vol. 23, No. 3, pp. 165-174. https://doi.org/10.18280/cjec.230301
26	Mulla, M.A., Dobariya, V.J., Vamja, R.V., Sircar, A.	Battery Charger Utilizing Coupled Inductor Based High Gain Bidirectional DC-DC Converter: Analysis, Design, and Implementation	battery charging, bidirectional DC-DC converter, high voltage gain, coupled inductor	23, 3, 175-184	https://doi.org/10.18280/ejee.230302	Mulla, M.A., Dobariya, V.J., Vamja, R.V., Sircar, A. (2021). Battery charger utilizing coupled inductor based high gain bidirectional DC-DC converter: Analysis, design, and implementation. European Journal of Electrical Engineering, Vol. 23, No. 3, pp. 175-184. https://doi.org/10.18280/ejee.230302
27	Ndoumbe, L.D., Eke, S., Kom, C.H., Yeremou, A.T., Nanfak, A., Ngaleu, G.M.	Power Quality Problems, Signature Method for Voltage Dips and Swells Detection, Classification and Characterization	power quality, voltage dips, voltage swells, signatures	23, 3, 185-195	https://doi.org/10.18280/ejee.230303	Ndoumbe, L.D., Eke, S., Kom, C.H., Yeremou, A.T., Nanfak, A., Ngaleu, G.M. (2021). Power quality problems, signature method for voltage dips and swells detection, classification and characterization. European Journal of Electrical Engineering, Vol. 23, No. 3, pp. 185-195. https://doi.org/10.18280/ejee.230303
28	Al-Momani, M.M., Hatmi, A.S.M., Al-Gharaibeh, S.F.	Performance Analysis of the Distance Relay Characteristics in a Compensated Transmission Line	distance protection, FACTS devices, MATLAB, measured impedance	23, 3, 197-205	https://doi.org/10.18280/ejee.230304	Al-Momani, M.M., Hatmi, A.S.M., Al-Gharaibeh, S.F. (2021). Performance analysis of the distance relay characteristics in a compensated transmission line. European Journal of Electrical Engineering, Vol. 23, No. 3, pp. 197-205. https://doi.org/10.18280/ejee.230304
29	Zouheyr, D., Lotfi, B., Abdelmadjid, B.	Real-Time Emulation of a Grid- Connected Wind Energy Conversion System Based Double Fed Induction Generator Configuration under Random Operating Modes	wind energy conversion system, double fed induction generator, de motor, wind turbine emulator, maximum power point tracking	23, 3, 207-219	https://doi.org/10.18280/ejee.230305	Zouheyr, D., Lotfi, B., Abdelmadjid, B. (2021). Real-time emulation of a grid-connected wind energy conversion system based double fed induction generator configuration under random operating modes. European Journal of Electrical Engineering, Vol. 23, No. 3, pp. 207-219. https://doi.org/10.18280/ejee.230305
30	Hassan, R.F., Shyaa, S.S.	Design and Analysis of the STATCOM Based on Diode Clamped Multilevel Converter Using Model Predictive Current Control Strategy	STATCOM, diode clamped converter, model predictive current control, low harmonic distortion	23, 3, 221-228	https://doi.org/10.18280/ejee.230306	Hassan, R.F., Shyaa, S.S. (2021). Design and analysis of the STATCOM based on diode clamped multilevel converter using model predictive current control strategy. European Journal of Electrical Engineering, Vol. 23, No. 3, pp. 221-228. https://doi.org/10.18280/ejee.230306
31	Qin, J.H., Wang, W.R., Liu, X.	Parameter Tuning of Brushless DC Motor for Improving Control Effect with Worm Algorithm	BLDCM, parameter tuning, WOA, speed control	23, 3, 229-235	https://doi.org/10.18280/ejee.230307	Qin, J.H., Wang, W.R., Liu, X. (2021). Parameter tuning of brushless DC motor for improving control effect with worm algorithm. European Journal of Electrical Engineering. Vol. 23, No. 3, pp. 229-235. https://doi.org/10.18280/ejee.230307
32	Sánchez-Vargas, O., De León-Aldaco, S.E., Aguayo-Alquicira, J., López-Núñ ez, A.R.	Evolutionary Metaheuristic Methods Applied to Minimize the THD in Inverters: A Systematic Review	differential evolution, evolutive algorithm metaheuristic algorithm, multilevel inverter	23, 3, 237-245	https://doi.org/10.18280/ejee.230308	Sánchez-Vargas, O., De León-Aldaco, S.E., Aguayo-Alquicira, J., L ópez-Náñez, A.R. (2021). Evolutionary metaheuristic methods applied to minimize the THD in inverters: A systematic review. European Journal of Electrical Engineering, Vol. 23, No. 3, pp. 237-245. https://doi.org/10.18280/ejee.230308
33	Safari, B., Hosseini, S.E.	Analytical Modeling of Line-Tunneling TFETs Based on Low-Bandgap Semiconductors	analytical modelling, line-tunneling, low-bandgap semiconductor, minimum tunnel path, tunnel field-effect transistor (TFET)	23, 3, 247-253	https://doi.org/10.18280/ejee.230309	Safari, B., Hosseini, S.E. (2021). Analytical modeling of line- tunneling TFETs based on low-bandgap semiconductors. European Journal of Electrical Engineering, Vol. 23, No. 3, pp. 247-253. https://doi.org/10.18280/ejee.230309
34	Rezini, S., Azzouz, Z.	Contribution of Multilevel Inverters in Improving Electrical Energy Quality: Study and Analysis	power electronics, conventional inverter, multilevel inverter, PWM control, flying capacitor multilevel inverter, neutral point clamped multilevel inverter, cascaded h-bridge multilevel inverter, total harmonic distortion (THD)	23, 3, 255-263	https://doi.org/10.18280/ejee.230310	Rezini, S., Azzouz, Z. (2021). Contribution of multilevel inverters in improving electrical energy quality: Study and analysis. European Journal of Electrical Engineering, Vol. 23, No. 3, pp. 255-263. https://doi.org/10.18280/ejee.230310
35	Obando, J.A., Serrano, V.	Implementation of a Hybrid ANN-Based Filter for the Reduction of Harmonic Currents	hybrid filter, odd harmonic, subharmonic, interharmonic neural network, harmonic distortion, damping, cycloconverter	23, 3, 265-272	https://doi.org/10.18280/ejee.230311	Obando, J.A., Serrano, V. (2021). Implementation of a hybrid ANN-based filter for the reduction of harmonic currents. European Journal of Electrical Engineering, Vol. 23, No. 3, pp. 265-272. https://doi.org/10.18280/ejec.230311
36	Slimani, H., Zeghoudi, A., Bendaoud, A., Reguig, A., Benazza, B., Benhadda, N.	Experimental Measurement of Conducted Emissions Generated by Static Converters in Common and Differential Modes	EMI, static converter, LISN, common mode, differential mode, simulation, measurement	23, 3, 273-279	https://doi.org/10.18280/ejee.230312	Slimani, H., Zeghoudi, A., Bendaoud, A., Reguig, A., Benazza, B., Benhadda, N. (2021). Experimental measurement of conducted emissions generated by static converters in common and differential modes. European Journal of Electrical Engineering. Vol. 23, No. 3, pp. 273-279. https://doi.org/10.18280/ejec.230312

Atig, M., Bouheraoua, M., Khaldi, R.	Thermal Study of Three-Phase Squirrel Cage Induction Motor with the Open- Phase Fault Operation Using a Lumped Parameter Network (LPTN)	electric breakdown, induction motor, lumped parameter, open phase fault, thermal modelling	23, 2, 87-94	https://doi.org/10.18280/ejee.230201	Atig, M., Bouheraoua, M., Khaldi, R. (2021). Thermal study of three-phase squirrel cage induction motor with the open-phase fault operation using a lumped parameter network (LPIN). European Journal of Electrical Engineering, Vol. 23, No. 2, pp. 87-94. https://doi.org/10.18280/ejee.230201
	Estimation Method of the State of 6-10 kV Distribution Network	electrical distribution networks, reliability indicators	23, 2, 95-101	https://doi.org/10.18280/ejee.230202	Tavarov, S.S., Sidorov, A.I., Valeev, R.G., Zykina, E.V. (2021). Estimation method of the state of 6-10 kV distribution network. European Journal of Electrical Engineering, Vol. 23, No. 2, pp. 95- 101. https://doi.org/10.18280/ejee.230202
Ngaleu, G.M., Kom, C.H., Yeremou, A.T., Eke, S., Nanfak, A.	Design of New Duty-Cycle Modulator Structures for Industrials Applications, an Alternative to Pulse-Width Modulation	duty-cycle modulation, pulse width modulation, industrials applications	23, 2, 103-111	https://doi.org/10.18280/ejee.230203	Ngaleu, G.M., Kom, C.H., Yeremou, A.T., Eke, S., Nanfak, A. (2021). Design of new duty-cycle modulator structures for industrials applications, an alternative to pulse-width modulation. European Journal of Electrical Engineering, Vol. 23, No. 2, pp. 103-111. https://doi.org/10.18280/ejee.230203
Triki, Y., Bechouche, A., Seddiki, H., Abdeslam, D.O.	An Accurate Orthogonal Signal Generator for Voltage Control in Synchronous Reference Frame of Stand-Alone Single- Phase Voltage Source Inverters	adaptive linear neuron, control in synchronous reference frame, nonlinear load, orthogonal signal generation, voltage source inverter	23, 2, 113-122	https://doi.org/10.18280/ejee.230204	Triki, Y., Bechouche, A., Seddiki, H., Abdeslam, D.O. (2021). An accurate orthogonal signal generator for voltage control in synchronous reference frame of stand-alone single-phase voltage source inverters. European Journal of Electrical Engineering, Vol. 23, No. 2, pp. 113-122. https://doi.org/10.18280/cjec.230204
Zhang, B.G., Hong, D.Y.	Research on an Improved Single-Phase Unisolated Grid-Connected Photovoltaic Inverter	common mode leakage current, single phase non-isolation, photovoltaic grid connection, topological structure, conversion efficiency	23, 2, 123-130	https://doi.org/10.18280/ejee.230205	Zhang, B.G., Hong, D.Y. (2021). Research on an improved single- phase unisolated grid-connected photovoltaic inverter. European Journal of Electrical Engineering, Vol. 23, No. 2, pp. 123-130. https://doi.org/10.18280/ejee.230205
	Design and Analyses of Multi-Carrier Pulse Width Modulation Techniques for Double Level Circuit Based Cascaded H- Bridge Multilevel Inverter	multi-level inverter, cascaded H-Bridge, multicarrier pulse width modulation, Simulink, THD, output voltage	23, 2, 131-136	https://doi.org/10.18280/ejee.230206	Maheshwari, A.K., Mahar, M.A., Larik, A.S., Soomro, A.H. (2021). Design and analyses of multi-carrier pulse width modulation techniques for double level circuit based cascaded H-Bridge multilevel inverter. European Journal of Electrical Engineering, Vol. 23, No. 2, pp. 131-136. https://doi.org/10.18280/ejee.230206
Gupta, S.K., Khan, M., Singh, O.	Pulse Width Modulation Switching Schemes for Two-Level Five-Phase Voltage Source Inverter	space vector pulse width modulation, five phase VSI, total harmonic distortion, switching, simulation	23, 2, 137-142	https://doi.org/10.18280/ejee.230207	Gupta, S.K., Khan, M., Singh, O. (2021). Pulse width modulation switching schemes for two-level five-phase voltage source inverter. European Journal of Electrical Engineering, Vol. 23, No. 2, pp. 137-142. https://doi.org/10.18280/ejee.230207
	Contribution to the Magneto-Thermal Modeling of SRM Operating at High Temperatures	magneto-thermal modeling, high temperatures, magnetic and thermal nonlinearities, SRM	23, 2, 143-147	https://doi.org/10.18280/ejee.230208	Alitouche, K., Menana, H., Khalfi, J., Takorabet, N., Saou, R. (2021). Contribution to the magneto-thermal modeling of SRM operating at high temperatures. European Journal of Electrical Engineering, Vol. 23, No. 2, pp. 143-147. https://doi.org/10.18280/ejee.230208
	Effect on Human Body of the Magnetic Field Induced by the High Voltage Transmission Line	electrical networks, magnetic field, transmission line characteristics, high voltage, mathematical modelling, numerical simulation, health	23, 2, 149-155	https://doi.org/10.18280/ejee.230209	Boumous, S., Guettaf, N., Hamel, A., Lariche, I., Nouri, H. (2021). Effect on human body of the magnetic field induced by the high voltage transmission line. European Journal of Electrical Engineering, Vol. 23, No. 2, pp. 149-155. https://doi.org/10.18280/ejee.230209
Nadia, A., Hossain, M.S., Hasan, M.M., Islam, K.Z., Miah, S.	Quantifying TRM by Modified DCQ Load Flow Method	transmission reliability margin, available transfer capability, DCQ load flow, sensitivity, reactive power	23, 2, 157-163	https://doi.org/10.18280/ejee.230210	Nadia, A., Hossain, M.S., Hasan, M.M., Islam, K.Z., Miah, S. (2021). Quantifying TRM by modified DCQ load flow method. European Journal of Electrical Engineering. Vol. 23, No. 2, pp. 157-163. https://doi.org/10.18280/ejee.230210
	Grid Side Inverter Control for a Grid Connected Synchronous Generator Based Wind Turbine Experimental Emulator	wind energy conversion system, synchronous generator, grid side converter, DC bus voltage, dSPACE DS1104	23, 1, 1-7	https://doi.org/10.18280/ejee.230101	Zouheyr, D., Lotfi, B., Thierry, L., Abdelmadjid, B. (2021). Grid side inverter control for a grid connected synchronous generator based wind turbine experimental emulator. European Journal of Electrical Engineering, Vol. 23, No. 1, pp. 1-7. https://doi.org/10.18280/ejee.230101
Chauhan, G., Bangia S.	Real Time Load Assessment and Economic Analysis of RES System	renewable energy, economic analysis, distribution generation, HOMER, RES grid interconnection	23, 1, 9-16	https://doi.org/10.18280/ejee.230102	Chauhan, G., Bangia S. (2021). Real time load assessment and economic analysis of RES system. European Journal of Electrical Engineering, Vol. 23, No. 1, pp. 9-16. https://doi.org/10.18280/cjee.230102
Duan, Y., Yang, L., Pan, Q.F., Yang,	Harmonic Detection System and Identification Algorithm for Steel Pipeline Defects	harmonic excitation, multichannel acquisition, defects detection, target identification	23, 1, 17-26	https://doi.org/10.18280/ejee.230103	Zhao, Y.Z., Wang, X.H., Wang, M.F., Duan, Y., Yang, L., Pan, Q.F., Yang, X.Y. (2021). Harmonic detection system and identification algorithm for steel pipeline defects. European Journal of Electrical Engineering, Vol. 23, No. 1, pp. 17-26. https://doi.org/10.18280/ejee.230103
Ishaq, M., Che, Y., Ullah, K.	Switching Regulation in the Control of 5- Phase Permanent Magnet Synchronous Motor Fed by 3×5 Direct Matrix Converter	direct matrix converter, model predictive control, switching regulation, PMSM	23, 1, 27-35	https://doi.org/10.18280/ejee.230104	Ishaq, M., Che, Y., Ullah, K. (2021). Switching regulation in the control of 5-phase permanent magnet synchronous motor fed by 3×5 direct matrix converter. European Journal of Electrical Engineering, Vol. 23, No. 1, pp. 27-35. https://doi.org/10.18280/ejee.230104
Balladka, D.	Unmanned Fault Detection in Distribution Lines	fault detection, distribution lines, MCB's, Arduino UNO, GSM	23, 1, 37-43	https://doi.org/10.18280/ejee.230105	Balladka, D. (2021). Unmanned fault detection in distribution lines. European Journal of Electrical Engineering. Vol. 23, No. 1, pp. 37-43. https://doi.org/10.18280/cjee.230105
	Real-Time Implementation of the MPPT Control Algorithms of a Wind Energy Conversion System by the Digital Simulator OPAL_RT	wind turbine, modeling, MPPT, Real Time Simulation, Opal-RT, Pitch Control, Fuzzy logic	23, 1, 45-52	https://doi.org/10.18280/ejee.230106	Zouggar, E.O., Chaouch, S., Abdelhamid, L., Abdeslam, D.O. (2021). Real-time implementation of the MPPT control algorithms of a wind energy conversion system by the digital simulator OPAL_RT. European Journal of Electrical Engineering, Vol. 23, No. 1, pp. 45-52. https://doi.org/10.18280/ejee.230106
Chen, J.H., Gao, J., Jin, Y.W., Zhu, P.P., Zhang, Q.Z.	Fault Diagnosis in Distributed Power- Generation Systems Using Wavelet Based Artificial Neural Network	artificial neural network, fault diagnosis, IEEE-13 bus, maximum overlap discrete wavelet transform	23, 1, 53-59	https://doi.org/10.18280/ejee.230107	Chen, J.H., Gao, J., Jin, Y.W., Zhu, P.P., Zhang, Q.Z. (2021). Fault diagnosis in distributed power-generation systems using wavelet based artificial neural network. European Journal of Electrical Engineering. Vol. 23, No. 1, pp. 53-59. https://doi.org/10.18280/cjee.230107
Aberkane, H., Sakri, D., Rahem, D.	Hardware Implementation of Predictive Torque Control for an Induction Motor with Efficiency Optimization	direct torque control, induction motor, loss model, optimized predictive torque control, predictive torque control	23, 1, 61-69	https://doi.org/10.18280/ejee.230108	Aberkane, H., Sakri, D., Rahem, D. (2021). Hardware implementation of predictive torque control for an induction motor with efficiency optimization. European Journal of Electrical Engineering, Vol. 23, No. 1, pp. 61-69. https://doi.org/10.18280/cjec.230108
	Atig, M., Bouheraoua, M., Khaldi, R. Tavarov, S.S., Sidorov, A.I., Valcev, R.G., Zykina, E.V. Ngaleu, G.M., Kom, C.H., Yeremou, A.T., Eke, S., Nanfak, A. Triki, Y., Bechouche, A., Seddiki, H., Abdeslam, D.O. Zhang, B.G., Hong, D.Y. Maheshwari, A.K., Mahar, M.A., Larik, A.S., Soomro, A.H. Gupta, S.K., Khan, M., Singh, O. Alitouche, K., Menana, H., Khalfi, J., Takorabet, N., Saou, R. Boumous, S., Guettaf, N., Hamel, A., Lariche, I., Nouri, H. Nadia, A., Hossain, M.S., Hasan, M.M., Islam, K.Z., Miah, S. Zouheyr, D., Lotfi, B., Thierry, L., Abdelmadjid, B. Chauhan, G., Bangia S. Zhao, Y.Z., Wang, X.H., Wang, M.F., Duan, Y.Y., Yang, L., Pan, Q.F., Yang, X.Y. Ishaq, M., Che, Y., Ullah, K. Balladka, D. Zouggar, E.O., Chaouch, S., Abdelhamid, L., Abdeslam, D.O. Chen, J.H., Gao, J., Jin, Y.W., Zhu, P.P., Zhang, Q.Z. Aberkane, H., Sakri, D., Rahem, D.	Alig, M., Bouheraoua, M., Khaldi, R. Paga Enduction Motor with the Open-Parameter Network (LPTN) Tavarov, S.S., Sidorov, A.I., Valeev, Estimation Method of the State of 6-10 kV Distribution Network R.G., Zykina, E.V. Sagleu, G.M., Kom, C.H., Yeremou, A.T., Eke, S., Nanfak, A. Design of New Duty-Cycle Modulator Structures for Industrials Applications, an Alternative to Pulse-Width Modulation Structures for Industrials Applications, an Alternative to Pulse-Width Modulation Structures for Industrials Applications, an Alternative to Pulse-Width Modulation Structures For Industrials Applications, an Alternative to Pulse-Width Modulation Structures Frame of Stand-Alone Single-Phase Voltage Source Inverters Paga Voltage Source Inverters Beacarch on an Improved Single-Phase Unisolated Grid-Connected Photovoltaic Inverter Design and Analyses of Multi-Carrier Pulse Width Modulation Switching Structures of Pulse Width Modulation Switching Schemes for Two-Level Five-Phase Voltage Source Inverter Pulse Width Modulation Switching Schemes for Two-Level Five-Phase Voltage Source Inverter Alitouche, K., Menana, H., Khalfi, J., Takorabet, N., Saou, R. Field Induced by the High Voltage Transmission Line Boumous, S., Guettaf, N., Hamel, A., Effect on Human Body of the Magnetic Field Induced by the High Voltage Transmission Line Roddeling of SRM Operating at High Temperatures Field Induced by the High Voltage Transmission Line Roddelmadjid, B. Alitouche, K., Menana, M. S., Hasan, M.M., Islam, K.Z., Miah, S. Chauban, G., Bangia S. Real Time Load Assessment and Economic Analysis of RES System Chauban, G., Bangia S. Real Time Load Assessment and Economic Analysis of RES System Distribution Lines Page Regulation in the Control of Switching Regulation of the MPPT Control of Systems Using Wavelet Based Artificial Neural Network Page Pulse Width Modulation Switch	Align M., Bouherseum, M., Kindid, R. Paur Final Operation Using a Lumped Parameter Network (LPTN) Francer, S.S., Sidorov, A.I., Valeev, R.G., Zykima, E.V. Estimation Method of the State of 6-10 electrical distribution networks, and an extractive for Palse-Width Modulators Structure for Industrials Applications, an Alternative to Palse-Width Modulators and proposed in Special Control for Palse-Width Modulators Structure for Industrials Applications, and Alternative to Palse-Width Modulators Structure of the Industrials Applications, and Alternative to Palse-Width Modulators and proposed Single-Planes Voltage Control for Special Concept Industrials Applications, and Alternative Voltage Control in Syndronous reference Finance, neclinear Johnson, A. S., Soomra, A.H. Design and Analyses of Multi-Carrier Palse Width Modulation Techniques for Learning Conception, proposed single-Planes (Academy Industrials) and Palse Width Modulation Structure, converted individual and proposed Single-Planes (Academy Industrials) and Alternative Voltage Source (Concept Industrials) and proposed Single-Planes (Academy Industrials) and Aliconoles, K., Menana, H., Khalif, J., Soomra, A.H. Design and Analyses of Multi-Carrier Palse Width Modulation Switching Schemes for Two-Level Fre-Plane Voltage Source inverter. Palse Width Modulation Switching Schemes for Two-Level Fre-Plane Voltage Source inverter. Aliconoles, K., Menana, H., Khalif, J., Contribution to the Magnetic Planes of Carrier Structure and Carrier Structure. Boumons, S., Goerind, N., Hunet, A., Effect on Human Body of the Magnetic Planes of Carrier Structure and Carrier Structure. Boumons, S., Goerind, N., Hunet, A., Contribution to the Magnetic Planes of Carrier Structure and Carrier Structure. Boumons, S., Goerind, N., Hunet, A., Contribution to the Magnetic Planes of Carrier Structure and Carrier Structure. Boumons, S., Goerind, N., Hunet, A., Contribution to the Magnetic Planes of Carrier Structure and Carrier Structure. Boumons, S., Goerind, N., Hunet, A., Cont	Design of M., Eventherson, M., Khalda, R. Paker J. Contribution Method of the State of 6-10 electrical state of the Contribution of the Contributi	Notice Note Description Processing Processing

Г						1
55	Li, H., Liu, Y., Qi, R.D., Ding, Y.	A Novel Multi-vector Model Predictive Current Control of Three-Phase Active Power Filter	active power filter (APF), model predictive current control (MPCC), multi-vector, virtual vector	23, 1, 71-78	https://doi.org/10.18280/ejee.230109	Li, H., Liu, Y., Qi, R.D., Ding, Y. (2021). A novel multi-vector model predictive current control of three-phase active power filter. European Journal of Electrical Engineering, Vol. 23, No. 1, pp. 71- 78. https://doi.org/10.18280/ejee.230109
56	Kaddour, H., Dib, A.	Design a New DC-DC Converter for a Grid Connected Photovoltaic System	Direct Powers, Control (DPC), Space Vector, Modulation (SVM), Total Harmonics, Distortion (THD, Multi- variable Filter (FMV)	23, 1, 79-86	https://doi.org/10.18280/ejee.230110	Kaddour, H., Dib, A. (2021). Design a new DC-DC converter for a grid connected photovoltaic system. European Journal of Electrical Engineering, Vol. 23, No. 1, pp. 79-86. https://doi.org/10.18280/ejee.230110
57	Urame, C., Hoole, P.R.	Design and implementation of hybrid Pico-Hydro-Photovoltaic (PV) solar power plant in Massy-Gahuku LLG	cross-flow turbine, Pico-Hydro plant, programmable logic controller	22, 6, 395-403	https://doi.org/10.18280/ejee.220601	Urame, C., Hoole, P.R. (2020). Design and implementation of hybrid Pico-Hydro-Photovoltaic (PV) solar power plant in Massy-Gahuku LLG. European Journal of Electrical Engineering, Vol. 22, No. 6, pp. 395-403. https://doi.org/10.18280/ejee.220601
58	Bouchta, S., Feddaoui, M.	Numerical simulation of free convection in a three-dimensional enclosure full of nanofluid with the existence a magnetic field	three-dimensional, nanofluid, magnetic field, convection, finite volume method, SIMPLEC, Hartmann number, numerical simulation	22, 6, 405-411	https://doi.org/10.18280/ejee.220602	Bouchta, S., Feddaoui, M. (2020). Numerical simulation of free convection in a three-dimensional enclosure full of nanofluid with the existence a magnetic field. European Journal of Electrical Engineering, Vol. 22, No. 6, pp. 405-411. https://doi.org/10.18280/cjee.220602
59	Rekik, A., Boukettaya, G.	State space modeling and stability analysis of a VSC-HVDC system for exchange of energy	VSC-HVDC transmission, energy, linearized, state space modeling, small signal stability, eigenvalue	22, 6, 413-426	https://doi.org/10.18280/ejee.220603	Rekik, A., Boukettaya, G. (2020). State space modeling and stability analysis of a VSC-HVDC system for exchange of energy. European Journal of Electrical Engineering, Vol. 22, No. 6, pp. 413-426. https://doi.org/10.18280/ejee.220603
60	Yahdou, A., Djilali, A.B., Boudjema, Z., Mehedi, F.	Using adaptive second order sliding mode to improve power control of a counter-rotating wind turbine under grid disturbances	adaptive gains, counter-rotating wind turbine, doubly fed induction generator, grid disturbances, saturation functions, second order sliding mode	22, 6, 427-434	https://doi.org/10.18280/ejee.220604	Yahdou, A., Djilali, A.B., Boudjema, Z., Mehedi, F. (2020). Using adaptive second order sliding mode to improve power control of a counter-rotating wind turbine under grid disturbances. European Journal of Electrical Engineering, Vol. 22, No. 6, pp. 427-434. https://doi.org/10.18280/ejee.220604
61	Kushwaha, P.K., Bhattacharjee, C.	A research on selection of appropriate stability index under adverse system conditions for the assessment of voltage stability of an IEEE 14 bus power system	contingency analysis, one generation unit tripped, power margin analysis, single line to ground fault, voltage stability indices and SLG fault	22, 6, 435-446	https://doi.org/10.18280/ejee.220605	Kushwaha, P.K., Bhattacharjee, C. (2020). A research on selection of appropriate stability index under adverse system conditions for the assessment of voltage stability of an IEEE 14 bus power system. European Journal of Electrical Engineering, Vol. 22, No. 6, pp. 435-446. https://doi.org/10.18280/ejee.220605
62	Gongati, P.R.R., Marala, R.R., Malupu, V.K.	Mitigation of certain power quality issues in wind energy conversion system using UPQC and IUPQC devices	improved unified power quality conditioner, power quality, wind energy conversion system, voltage sag, voltage swell	22, 6, 447-455	https://doi.org/10.18280/ejee.220606	Gongati, P.R.R., Marala, R.R., Malupu, V.K. (2020). Mitigation of certain power quality issues in wind energy conversion system using UPQC and IUPQC devices. European Journal of Electrical Engineering, Vol. 22, No. 6, pp. 447-455. https://doi.org/10.18280/ejee.220606
63	Merdad, H., Renaud, M.	State of legislative and normative art in the fields of the environment, health and security of European electrical and electronic equipment	standards, WEEE, RoHS, REACh, ErP, CEI 62430, ISO 14044, environmental legislations	22, 4-5, 293-300	https://doi.org/10.18280/ejee.224-501	Merdad, H., Renaud, M. (2020). State of legislative and normative art in the fields of the environment, health and security of European electrical and electronic equipment. European Journal of Electrical Engineering, Vol. 22, No. 4-5, pp. 293-300. https://doi.org/10.18280/ejee.224-501
64	Safia, Z.B., Allouch, M., Chaabane, M.	Decentralized T-S fuzzy control for solar PV powered water pumping system driving by induction motor	decentralized control, Induction Motor, MPPT, PV pumping system, T-S fuzzy control	22, 4-5, 301-311	https://doi.org/10.18280/ejee.224-502	Safia, Z.B., Allouch, M., Chaabane, M. (2020). Decentralized T-S fuzzy control for solar PV powered water pumping system driving by induction motor. European Journal of Electrical Engineering, Vol. 22, No. 4-5, pp. 301-311. https://doi.org/10.18280/ejee.224- 502
65	Boudechiche, G., Sarra, M., Aissa, O., Gaubert, J.P., Benlahbib, B., Lashab, A.	Anti-windup FOPID-based DPC for SAPF interconnected to a PV system tuned using PSO algorithm	direct power control, shunt active power filter, AW-FOPID controller, particle swarm optimization, fuzzy logic MPPT controller	22, 4-5, 313-324	https://doi.org/10.18280/ejee.224-503	Boudechiche, G., Sarra, M., Aissa, O., Gaubert, J.P., Benlahbib, B., Lashab, A. (2020). Anti-windup FOPID-based DPC for SAPF interconnected to a PV system tuned using PSO algorithm. European Journal of Electrical Engineering, Vol. 22, No. 4-5, pp. 313-324. https://doi.org/10.18280/ejee.224-503
66	Pannila, E.A.R.L., Edirisinghe, M.	Characterization of switching transients in low voltage power systems of tea factories in Sri Lanka	switching transients, transient overvoltage, transient protection, surge protection, surge arresters, low voltage power systems, power quality, transient energy	22, 4-5, 325-334	https://doi.org/10.18280/ejee.224-504	Pannila, E.A.R.L., Edirisinghe, M. (2020). Characterization of switching transients in low voltage power systems of tea factories in Sri Lanka. European Journal of Electrical Engineering, Vol. 22, No. 4-5, pp. 325-334. https://doi.org/10.18280/ejee.224-504
67	Kumar, P.	Power quality investigation by reduced switching UPQC	Active and Reactive Power (PQ), Synchronous Reference Frame (SRF), Total Harmonic Distortion (THD), Unified Power Quality Conditioner (UPQC), Unit Vector Template (UVT)	22, 4-5, 335-347	https://doi.org/10.18280/ejee.224-505	Kumar, P. (2020). Power quality investigation by reduced switching UPQC. European Journal of Electrical Engineering, Vol. 22, No. 4-5, pp. 335-347. https://doi.org/10.18280/ejee.224-505
68	Marín-Reyes, M., Aguayo-Alquicira, J., De León-Aldaco, S.E.	Calculation of optimal switching angles for a multilevel inverter using NR, PSO, and GA- a comparison	cascade multilevel inverter, total harmonic distortion, optimization, genetic algorithm, Newton-Raphson, particle swarm optimization	22, 4-5, 349-355	https://doi.org/10.18280/ejee.224-506	Marin-Reyes, M., Aguayo-Alquicira, J., De León-Aldaco, S.E. (2020). Calculation of optimal switching angles for a multilevel inverter using NR, PSO, and GA- a comparison. European Journal of Electrical Engineering, Vol. 22, No. 4-5, pp. 349-355. https://doi.org/10.18280/ejee.224-506
69	Benghalia, R., Cheriet, A., Amrani, I.	The finite volume method an alternative method for LF electromagnetic problems	3D triangular mesh, FVM, force, torque, dynamics	22, 4-5, 357-364	https://doi.org/10.18280/ejee.224-507	Benghalia, R., Cheriet, A., Amrani, I. (2020). The finite volume method an alternative method for LF electromagnetic problems. European Journal of Electrical Engineering, Vol. 22, No. 4-5, pp. 357-364. https://doi.org/10.18280/ejee.224-507
70	Chtouki, I., Wira, P., Zazi, M., Cherif, A.Y., Meddour, S.	A new control stratum applied to two adaptation stages based on adaline-type neuronal predictive control in a photovoltaic solar conversion chain	photovoltaic generator (PVG), parallel active power filter (PAF), power grid, GMPPT, Finite set mode predictive current control (FS-MPCC), Adaline Neuro-Predictive (ANP)	22, 4-5, 365-376	https://doi.org/10.18280/ejee.224-508	Chtouki, I., Wira, P., Zazi, M., Cherif, A.Y., Meddour, S. (2020). A new control stratum applied to two adaptation stages based on adaline-type neuronal predictive control in a photovoltaic solar conversion chain. European Journal of Electrical Engineering, Vol. 22, No. 4-5, pp. 365-376. https://doi.org/10.18280/ejee.224-508
71	Rajesh, P., Shajin, F.H.	A multi-objective hybrid algorithm for planning electrical distribution system	GSA, Tabu search, DG, operation and maintenance cost, investment cost	22, 4-5, 377-387	https://doi.org/10.18280/ejee.224-509	Rajesh, P., Shajin, F.H. (2020). A multi-objective hybrid algorithm for planning electrical distribution system. European Journal of Electrical Engineering, Vol. 22, No. 4-5, pp. 377-387. https://doi.org/10.18280/ejee.224-509
72	Khan, A.U.	Modeling and simulation of a metal oxide lightning surge arrester for 132kV overhead transmission lines	metal oxide surge arrester, lightning surge arrester, simulation, MOV, residual voltage, over-voltage, CFOV, EMPT-RV	22, 4-5, 389-394	https://doi.org/10.18280/ejee.224-510	Khan, A.U. (2020). Modeling and simulation of a metal oxide lightning surge arrester for 132kV overhead transmission lines. European Journal of Electrical Engineering, Vol. 22, No. 4-5, pp. 389-394. https://doi.org/10.18280/ejee.224-510
_	·					

	Djerboub, K., Allaoui, T., Champenois,	Particle swarm optimization trained artificial neural network to control shunt	ANN-PSO, Flying Capacitor Inverter (FCI), non-linear load, power quality,			Djerboub, K., Allaoui, T., Champenois, G., Denai, M., Habib, C. (2020). Particle swarm optimization trained artificial neural network to control shunt active power filter based on multilevel
73	G., Denai, M., Habib, C.	active power filter based on multilevel flying capacitor inverter	SAPF, Synchronous Reference Frame (SRF), THD	22, 3, 199-207	https://doi.org/10.18280/ejee.220301	flying capacitor inverter. European Journal of Electrical Engineering, Vol. 22, No. 3, pp. 199-207. https://doi.org/10.18280/ejee.220301
74	Elmahfoud, M., Bossoufi, B., Taoussi, M., El Ouanjli, N., Derouich, A.	Comparative study between backstepping adaptive and field oriented controls for doubly fed induction motor	control motor, DFIM, adaptive, Lyapunov	22, 3, 209-221	https://doi.org/10.18280/ejee.220302	Elmahfoud, M., Bossoufi, B., Taoussi, M., El Ouanjli, N., Derouich, A. (2020). Comparative study between backstepping adaptive and field oriented controls for doubly fed induction motor. European Journal of Electrical Engineering, Vol. 22, No. 3, pp. 209-221. https://doi.org/10.18280/ejee.220302
75	Sumbung, F.H., Letsoin, Y.	Modeling and control of electric motors U.S. electric motors type dripproff 1150 RPM/10 HP/240 volt using MATLAB/Simulink	simulation process interference DC motor model, box chart and Simulink/ MATLAB	22, 3, 223-232	https://doi.org/10.18280/ejee.220303	Sumbung, F.H., Letsoin, Y. (2020). Modeling and control of electric motors U.S. electric motors type dripproff 1150 RPM/10 HP/240 volt using MATLAB/Simulink. European Journal of Electrical Engineering, Vol. 22, No. 3, pp. 223-232. https://doi.org/10.18280/ejee.220303
76	Zhang, T., Lu, C., Zheng, Z.	Adaptive fuzzy controller for electric spring	electric spring, voltage stability, regulatory factor, fizzy controller, adaptive fuzzy controller	22, 3, 233-239	https://doi.org/10.18280/ejee.220304	Zhang, T., Lu, C., Zheng, Z. (2020). Adaptive fuzzy controller for electric spring. European Journal of Electrical Engineering, Vol. 22, No. 3, pp. 233-239. https://doi.org/10.18280/ejee.220304
77	Gupta, P., Swarnkar, P.	A new approach towards integration of multi-frequency, multi-voltage intertied hybrid power system	intertied hybrid power system, droop control, interlinking power converter, coordinated control, adaptive power sharing	22, 3, 241-253	https://doi.org/10.18280/ejee.220305	Gupta, P., Swarnkar, P. (2020). A new approach towards integration of multi-frequency, multi-voltage intertied hybrid power system. European Journal of Electrical Engineering, Vol. 22, No. 3, pp. 241-253. https://doi.org/10.18280/ejee.220305
78	Kerrouche, F., Tazerart, F., Taib, N.	Novel topology of a multilevel inverter dedicated to electric traction drive	multilevel inverter, seven-level inverter, pulse width modulation, total harmonic distortion, PMSM, electric traction drive, field-oriented control	22, 3, 255-263	https://doi.org/10.18280/ejee.220306	Kerrouche, F., Tazerart, F., Taib, N. (2020). Novel topology of a multilevel inverter dedicated to electric traction drive. European Journal of Electrical Engineering. Vol. 22, No. 3, pp. 255-263. https://doi.org/10.18280/ejee.220306
79	El Bakri, A., Boumhidi, I.	A new intelligent fault-tolerant control scheme for wind energy systems under actuator faults	wind turbines, fault-tolerant control (FTC), actuator fault, extreme learning machine, multiplicative faults, additive faults	22, 3, 265-272	https://doi.org/10.18280/ejee.220307	El Bakri, A., Boumhidi, I. (2020). A new intelligent fault-tolerant control scheme for wind energy systems under actuator faults. European Journal of Electrical Engineering, Vol. 22, No. 3, pp. 265-272. https://doi.org/10.18280/ejee.220307
80	Djilali, A.B., Yahdou, A., Bounadja, E., Mehedi, F.	Stopping the drift problem in the tracking of maximum power point for photovoltaic system by using modified variable step size incremental conductance method	photovoltaic panel, boost converter, variable step size incremental conductance method	22, 3, 273-283	https://doi.org/10.18280/ejee.220308	Djilali, A.B., Yahdou, A., Bounadja, E., Mehedi, F. (2020). Stopping the drift problem in the tracking of maximum power point for photovoltaic system by using modified variable step size incremental conductance method. European Journal of Electrical Engineering, Vol. 22, No. 3, pp. 273–283. https://doi.org/10.18280/ejec.220308
81	Gao, Y.H., Lu, H.L.	One wideband coplanar waveguide-fed balanced dipole antenna design	loaded antenna, resistively loaded, indoor antenna, ultra-wideband (UWB)	22, 3, 285-291	https://doi.org/10.18280/ejee.220309	Gao, Y.H., Lu, H.L. (2020). One wideband coplanar waveguide-fed balanced dipole antenna design. European Journal of Electrical Engineering, Vol. 22, No. 3, pp. 285-291. https://doi.org/10.18280/ejee.220309
82	Stackler, C., Morel, F., Ladoux, p., Dworakowski, P.	Modelling of a 25 kV-50 Hz railway infrastructure for harmonic analysis	railway supply, impedance, skin effect, state space representation, harmonic interactions, EMC	22, 2, 87-96	https://doi.org/10.18280/ejee.220201	Stackler, C., Morel, F., Ladoux, p., Dworakowski, P. (2020). Modelling of a 25 kV-50 Hz railway infrastructure for harmonic analysis. European Journal of Electrical Engineering, Vol. 22, No. 2, pp. 87-96. https://doi.org/10.18280/cjee.220201
83	Risticevic, M., Moeckel, A.	Topological approach for minimization of cogging torque in permanent magnet synchronous motors	topology, optimization, rotor, structure, on/off approach, PMSM, cogging torque	22, 2, 97-104	https://doi.org/10.18280/ejee.220202	Risticevic, M., Moeckel, A. (2020). Topological approach for minimization of cogging torque in permanent magnet synchronous motors. European Journal of Electrical Engineering, Vol. 22, No. 2, pp. 97-104. https://doi.org/10.18280/ejee.220202
84	Jia, C.X., Ding, H.Y., Zhang, C.J., Zhang, X.	Management and security analysis of blockchain shard storage for monitoring data on the state of smart substations	smart substations, blockchain shard storage, security analysis, ubiquitous power Internet of Things (UPIoT)	22, 2, 105-110	https://doi.org/10.18280/ejee.220203	Jia, C.X., Ding, H.Y., Zhang, C.J., Zhang, X. (2020). Management and security analysis of blockchain shard storage for monitoring data on the state of smart substations. European Journal of Electrical Engineering, Vol. 22, No. 2, pp. 105-110. https://doi.org/10.18280/ejee.220203
85	Severiano, Y.R., Alquicira, J.A., De Le ón Aldaco, S.E., Santos, L.M.C.	Comparative analysis of PWM techniques in the set: Multilevel inverter + induction motor	cascaded, modulation technique, modulation index, multilevel inverter, total harmonic distortion	22, 2, 111-117	https://doi.org/10.18280/ejce.220204	Severiano, Y.R., Alquicira, J.A., De León Aldaco, S.E., Santos, L.M.C. (2020). Comparative analysis of PWM techniques in the set: Multilevel inverter + induction motor. European Journal of Electrical Engineering, Vol. 22, No. 2, pp. 111-117. https://doi.org/10.18280/ejee.220204
86	Gallas, H., Mseddi, A., Le Ballois, S., Aloui, H., Vido, L.	Modeling and control of 1.5 MW HESG- Based wind conversion system: Advanced aerodynamic modeling	FAST, HESG, large-scale WCS, modeling, Pl-based fuzzy logic control, robust control	22, 2, 119-128	https://doi.org/10.18280/ejee.220205	Gallas, H., Mseddi, A., Le Ballois, S., Aloui, H., Vido, L. (2020). Modeling and control of 1.5 MW HESG-Based wind conversion system: Advanced aerodynamic modelling. European Journal of Electrical Engineering, Vol. 22, No. 2, pp. 119-128. https://doi.org/10.18280/ejec.220205
87	Zhang, L., Sun, Y.M., Cai, S.N., Yuan, J.N., Wang, B.Y.	Non-invasive load identification based on real-time extraction of multiple steady- state parameters and optimization of state coding	non-intrusive load monitoring (NILM), load identification, steady-state parameters, affinity propagation (AP) clustering	22, 2, 129-135	https://doi.org/10.18280/ejee.220206	Zhang, L., Sun, Y.M., Cai, S.N., Yuan, J.N., Wang, B.Y. (2020). Non-invasive load identification based on real-time extraction of multiple steady-state parameters and optimization of state coding. European Journal of Electrical Engineering, Vol. 22, No. 2, pp. 129-135. https://doi.org/10.18280/ejec.220206
88	Mohamed, H., Abdelmadjid, B., Lotfi, B.	Improvement of direct torque control performances for induction machine using a robust backstepping controller and a new stator resistance compensator	induction machine, nonlinear control, backstepping, direct torque control, space vector modulation stator resistance compensator, super twisting strategy	22, 2, 137-144	https://doi.org/10.18280/ejee.220207	Mohamed, H., Abdelmadjid, B., Lorfi, B. (2020). Improvement of direct torque control performances for induction machine using a robust backstepping controller and a new stator resistance compensator. European Journal of Electrical Engineering, Vol. 22, No. 2, pp. 137-144. https://doi.org/10.18280/ejee.220207
89	Fapi, C.B.N., Wira, P., Kamta, M., Colicchio, B.	Voltage regulation control with adaptive fuzzy logic for a stand-alone photovoltaic system	voltage control, fuzzy logic controller, MPPT algorithms, photovoltaic panel, DC-DC converter	22, 2, 145-152	https://doi.org/10.18280/ejce.220208	Fapi, C.B.N., Wira, P., Kamta, M., Colicchio, B. (2020). Voltage regulation control with adaptive fuzzy logic for a stand-alone photovoltaic system. European Journal of Electrical Engineering, Vol. 22, No. 2, pp. 145-152. https://doi.org/10.18280/ejec.220208
90	Zaamouche, F., Saad, S., Hamiche, L.	Discontinuous PWM applied for a three- phase five-level CHB inverter fed by PV solar-boost converter	cascaded inverter, boost converter, discontinuous modulation, switching losses	22, 2, 153-161	https://doi.org/10.18280/ejce.220209	Zaamouche, F., Saad, S., Hamiche, L. (2020). Discontinuous PWM applied for a three-phase five-level CHB inverter fed by PV solar-boost converter. European Journal of Electrical Engineering, Vol. 22, No. 2, pp. 153-161. https://doi.org/10.18280/ejee.220209

$\overline{}$		1	1			1
91	Sun, C., Liu, X.T., Yin, Z.W., Di, Y.J., Wang, Z.Y.	Whole-station visualization of secondary circuit in smart substation based on hybrid topology	smart substation, secondary circuit, visualization, hybrid topology	22, 2, 163-168	https://doi.org/10.18280/ejee.220210	Sun, C., Liu, X.T., Yin, Z.W., Di, Y.J., Wang, Z.Y. (2020). Whole-station visualization of secondary circuit in smart substation based on hybrid topology. European Journal of Electrical Engineering, Vol. 22, No. 2, pp. 163-168. https://doi.org/10.18280/cjee.220210
92	Chelli, S.E., Nemmour, A.L., Ahmed, M.A., Boussaid, A., Khezzar, A.	An effective approach for real-time parameters estimation of doubly-fed induction machine using forgetting factor RLS algorithm	doubly fed induction machines, squirrel- cage induction machine, real-time parameters estimation, forgetting factor recursive least-squares algorithm (FF- RLS)	22, 2, 169-177	https://doi.org/10.18280/ejee.220211	Chelli, S.E., Nemmour, A.L., Ahmed, M.A., Boussaid, A., Khezzar, A. (2020). An effective approach for real-time parameters estimation of doubly-fed induction machine using forgetting factor RLS algorithm. European Journal of Electrical Engineering, Vol. 22, No. 2, pp. 169-177. https://doi.org/10.18280/ejee.220211
93	Philip, M.A.D., Kareem, P.F.A.	Power conditioning using DVR under symmetrical and unsymmetrical fault conditions	dynamic voltage restorer (DVR), power quality (PQ), single line to ground fault (SLG), double line to ground fault (LLG), triple line to ground fault (LLG), total harmonics distortion (THD), voltage indices	22, 2, 179-191	https://doi.org/10.18280/ejce.220212	Philip, M.A.D., Kareem, P.F.A. (2020). Power conditioning using DVR under symmetrical and unsymmetrical fault conditions. European Journal of Electrical Engineering, Vol. 22, No. 2, pp. 179-191. https://doi.org/10.18280/ejee.220212
94	Wang, D., Pang, K., Wang, W., Zhang, Y., Yao, W., Zhao, L.	Development and application of an internal fault detection system for transformer based on wall climbing robot	internal faults, transformer, intelligent fault detection, socket programming	22, 2, 193-198	https://doi.org/10.18280/ejee.220213	Wang, D., Pang, K., Wang, W., Zhang, Y., Yao, W., Zhao, L. (2020). Development and application of an internal fault detection system for transformer based on wall climbing robet. European Journal of Electrical Engineering, Vol. 22, No. 2, pp. 193-198. https://doi.org/10.18280/ejee.220213
95	Oscullo, J., Gallardo, C.	Small signal stability enhancement of a multimachine power system using probabilistic tuning PSS based in wide area monitoring data	monte Carlo, power system stabilizer, WAMS, heuristic algorithms, probabilistic modal analysis, small signal stability	22, 1, 1-12	https://doi.org/10.18280/ejee.220101	Oscullo, J., Gallardo, C. (2020). Small signal stability enhancement of a multimachine power system using probabilistic tuning PSS based in wide area monitoring data. European Journal of Electrical Engineering, Vol. 22, No. 1, pp. 1-12. https://doi.org/10.18280/ejee.220101
96	Bahena, A.V., De León Aldaco, S.E., Alquicira, J.A.	Simulation for a dual inverter feeding a three-phase open-end winding induction motor: A comparative study of PWM techniques	dual inverter, open-end winding induction motor, PWM techniques	22, 1, 13-21	https://doi.org/10.18280/ejec.220102	Bahena, A.V., De León Aldaco, S.E., Alquicira, J.A. (2020). Simulation for a dual inverter feeding a three-phase open-end winding induction motor: A comparative study of PWM techniques. European Journal of Electrical Engineering, Vol. 22, No. 1, pp. 13- 21. https://doi.org/10.18280/ejee.220102
97	Tolibjonovich, D.S., Islomovna, T.M., Saidulloevna, M.D.	Modeling of starting transition processes of asynchronous motors with reduced voltage of the supply network	reduced voltage, power quality, asynchronous machines, MATLAB, computer simulation, starting transients, mechanical characteristic	22, 1, 23-28	https://doi.org/10.18280/ejee.220103	Tolibjonovich, D.S., Islomovna, T.M., Saidulloevna, M.D. (2020). Modeling of starting transition processes of asynchronous motors with reduced voltage of the supply network. European Journal of Electrical Engineering, Vol. 22, No. 1, pp. 23-28. https://doi.org/10.18280/ejee.220103
98	Wang, Y.S., Gao, J., Xu, Z.W., Li, L.X.	A short-term output power prediction model of wind power based on deep learning of grouped time series	wind power plant, output power prediction, short-term wind power prediction, deep learning, new energy application	22, 1, 29-38	https://doi.org/10.18280/ejee.220104	Wang, Y.S., Gao, J., Xu, Z.W., Li, L.X. (2019). A short-term output power prediction model of wind power based on deep learning of grouped time series. European Journal of Electrical Engineering, Vol. 22, No. 1, pp. 29-38. https://doi.org/10.18280/ejee.220104
99	Chaithanakulwat, A.	Optimization of shunt active power filtering with PI control in a three-phase three-wire system	hysteresis current band, shunt active filter power, non-linear load, total harmonic distortion, inverter	22, 1, 39-47	https://doi.org/10.18280/ejee.220105	Chaithanakulwat, A. (2020). Optimization of shunt active power filtering with PI control in a three-phase three-wire system. European Journal of Electrical Engineering, Vol. 22, No. 1, pp. 39-47. https://doi.org/10.18280/ejee.220105
100	Aguayo-Alquicira, J., León-Aldaco, S.E.D., Calleja-Gjumlich, J.H., Claudio-Sánchez, A.	Switching angles calculation in multilevel inverters using triangular number sequence —A THD minimization approach	total harmonic distortion, pulse modulation, pascal triangle, triangular numbers, switching pattern	22, 1, 49-55	https://doi.org/10.18280/ejee.220106	Aguayo-Alquicira, J., León-Aldaco, S.E.D., Calleja-Gjumlich, J.H., Claudio-Sánchez, A. (2020). Switching angles calculation in multilevel inverters using triangular number sequence – A THD minimization approach. European Journal of Electrical Engineering, Vol. 22, No. 1, pp. 49-55. https://doi.org/10.18280/ejee.220106
101	Li, B., Fan, L., Liu, Y.X., He, J.H., Sun, B.	Design and application of a visualized fault joint diagnosis system for overheating fault of gas insulated switchgear	gas-insulated switchgear (GIS), overheating fault, X-ray, visualized fault, joint diagnosis system	22, 1, 57-62	https://doi.org/10.18280/ejce.220107	Li, B., Fan, L., Liu, Y.X., He, J.H., Sun, B. (2020). Design and application of a visualized fault joint diagnosis system for overheating fault of gas insulated switchgear. European Journal of Electrical Engineering. Vol. 22, No. 1, pp. 57-62. https://doi.org/10.18280/ejee.220107
102	Dahbi, M., Doubabi, S., Rachid, A.	Real time implementation for a low-cost control for BLDC motor current ripple minimization	brushless DC motor, trapezoidal back- EMF force, PI controller, current ripple, current control	22, 1, 63-69	https://doi.org/10.18280/ejee.220108	Dahbi, M., Doubabi, S., Rachid, A. (2020). Real time implementation for a low-cost control for BLDC motor current ripple minimization. European Journal of Electrical Engineering, Vol. 22, No. 1, pp. 63-69. https://doi.org/10.18280/ejee.220108
103	Kamyab, G.	Optimal feeder routing and DG placement using Kruskal's algorithm	electrical distribution network planning, distribution feeder routing, distributed generators	22, 1, 71-78	https://doi.org/10.18280/ejee.220109	Kamyab, G. (2020). Optimal feeder routing and DG placement using Kruskal's algorithm. European Journal of Electrical Engineering, Vol. 22, No. 1, pp. 71-78. https://doi.org/10.18280/ejee.220109
104	Liu, D.D., Zhou, L., Sai, X.Y.	Vector-proportional-integral control of inductor-capacitor-inductor active power filter under the alpha-beta stationary coordinate system	Inductor-capacitor-inductor (LCL) filter, active power filter (APF), compensation for n-th order harmonic current, alpha- beta (a-B) stationary coordinate system, vector-proportional-integral (VPI) current control	22, 1, 79-86	https://doi.org/10.18280/ejee.220110	Liu, D.D., Zhou, L., Sai, X.Y. (2020). Vector-proportional-integral control of inductor-capacitor-inductor active power filter under the alpha-beta stationary coordinate system. European Journal of Electrical Engineering. Vol. 22, No. 1, pp. 79-86. https://doi.org/10.18280/ejee.220110
105	El Hamdaouy, A., Salhi, I., Doubabi, S., Essounbouli, N., Chennani, M.	An integrated approach for modeling three-phase micro hydropower plants	renewable energy, micro hydropower plant, modelling, pelton turbine, synchronous generator	21, 6, 479-487	https://doi.org/10.18280/ejee.210601	El Hamdaouy, A., Salhi, I., Doubabi, S., Essounbouli, N., Chennani, M. (2019). An integrated approach for modeling three- phase micro hydropower plants. European Journal of Electrical Engineering, Vol. 21, No. 6, pp. 479-487. https://doi.org/10.18280/cjee.210601
106	Vu, T.T.N., Teyssèdre, G., Roy, S.L., Anh, T.T., Trần, T.S., Nguyen, X.T., Nguyễn, Q.V.	The challenges and opportunities for the power transmission grid of Vietnam	energy grid, energy mix, HVDC, vietnam, renewable energy	21, 6, 489-497	https://doi.org/10.18280/ejee.210602	Vu, T.T.N., Teyssèdre, G., Roy, S.L., Anh, T.T., Trån, T.S., Nguyen, X.T., Nguyên, Q.V. (2019). The challenges and opportunities for the power transmission grid of Vietnam. European Journal of Electrical Engineering, Vol. 21, No. 6, pp. 489–497. https://doi.org/10.18280/ejee.210602
107	Oscullo, J., Gallardo, C.	Tuning and location of PSS in multimachine power system with state feedback control for electromechanical oscillation damping control	modal analysis, power system stability, oscillation damping, power system control, neural network	21, 6, 499-507	https://doi.org/10.18280/ejee.210603	Oscullo, J., Gallardo, C. (2019). Tuning and location of PSS in multimachine power system with state feedback control for electromechanical oscillation damping control. European Journal of Electrical Engineering, Vol. 21, No. 6, pp. 499-507. https://doi.org/10.18280/ejee.210603
108	Kou, Z.C., Fang, Y.J., Bleszinski, L.	A bifurcation deep neural network for electricity meter error prediction under actual conditions	Convolutional Neural Network (CNN), autoencoder, measuring errors, electricity meters	21, 6, 509-514	https://doi.org/10.18280/ejee.210604	Kou, Z.C., Fang, Y.J., Bleszinski, L. (2019). A bifurcation deep neural network for electricity meter error prediction under actual conditions. European Journal of Electrical Engineering, Vol. 21, No. 6, pp. 509-514. https://doi.org/10.18280/ejee.210604

_						T
109	Latroch, M., Khiat, M., Rahiel, D.	An IDMT overcurrent protective relay based on ADALINE	overcurrent, protective relay, ADALINE, simulation, hardware-in-the-loop, validation	21, 6, 515-522	https://doi.org/10.18280/ejee.210605	Latroch, M., Khiat, M., Rahiel, D. (2019). An IDMT overcurrent protective relay based on ADALINE. European Journal of Electrical Engineering, Vol. 21, No. 6, pp. 515-522. https://doi.org/10.18280/ejee.210605
110	Alwan, S.H.	Protection of transmission line based on the severity index using generation rescheduling strategy	line contingency, transmission line overloading, differential evolution algorithm, generation rescheduling, severity index	21, 6, 523-530	https://doi.org/10.18280/ejee.210606	Alwan, S.H. (2019). Protection of transmission line based on the severity index using generation rescheduling strategy. European Journal of Electrical Engineering, Vol. 21, No. 6, pp. 523-530. https://doi.org/10.18280/ejee.210606
111	Yang, L., Huang, T.M., Deng, L., Zeng, Y.F., Huang, S.D.	Analysis on chaotic mechanism of direct- drive permanent magnet synchronous generators based on lyapunov stability theory	direct-drive permanent magnet synchronous generator (D-PMSG), chaotic features, affine transform, bifurcation, lyapunov stability	21, 6, 531-537	https://doi.org/10.18280/ejee.210607	Yang, L., Huang, T.M., Deng, L., Zeng, Y.F., Huang, S.D. (2019). Analysis on chaotic mechanism of direct-drive permanent magnet synchronous generators based on Jupanov stability theory. European Journal of Electrical Engineering, Vol. 21, No. 6, pp. 531-537. https://doi.org/10.18280/ejee.210607
112	Chaithanakulwat, A.	Design of solar-powered aeration system for shrimp ponds of farmers in Thailand	photovoltaic, air pump system, boost converter, life cycle cost, control equipment, aquaculture, hysteresis current band, dissolved oxygen level	21, 6, 539-546	https://doi.org/10.18280/ejee.210608	Chaithanakulwat, A. (2019). Design of solar-powered aeration system for shrimp ponds of farmers in Thailand. European Journal of Electrical Engineering, Vol. 21, No. 6, pp. 539-546. https://doi.org/10.18280/ejee.210608
113	Bharathi, C.R.	Design of new asymmetrical cascaded multilevel inverter with reduced number of switches	MLI, FFT, solar, wind, MCM	21, 6, 547-552	https://doi.org/10.18280/ejee.210609	Bharathi, C.R. (2019). Design of new asymmetrical cascaded multilevel inverter with reduced number of switches. European Journal of Electrical Engineering, Vol. 21, No. 6, pp. 547-552. https://doi.org/10.18280/ejee.210609
114	Cucumo, M.A., Ferraro, V., Kaliakatsos, D., Nicoletti, F.	Study of kinematic system for solar tracking of a linear Fresnel plant to reduce end losses	linear fresnel reflectors, stepper, biaxial movement, solar tracking	21, 5, 393-400	https://doi.org/10.18280/ejee.210501	Cucumo, M.A., Ferraro, V., Kaliakatsos, D., Nicoletti, F. (2019). Study of kinematic system for solar tracking of a linear Fresnel plant to reduce and losses. European Journal of Electrical Engineering, Vol. 21, No. 5, pp. 393-400. https://doi.org/10.18280/ejee.210501
115	Pankratov, E.L.	An approach to manufacture small multiplexer with dense field-effect transistors	logic gate, multiplexer, field-effect transistors, mismatch-induced stress	21, 5, 401-414	https://doi.org/10.18280/ejee.210502	Pankratov, E.L. (2019). An approach to manufacture small multiplexer with dense field-effect transistors. European Journal of Electrical Engineering, Vol. 21, No. 5, pp. 401-414. https://doi.org/10.18280/ejee.210502
116	Wang, L., Wang, S.G., Wu, D.L., Liu, H.H., Wang, J.	An evaluation method for harmonic emission level based on principal component regression	harmonic emission level, evaluation, Principal Component Regression (PCR), power system	21, 5, 415-420	https://doi.org/10.18280/ejee.210503	Wang, L., Wang, S.G., Wu, D.L., Liu, H.H., Wang, J. (2019). An evaluation method for harmonic emission level based on principal component regression. European Journal of Electrical Engineering, Vol. 21, No. 5, pp. 415-420. https://doi.org/10.18280/ejee.210503
117	Moussa, O., Abdessemed, R., Benaggoune, S., Benguesmia, H.	Sliding mode control of a grid-connected brushless doubly fed induction generator	Brushless Doubly Fed Induction Generator (BDFIG), vector control, active and reactive power, back-to-back converter, sliding mode control	21, 5, 421-430	https://doi.org/10.18280/ejee.210504	Moussa, O., Abdessemed, R., Benaggoune, S., Benguesmia, H. (2019). Sliding mode control of a grid-connected brushless doubly fed induction generator. European Journal of Electrical Engineering, Vol. 21, No. 5, pp. 421-430. https://doi.org/10.18280/ejee.210504
118	Walid, H., Djamel, R., Sami, M., Elbaki, D.A.	Fractional order direct torque control of permanent magnet synchronous machine	Direct Torque Control (DTC), Permanent Magnet Synchronous Machine (PMSM), fractional order PID controller, classical PID controller, bode 's ideal transfer function, comparison	21, 5, 431-438	https://doi.org/10.18280/ejee.210505	Walid, H., Djamel, R., Sami, M., Elbaki, D.A. (2019). Fractional order direct torque control of permanent magnet synchronous machine. European Journal of Electrical Engineering, Vol. 21, No. 5, pp. 431-438. https://doi.org/10.18280/ejee.210505
119	Xiao, L.Q.	Optimization of hessian matrix in modified newton-raphson algorithm for electrical resistance tomography	hessian matrix, regularization factor, Ill- Posedness, I'-refinement, element subdivision	21, 5, 439-446	https://doi.org/10.18280/ejee.210506	Xiao, L.Q. (2019). Optimization of hessian matrix in modified newton-raphson algorithm for electrical resistance tomography. European Journal of Electrical Engineering, Vol. 21, No. 5, pp. 439-446. https://doi.org/10.18280/ejee.210506
120	Al-Hadidi, A., Duwairi, H.	Wind turbine performance under fluctuating pressure gradient of laminar and turbulent air flows	fluctuations, wind turbine, output power, turbulence intensity, eddy viscosity, boundary layer thickness	21, 5, 447-456	https://doi.org/10.18280/ejee.210507	Al-Hadidi, A., Duwairi, H. (2019). Wind turbine performance under fluctuating pressure gradient of laminar and turbulent air flows. European Journal of Electrical Engineering, Vol. 21, No. 5, pp. 447-456. https://doi.org/10.18280/ejee.210507
121	Yaichi, I., Semmah, A., Wira, P.	Direct power control of a wind turbine based on doubly fed induction generator	Pulse Width Modulation (PWM), Doubly Fed Induction Generator (DFIG), Field Oriented Control (FOC), Direct Power Control (DPC)	21, 5, 457-464	https://doi.org/10.18280/ejee.210508	Yaichi, I., Semmah, A., Wira, P. (2019). Direct power control of a wind turbine based on doubly fed induction generator. European Journal of Electrical Engineering, Vol. 21, No. 5, pp. 457-464. https://doi.org/10.18280/ejee.210508
122	Zhang, X., Lu, W.R., Miao, Z.C., Jiang, Z.Y., Xu, W.B.	Iterative learning synchronized control of multi-leaf collimator based on cross- coupled control	Iterative learning control, synchronized control, cross-coupled control, multi-leaf collimator, conformal radiotherapy	21, 5, 465-470	https://doi.org/10.18280/ejee.210509	Zhang, X., Lu, W.R., Miao, Z.C., Jiang, Z.Y., Xu, W.B. (2019). Iterative learning synchronized control of multi-leaf collimator based on cross-coupled control. European Journal of Electrical Engineering, Vol. 21, No. 5, pp. 465-470. https://doi.org/10.18280/ejee.210509
123	Ryad, A.K., Atallah, A.M., Zekry, A.	Photovoltaic array reconfiguration under partial shading based on integer link matrix and harmony search	Maximum Power Point Tracking (MPPT), Global Maximum Power Point (MPP), metaheuristic techniques, binary link matrix, irradiance mismatch index	21, 5, 471-477	https://doi.org/10.18280/ejee.210510	Ryad, A.K., Atallah, A.M., Zekry, A. (2019). Photovoltaic array reconfiguration under partial shading based on integer link matrix and harmony search. European Journal of Electrical Engineering, Vol. 21, No. 5, pp. 471-477. https://doi.org/10.18280/ejee.210510
124	Saleh, S., Farag, A.S.	Evaluation of the control strategy performance for isolated variable-speed wind turbine using different wind speed models at different load cases under balanced/unbalanced excitation	Variable Speed Wind Turbine (VSWT), Self-Excited Induction Generator (SEIG), Maximum Power Point Tracking (MPPT), torque control, pitch angle control, realistic wind model, random wind model, balanced/unbalanced excitation	21, 4, 341-353	https://doi.org/10.18280/ejee.210401	Saleh, S., Farag, A.S. (2019). Evaluation of the control strategy performance for isolated variable-speed wind turbine using different wind speed models at different load cases under balanced variablanced excitation. European Journal of Electrical Engineering, Vol. 21, No. 4, pp. 341-353. https://doi.org/10.18280/ejee.210401
125	Hardiantono, D., Mangera, P.	Comparison using express feeder and capacitor bank allocation to corrective voltage level on primary distribution feeder	power loss, power flow, ETAP, drop voltage, power flow	21, 4, 355-359	https://doi.org/10.18280/ejee.210402	Hardiantono, D., Mangera, P. (2019). Comparison using express feeder and capacitor bank allocation to corrective voltage level on primary distribution feeder. European Journal of Electrical Engineering, Vol. 21, No. 4, pp. 355-359. https://doi.org/10.18280/ejee.210402
126	Bandar, L.D.N., Mozaffarilegha, M.	Decentralized power management of a hybrid microgrid consisting of solar panel and storage device	energy management system, micro grid, multi agent system, optimization, genetic algorithm	21, 4, 361-365	https://doi.org/10.18280/ejee.210403	Bandar, L.D.N., Mozaffarilegha, M. (2019). Decentralized power management of a hybrid microgrid consisting of solar panel and storage device. European Journal of Electrical Engineering, Vol. 21, No. 4, pp. 361-365. https://doi.org/10.18280/ejee.210403

127	(2019). Comparison of different	Comparison of different multilevel voltage source inverter topologies on induction motor energy quality	Modular Multilevel Voltage Source Inverter (MMVSI), Neutral Point Clamped Voltage Source Inverter (NPCVSI), Three-Phase Induction Motor (3-IM), Phase Disposition Pulse Width Modulation (PD-PWM)	21, 4, 367-372	https://doi.org/10.18280/ejce.210404	Yahiaoui, A., Iffouzar, K., Himour, K., Ghedamsi, K. (2019). Comparison of different multilevel voltage source inverter topologies on induction motor energy quality. European Journal of Electrical Engineering. Vol. 21, No. 4, pp. 367-372. https://doi.org/10.18280/ejee.210404
128	Jayaraju, G., Rao, G.S.	A new optimized ANN algorithm based single phase grid connected PV-wind system using single switch high gain DC- DC converter	Distributed Generation, PV System, PMSG, Luo Converter, Fuzzy MPPT Algorithm, ANN Algorithm	21, 4, 373-381	https://doi.org/10.18280/ejee.210405	Jayaraju, G., Rao, G.S. (2019). A new optimized ANN algorithm based single phase grid connected PV-wind system using single switch high gain DC-DC converter. European Journal of Electrical Engineering, Vol. 21, No. 4, pp. 373-381. https://doi.org/10.18280/ejee.210405
129	Chen, L., Han, W., Huang, Y.H., Cao, X., Xu, Z.K.	Reconfiguration of partially shaded photovoltaic arrays	Partial Shading, Photovoltaic (PV) Array, Reconfiguration, Fruit Fly Optimization Algorithm (FOA)	21, 4, 383-392	https://doi.org/10.18280/ejee.210406	Chen, L., Han, W., Huang, Y.H., Cao, X., Xu, Z.K. (2019). Reconfiguration of partially shaded photovoltaic arrays. European Journal of Electrical Engineering, Vol. 21, No. 4, pp. 383-392. https://doi.org/10.18280/cjee.210406
130	Mandi, B., Menni, Y., Chamkha, A.J., Lorenzini, G., Kaid, N., Bibi-Triki, N., Bensafi, M., Ameur, H., Sahel, D.	Effect of various physical parameters on the productivity of the hybrid distiller - in the time of distillation extension at night	hybrid distillation, modeling, hybrid coupling with a cylindro parabolic concentrator, photovoltaic generator, thermal conversion, electrical conversion	21, 3, 265-271	https://doi.org/10.18280/ejee.210301	Mandi, B., Menni, Y., Chamkha, A.J., Lorenzini, G., Kaid, N., Bibi-Triki, N., Bensafi, M., Ameur, H., Sahel, D. (2019). Effect of various physical parameters on the productivity of the hybrid distiller - in the time of distillation extension at night. European Journal of Electrical Engineering, Vol. 21, No. 3, pp. 265-271. https://doi.org/10.18280/eje.210301
131	Krčmařík, D., Petrů, M., Moezzi, R.	Innovative IoT sensing and communication unit in agriculture	internet of thing, smart agriculture, tensometer, precision agriculture, GSM, big data	21, 3, 273-278	https://doi.org/10.18280/ejce.210302	Krémařík, D., Petrů, M., Moezzi, R. (2019). Innovative IoT sensing and communication unit in agriculture. European Journal of Electrical Engineering, Vol. 21, No. 3, pp. 273-278. https://doi.org/10.18280/ejee.210302
132	Zhang, T.R., Xu, Y.J., Shi, L.	A submodule topology for modular multilevel converter with self-cleaning ability of direct current fault	Modular Multilevel Converter (MMC), Similarity Half-Bridge Submodule (SHBSM), Self-Cleaning, High-Voltage Direct Current (HVDC) Transmission	21, 3, 279-284	https://doi.org/10.18280/ejce.210303	Zhang, T.R., Xu, Y.J., Shi, L. (2019). A submodule topology for modular multilevel converter with self-cleaning ability of direct current fault. European Journal of Electrical Engineering, Vol. 21, No. 3, pp. 279-284. https://doi.org/10.18280/ejee.210303
133	Sari-Ali, I., Benyoucef, B., Chikh-Bled, B., Menni, Y., Chamkha, A.J., Lorenzini, G.	Study of models using one or two exponentials to simulate the characteristic current-voltage of silicon solar cells	solar cells with high efficiency and low cost, solar cell efficiency, characteristic current-voltage of solar cell, production of electricity, silicon	21, 3, 285-289	https://doi.org/10.18280/ejee.210304	Sari-Ali, I., Benyoucef, B., Chikh-Bled, B., Menni, Y., Chamkha, A.J., Lorenzini, G. (2019). Study of models using one or two exponentials to simulate the characteristic current-voltage of silicon solar cells. European Journal of Electrical Engineering, Vol. 21, No. 3, pp. 285-289. https://doi.org/10.18280/ejee.210304
134	Chen, Q., Lv, G., Zhang, R.L., Tang, H.D., Luo, Z.Y.	Optimal transmission of high-frequency voltage signals under remote control	transmission lines, transmission signals, optimization, high-frequency voltage, suppression	21, 3, 291-296	https://doi.org/10.18280/ejee.210305	Chen, Q., Lv, G., Zhang, R.L., Tang, H.D., Luo, Z.Y. (2019). Optimal transmission of high-frequency voltage signals under remote control. European Journal of Electrical Engineering, Vol. 21, No. 3, pp. 291-296. https://doi.org/10.18280/ejee.210305
135	Khan, M.J.	Artificial intelligence based maximum power point tracking controller for fuel cell system	PEMFC, De-De Power Converter, MPPT Methods, FL Controller	21, 3, 297-302	https://doi.org/10.18280/ejee.210306	Khan, M.J. (2019). Artificial intelligence based maximum power point tracking controller for fuel cell system. European Journal of Electrical Engineering, Vol. 21, No. 3, pp. 297-302. https://doi.org/10.18280/ejee.210306
136	Shen, Z.J., Wang, R.G.	Design and application of an improved least mean square algorithm for adaptive filtering	Adaptive Filtering, Least Mean Square (LMS) algorithm, variable step size, noise cancelation	21, 3, 303-307	https://doi.org/10.18280/ejee.210307	Shen, Z.J., Wang, R.G. (2019). Design and application of an improved least mean square algorithm for adaptive filtering. European Journal of Electrical Engineering, Vol. 21, No. 3, pp. 303-307. https://doi.org/10.18280/ejee.210307
137	Saleh, S.M., Farag, A.S.	Review fixed-speed wind turbine control strategies for direct grid connection	Fixed Speed Wind Turbine (FSWT), gear ration control, excitation capacitor control, realistic wind model, squirrel cage generator	21, 3, 309-315	https://doi.org/10.18280/ejee.210308	Saleh, S.M., Farag, A.S. (2019). Review fixed-speed wind turbine control strategies for direct grid connection. European Journal of Electrical Engineering, Vol. 21, No. 3, pp. 309-315. https://doi.org/10.18280/ejee.210308
138	Chen, L., Han, W., Huang, Y.H., Cao, X.	Online fault diagnosis for photovoltaic modules based on probabilistic neural network	Photovoltaic (PV) Modules, Fault Diagnosis, Probabilistic Neural Network (PNN), backpropagation neural network (BPNN)	21, 3, 317-325	https://doi.org/10.18280/ejee.210309	Chen, L., Han, W., Huang, Y.H., Cao, X. (2019). Online fault diagnosis for photovoltaic modules based on probabilistic neural network. European Journal of Electrical Engineering, Vol. 21, No. 3, pp. 317-325. https://doi.org/10.18280/ejee.210309
139	Manukonda, D., Gorantla, S.R.	Design and comparison of standalone bladeless wind solar hybrid system with the conventional standalone wind solar hybrid system	Bladeless Standalone Wind Hybrid System, Conventional Hybrid System, Bladeless Wind Turbine, Vortex Vibrations	21, 3, 327-332	https://doi.org/10.18280/ejce.210310	Manukonda, D., Gorantla, S.R. (2019). Design and comparison of standalone bladeless wind solar hybrid system with the conventional standalone wind solar hybrid system. European Journal of Electrical Engineering, Vol. 21, No. 3, pp. 327-332. https://doi.org/10.18280/ejec.210310
140	Medjmadj, S.	Fault tolerant control of pmsm drive using luenberger and adaptive back-EMF observers	PMSM, Fault Tolerant Control (FTC), mechanical sensor failure, voting algorithm, sensorless control	21, 3, 333-339	https://doi.org/10.18280/ejce.210311	Medjmadj, S. (2019). Fault tolerant control of pmsm drive using luenberger and adaptive Back-EMF observers. European Journal of Electrical Engineering, Vol. 21, No. 3, pp. 333-339. https://doi.org/10.18280/ejee.210311
141	Herizi, O., Barkat, S.	Backstepping control associated to modified space vector modulation for quasi z-source inverter fed by a PEMFC	quasi z-source inverter, modified space vector modulation, backstepping control, fuel cell	21, 2, 125-132	https://doi.org/10.18280/ejee.210201	Herizi, O., Barkat, S. (2019). Backstepping control associated to modified space vector modulation for quasi z-source inverter fed by a PEMFC. European Journal of Electrical Engineering, Vol. 21, No. 2, pp. 125-132. https://doi.org/10.18280/ejec.210201
142	Lin, G.W., Wang, X.L.	Multi-objective optimization of combined cooling, heating and power system	multi-objective optimization, Combined Cooling, Heating and Power (CCHP) System, Artificial Bee Colony (ABC) Algorithm	21, 2, 133-138	https://doi.org/10.18280/ejce.210202	Lin, G.W., Wang, X.L. (2019). Multi-objective optimization of combined cooling, heating and power system. European Journal of Electrical Engineering, Vol. 21, No. 2, pp.133-138. https://doi.org/10.18280/ejee.210202
143	Rayalla, R., Ambati, R.S., Gara, B.U.B.	An improved fractional filter fractional IMC-PID controller design and analysis for enhanced performance of non-integer order plus time delay processes	internal model control, robustness, fragility, fractional ime filter structure, uncertainty	21, 2, 139-147	https://doi.org/10.18280/ejee.210203	Rayalla, R., Ambati, R.S., Gara, B.U.B. (2019). An improved fractional filter fractional IMC-PID controller design and analysis for enhanced performance of non-integer order plus time delay processes. European Journal of Electrical Engineering, Vol. 21, No. 2, pp. 139-147. https://doi.org/10.18280/ejee.210203
144	Griche, I., Messalti, S., Saoudi, K., Touafek, M.Y.	A new adaptive neuro-fuzzy inference system (ANFIS) and pi controller to voltage regulation of power system equipped by wind turbine	power network, Distributed Generator (DG), simulation, intelligent controller	21, 2, 149-155	https://doi.org/10.18280/ejee.210204	Griche, I., Messalti, S., Saoudi, K., Touafek, M.Y. (2019). A new adaptive neuro-fuzzy inference system (ANFIS) and PI controller to voltage regulation of power system equipped by wind turbine. European Journal of Electrical Engineering, Vol. 21, No. 2, pp. 149-155. https://doi.org/10.18280/ejec.210204

145	Wang, X.D., Zhu, J.	Research and applications of high-voltage pulse discharge crushing	High-Voltage Pulse Discharge (HVPD), crushing, engineering applications, fuse explosion method, electrohydraulie effect method	21, 2, 157-163	https://doi.org/10.18280/ejee.210205	Wang, X.D., Zhu, J. (2019). Research and applications of high- voltage pulse discharge crushing. European Journal of Electrical Engineering, Vol. 21, No. 2, pp. 157-163. https://doi.org/10.18280/ejee.210205
146	Ghaitaoui, T., Benatiallah, A., Khachab, H., Sahli, Y., Koussa, K.	Neural network modeling and experimental evaluation of organic solar panel performance in algerian sahara	organic solar cells, artificial neural network, electrical parameters, voltage- current characteristic, PV panel	21, 2, 165-169	https://doi.org/10.18280/ejee.210206	Ghaitaoui, T., Benatiallah, A., Khachab, H., Sahli, Y., Koussa, K. (2019). Neural network modeling and experimental evaluation of organic solar panel performance in algerian sahara. European Journal of Electrical Engineering, Vol. 21, No. 2, pp. 165-169. https://doi.org/10.18280/ejee.210206
147	Gannoun, R., Hassen, W., Pérez, A.T., Borjini, M.N.	Numerical study of electro-convection and electro-thermo-convection in solar chimney geometry	charge injection, electro-convection, electro-thermo-convection, solar chimney geometry, numerical method	21, 2, 171-177	https://doi.org/10.18280/ejee.210207	Gannoun, R., Hassen, W., Pérez, A.T., Borjini, M.N. (2019). Numerical study of electro-convection and electro-thermo- convection in solar chimney geometry. European Journal of Electrical Engineering, Vol. 21, No. 2, pp. 171-177. https://doi.org/10.18280/ejee.210207
148	Liu, L., Wang, S.T.	Improving low voltage ride-through with STATCOM and sdbr for wind turbine with squirrel-cage induction generator	low voltage ride-through, series dynamic breaking resistor, STATCOM, squirrel- cage induction generator	21, 2, 179-187	https://doi.org/10.18280/ejee.210208	Liu, L., Wang, S.T. (2019). Improving low voltage ride-through with STATCOM and SDBR for wind turbine with squirrel-cage induction generator. European Journal of Electrical Engineering, Vol. 21, No. 2, pp. 179-187. https://doi.org/10.18280/ejee.210208
149	Lenin, K.	True power loss reduction by chemical reaction optimization algorithm	optimal reactive power, transmission loss, chemical reaction	21, 2, 189-192	https://doi.org/10.18280/ejee.210209	Lenin, K. (2019). True power loss reduction by chemical reaction optimization algorithm. European Journal of Electrical Engineering, Vol. 21, No. 2, pp. 189-192. https://doi.org/10.18280/cjee.210209
150	Wu, D.X., Fan, W.P., Xue, F., Jiang, G.S.	A cooperative spectrum sensing algorithm to minimize the sensing overhead of cognitive radio system	Cognitive Radio (CR), spectrum sensing, sensing overhead, sensing duration, cognitive users	21, 2, 193-197	https://doi.org/10.18280/ejee.210210	Wu, D.X., Fan, W.P., Xue, F., Jiang, G.S. (2019). A cooperative spectrum sensing algorithm to minimize the sensing overhead of cognitive radio system. European Journal of Electrical Engineering, Vol. 21, No. 2, pp. 193-197. https://doi.org/10.18280/ejee.210210
151	Jeyasudha, S., Geethalakshmi, B.	A novel switched capacitor boost derived multilevel hybrid converter modeling and analysis	boost converter, boost derived hybrid converter, multilevel inverter, switched capacitor converter, PI controller	21, 2, 199-206	https://doi.org/10.18280/ejee.210211	Jeyasudha, S., Geethalakshmi, B. (2019). A novel switched capacitor boost derived multilevel hybrid converter modeling and analysis. European Journal of Electrical Engineering, Vol. 21, No. 2, pp. 199-206. https://doi.org/10.18280/ejee.210211
152	Bapat, S.M., Gokak, G.D.	Exergetic evaluation and optimization of combined heat and power (CHP) plant of 20.7 mw capacities under varying load conditions: a case study	bagasse, biomass combined heat and power, cogeneration, exergy analysis, sugar	21, 2, 207-215	https://doi.org/10.18280/ejee.210212	Bapat, S.M., Gokak, G.D. (2019). Exergetic evaluation and optimization of combined heat and power (CHP) plant of 20.7 MW capacities under varying load conditions: A case study. European Journal of Electrical Engineering, Vol. 21, No. 2, pp. 207-215. https://doi.org/10.18280/ejee.210212
153	Zhang, Y.	Energy efficiency management and route optimization for wireless sensor network under the ubiquitous power internet of things	Ubiquitous Power Internet of Things (UPIoT), energy consumption model, node quality, route optimization	21, 2, 217-222	https://doi.org/10.18280/ejee.210213	Zhang, Y. (2019). Energy efficiency management and route optimization for wireless sensor network under the ubiquitous power internet of things. European Journal of Electrical Engineering, Vol. 21, No. 2, pp. 217-222. https://doi.org/10.18280/ejee.210213
154	Parenden, D., Hariyanto.	Simulation of photovoltaic concentration with fresnel lens using simulink matlab	photovoltaic, solar irradiation, spectrum light, fresnle lens, output daya, efisiensi	21, 2, 223-227	https://doi.org/10.18280/ejee.210214	Parenden, D., Hariyanto. (2019). Simulation of photovoltaic concentration with Fresnel lens using Simulink MATLAB. European Journal of Electrical Engineering, Vol. 21, No. 2, pp. 223-227. https://doi.org/10.18280/ejee.210214
155	Asma, T., Mohamed, T.	A comparative study between a perturb and observe based passivity and a classical perturb and observe based PI for the thermoelectric generator	thermoelectric generator, MPPT, DC/DC converter, passivity based control, euler lagrange	21, 2, 229-234	https://doi.org/10.18280/ejce.210215	Asma, T., Mohamed, T. (2019). A comparative study between a perturb and observe based passivity and a classical perturb and observe based P1 for the thermoelectric generator. European Journal of Electrical Engineering, Vol. 21, No. 2, pp. 229-234. https://doi.org/10.18280/ejee.210215
156	Zhang, J., Liu, B.X., Wu, Y.Q., Yi, H.C.	Numerical simulation and anomalies qualification based on ground-well transient electromagnetics method	Ground-Well Transient Electromagnetics (G-W TEM), linear conductor, observation mode, curve feature	21, 2, 235-240	https://doi.org/10.18280/ejee.210216	Zhang, J., Liu, B.X., Wu, Y.Q., Yi, H.C. (2019). Numerical simulation and anomalies qualification based on ground-well transient electromagnetics method. European Journal of Electrical Engineering, Vol. 21, No. 2, pp. 235-240. https://doi.org/10.18280/ejee.210216
157	Berkani, A., Negadi, K., Allaoui, T., Mezouar, A., Denai, M.	Imposed switching frequency direct torque control of induction machine using five level flying capacitors inverter	DTC, control of switching frequency, induction motor, multi-level inverter and flying capacitors inverter	21, 2, 241-248	https://doi.org/10.18280/ejee.210217	Berkani, A., Negadi, K., Allaoui, T., Mezouar, A., Denai, M. (2019). Imposed switching frequency direct torque control of induction machine using five level flying capacitors inverter. European Journal of Electrical Engineering, Vol. 21, No. 2, pp. 241-248. https://doi.org/10.18280/ejee.210217
158	Xiao, H.Y., Li, R.	A farah charging system based on constant power supply	farah capacitor, Proportional-Integral- Derivative (PID) Control, Pulse-Width Modulation (PWM), constant power supply	21, 2, 249-254	https://doi.org/10.18280/ejee.210218	Xiao, H.Y., Li, R. (2019). A Farah charging system based on constant power supply. European Journal of Electrical Engineering, Vol. 21, No. 2, pp. 249-254. https://doi.org/10.18280/ejee.210218
159	Fathabadi, F.R., Molavi, A.	Black-box identification and validation of an induction motor in an experimental application	Slip Controller, ARMAX, PRBS, Dq Voltages, Drive, FOC, Identification Algorithm	21, 2, 55-263	https://doi.org/10.18280/ejee.210219	Fathabadi, F.R., Molavi, A. (2019). Black-box identification and validation of an induction motor in an experimental application. European Journal of Electrical Engineering, Vol. 21, No. 2, pp. 255-263. https://doi.org/10.18280/ejee.210219
160	Chikhi, N., Bendaoud, A.	Evaluation of conducted disturbances generated by the chopper-rectifier association propagating to the electrical network	nawel chikhi, abdelber bendaoud	21, 1, 1-6	https://doi.org/10.18280/ejee.210101	Chikhi, N., Bendaoud, A. (2019). Evaluation of conducted disturbances generated by the chopper-rectifier association propagating to the electrical network, European Journal of Electrical Engineering, Vol. 21, No. 1, pp. 1-6. https://doi.org/10.18280/ejee.210101
161	Nuthalapati, B., Sinha, U.K.	Location of downed or broken power line fault not touching the ground	Power Line Communication (PLC), PLG (Power Line Guardian), High Impedance Faults (HIF's), fault current	21, 1, 7-10	https://doi.org/10.18280/ejee.210102	Nuthalapati, B., Sinha, U.K. (2019). Location of downed or broken power line fault not touching the ground, European Journal of Electrical Engineering, Vol. 21, No. 1, pp. 7-10. https://doi.org/10.18280/ejee.210102
162	Huang, S., Cheng, H., Li, Z.D., Zhang, H.Z., Li, J.L., Guo, J.Y.	A novel invulnerability index for invulnerability assessment of complex power network	complex power network, invulnerability assessment, invulnerability value, source-load pair, complex network theory	21, 1, 11-17	https://doi.org/10.18280/ejce.210103	Huang, S., Cheng, H., Li, Z.D., Zhang, H.Z., Li, J.L., Guo, J.Y. (2019). A novel invulnerability index for invulnerability assessment of complex power network, European Journal of Electrical Engineering, Vol. 21, No. 1, pp. 11-17. https://doi.org/10.18280/cjec.210103
_						

Г						
163	Ilhem, D., Walid, H., Djamel, R.	Sizing and control of a typical 6/4 switching reluctance motor	Switched Reluctance Motor 6/4, Direct Torque Control (DTC), Field-Oriented Control (FOC), Fractional-Order PlaDb Controller	21, 1, 19-25	https://doi.org/10.18280/ejee.210104	Ilhem, D., Walid, H., Djamel, R. (2019). Sizing and control of a typical 6/4 switching reluctance motor, European Journal of Electrical Engineering, Vol. 21, No. 1, pp. 19-25. https://doi.org/10.18280/ejee.210104
164	Al-Qallab, B., Duwairi, H.	The effects of fluctuating air streams on the output of a wind turbine	boundary layer, electricity production, surface topography, velocity fluctuations, wind energy	21, 1, 27-34	https://doi.org/10.18280/ejce.210105	Al-Qallab, B., Duwairi, H. (2019). The effects of fluctuating air streams on the output of a wind turbine, European Journal of Electrical Engineering, Vol. 21, No. 1, pp. 27-34. https://doi.org/10.18280/ejee.210105
165	Yin, S.	Estimation of rotor position in brushless direct current motor by memory attenuated extended kalman filter	Brushless Direct Current (DC) motor, kalman filter, sensorless controller, commutation	21, 1, 35-42	https://doi.org/10.18280/ejee.210106	Yin, S. (2019). Estimation of rotor position in brushless direct current motor by memory attenuated extended Kalman filter, European Journal of Electrical Engineering, Vol. 21, No. 1, pp. 35- 42. https://doi.org/10.18280/ejee.210106
166	Mourad, T., Rached, G., Hatem, E.	Modeling of new architecture of photovoltaic generator based on a-si: H/c- si materials	tandem solar cells, photovoltaic module, concentrator, focus, shading	21, 1, 43-47	https://doi.org/10.18280/ejee.210107	Mourad, T., Rached, G., Hatem, E. (2019). Modeling of new architecture of photovoltaic generator based on a-Si: H/c-Si materials , European Journal of Electrical Engineering, Vol. 21, No. 1, pp. 43-47. https://doi.org/10.18280/ejee.210107
167	Ayad, A.N.E.I., Krika, W., Boudjella, H., Benhamida, F., Horch, A.	Simulation of the electromagnetic field in the vicinity of the overhead power transmission line	electromagnetic pollution, power line, transient, finite element method, emission	21, 1, 49-53	https://doi.org/10.18280/ejce.210108	Ayad, A.N.E.I., Krika, W., Boudjella, H., Benhamida, F., Horch, A. (2019). Simulation of the electromagnetic field in the vicinity of the overhead power transmission line. European Journal of Electrical Engineering, Vol. 21, No. 1, pp. 49-53. https://doi.org/10.18280/ejee.210108
168	Zheng, J.H., Wang, D.Y., Geng, Z.X.	Coal mine video data detail enhancement algorithm based on 10 norm and low rank analysis	coal mine monitoring video, L0 norm, low rank analysis, enhancement algorithm	21, 1, 55-60	https://doi.org/10.18280/ejce.210109	Zheng, J.H., Wang, D.Y., Geng, Z.X. (2019). Coal mine video data detail enhancement algorithm based on 10 norm and low rank analysis, European Journal of Electrical Engineering, Vol. 21, No. 1, pp. 55-60. https://doi.org/10.18280/ejee.210109
169	Lokriti, A., Salhi, I., Doubabi, S.	DSPace based implementation of DRFOC using hysteresis stator flux controllers for IM	Induction Motor, Direct Rotor Field Oriented Control, Flux Distortion, Reduced Switching Table	21, 1, 61-66	https://doi.org/10.18280/ejee.210110	Lokriti, A., Salhi, I., Doubabi, S. (2019). DSPace based implementation of DRFOC using hysteresis stator flux controllers for IM, European Journal of Electrical Engineering, Vol. 21, No. 1, pp. 61-66. https://doi.org/10.18280/cjec.210110
170	Irshad, T., Ishak, D., Baloch, M.H.	Comparative analysis of rectangular and circular four-resonator coil system for wireless power transfer using magnetic resonance coupling technique	wireless power transfer, mutual inductance, coupling coefficient, power transmission efficiency, circular coil, rectangular coil	21, 1, 67-73	https://doi.org/10.18280/ejce.210111	Irshad, T., Ishak, D., Baloch, M.H. (2019). Comparative analysis of rectangular and circular four-resonator coil system for wireless power transfer using imagnetic resonance coupling technique, European Journal of Electrical Engineering, Vol. 21, No. 1, pp. 67-73. https://doi.org/10.18280/ejee.210111
171	Hu, W., Li, H.H., Hu, Y.W., Yao, W.H.	A blockchain-based spot market transaction model for energy power supply and demand network	spot power market, Intraday Time-Of- Use (TOU) power price, blockchain, energy power supply and demand network (EPSDN), multi-objective search algorithm	21, 1, 75-83	https://doi.org/10.18280/ejce.210112	Hu, W., Li, H.H., Hu, Y.W., Yao, W.H. (2019). A blockchain- based spot market transaction model for energy power supply and demand network, European Journal of Electrical Engineering. Vol. 21, No. 1, pp. 75-83. https://doi.org/10.18280/ejee.210112
172	Bendaikha, A., Saad, S., Abdou, A., Defdaf, M., Laamari, Y.	A study of SVM-DTC and conventional DTC for induction motors drive fed by five-level inverter	space vector algorithm, switching frequency, harmonic distortion, stator flux, diode clamped inverter, reference voltages, pi controllers, torque fluctuations, duration of the commutations	21, 1, 85-91	https://doi.org/10.18280/ejce.210113	Bendaikha, A., Saad, S., Abdou, A., Defdaf, M., Laamari, Y. (2019). A Study of SVM-DTC and conventional DTC for induction motors drive fed by five-level inverter, European Journal of Electrical Engineering, Vol. 21, No. 1, pp. 85-91. https://doi.org/10.18280/ejee.210113
173	Maouedj, R., Benmedjahed, M., Saba, D., Mamemri, A., Barbaoui, B., Bezari S.	Experimental analysis of a stand-alone wind-photovoltaic hybrid system in the sahara desert	hybrid system, wind, photovoltaic, battery, load	21, 1, 93-97	https://doi.org/10.18280/ejee.210114	Maouedj, R., Benmedjahed, M., Saba, D., Mamemri, A., Barbaoui, B., Bezari S. (2019). Experimental analysis of a stand-alone wind-photovoltaic hybrid system in the Sahara desert, European Journal of Electrical Engineering, Vol. 21, No. 1, pp. 93-97. https://doi.org/10.18280/ejee.210114
174	Zhang, T.F., Li, Z., Chen, Z.H., Jing, X.	Design and performance verification of an optimized multi-agent system	Multi-Agent System (MAS), socket- based connection, optimized serial line internet protocol (O-SLIP), network saturation, agent load capacity, performance analysis	21, 1, 99-105	https://doi.org/10.18280/ejce.210115	Zhang, T.F., Li, Z., Chen, Z.H., Jing, X. (2019). Design and performance verification of an optimized multi-agent system, European Journal of Electrical Engineering, Vol. 21, No. 1, pp. 99-105. https://doi.org/10.18280/ejee.210115
175	Zhang, T.Y., Li, Y.D.	A simplified pulse width modulation algorithm for model prediction of cascade static synchronous compensator	Cascade Static Synchronous Compensator (STATCOM), Reactive Power Compensation (RPC), Pulse Width Modulation (PWM), Virtual Flux (VF), DC-side voltage balancing	21, 1, 107-113	https://doi.org/10.18280/ejee.210116	Zhang, T.Y., Li, Y.D. (2019). A Simplified Pulse Width Modulation Algorithm for Model Prediction of Cascade Static Synchronous Compensator, European Journal of Electrical Engineering, Vol. 21, No. 1, pp. 107-113. https://doi.org/10.18280/ejee.210116
176	Samra, C., Djallel, Z., Sahraoui, K., Driss, S., Ahmed, B.	Cascading heat transformation process for power generation	absorption, adsorption, joule cycle, organic rankine cycle, power generation, heat transformer, temperature, solar collector, working fluid	21, 1, 115-123	https://doi.org/10.18280/ejce.210117	Samra, C., Djallel, Z., Sahraoui, K., Driss, S., Ahmed, B. (2019). Cascading Heat Transformation Process for Power Generation, European Journal of Electrical Engineering, Vol. 21, No. 1, pp. 115-123. https://doi.org/10.18280/ejee.210117
177	Di Bella, G., Sapienza, A., Vasta, S., Lombardo, G.	Design of a geothermal plant to heat a waterpark swimming pool: Case study of tramutola (Basilicata, Italy)	geothermal, heating, design	20, 5-6, 539-557	https://doi.org/10.3166/EJEE.20.539-557	Di Bella, G., Sapienza, A., Vasta, S., Lombardo, G. (2018). Design of a geothermal plant to heat a waterpark swimming pool: Case study of tramutola (Basilicata, Italy). European Journal of Electrical Engineering, Vol. 20, No. 5-6, pp. 539-557. https://doi.org/10.3166/EJEE.20.539-557
178	Rao, D.S.N.M., Kumar, N.	Comparable investigation on TLBO algorithm for power system optimization	Valve Point Loading Effects, Non- Convex, T & L based Optimization, PSO, DE, HSA, Economic Dispatch	20, 5-6, 559-571	https://doi.org/10.3166/EJEE.20.559-571	Rao, D.S.N.M., Kumar, N. (2018). Comparable investigation on TLBO algorithm for power system optimization. European Journal of Electrical Engineering. Vol. 20, No. 5-6, pp. 559-571. https://doi.org/10.3166/EJEE.20.559-571
179	Shao, Z.H., Zhong, Z.X., Lin, W.Z.	Reliability analysis and matpower simulation of IEEE14 node based on mixed entropy measure	Mixed Entropy, Chain Failures, Vulnerability, Reliability Analysis	20, 5-6, 573-588	https://doi.org/10.3166/EJEE.20.573-588	Shao, Z.H., Zhong, Z.X., Lin, W.Z. (2018). Reliability analysis and matpower simulation of IEEE14 node based on mixed entropy measure. European Journal of Electrical Engineering, Vol. 20, No. 5-6, pp. 573-588. https://doi.org/10.3166/EJEE.20.573-588
180	Manukonda, D., Gorantla, S.R.	Design and comparison of MPPT based oscillatory wind turbine with conventional wind turbine	Oscillatory Wind Turbine, Perturb and Observe Maximum Power Point Tracking (MPPT), Fuzzy PID Controller, Conventional Wind Turbine	20, 5-6, 589-600	https://doi.org/10.3166/ EJEE.20.589-600	Manukonda, D., Gorantla, S.R. (2018). Design and comparison of MPPT based oscillatory wind turbine with conventional wind turbine. European Journal of Electrical Engineering, Vol. 20, No. 5-6, pp. 589-600. https://doi.org/10.3166/ EJEE.20.589-600

181	Lenin, K.	Real power loss diminution by camelopard optimization algorithm	Optimal Reactive Power, Transmission Loss, Camelopard Optimization Algorithm	20, 5-6, 601-616	https://doi.org/10.3166/EJEE.20.601-616	Lenin, K. (2018). Real power loss diminution by camelopard optimization algorithm. European Journal of Electrical Engineering. Vol. 20, No. 5-6, pp. 601-616. https://doi.org/10.3166/EJEE.20.601-616
182	Katuril, R., Gorantla, S.	Performance analysis of hybrid controller for automatic switching between energy sources of hybrid energy storage system	Proportional-Derivative Controller, Math Function-Based Controller, Ultracapacitor, Battery	20, 5-6, 617-630	https://doi.org/10.3166/ EJEE.20.617-630	Katuril, R., Gorantla, S. (2018). Performance analysis of hybrid controller for automatic switching between energy sources of hybrid energy storage system. European Journal of Electrical Engineering. Vol. 20, No. 5-6, pp. 617-630. https://doi.org/10.3166/ EJEE.20.617-630
183	Liu, Z., Liang, X., Huang, M., Ning, T.	Optimization of over-modulation technology for traction inverters	Switching Frequency, Over-Modulation, Harmonic Content, Modulation Factor	20, 5-6, 631-643	https://doi.org/10.3166/EJEE.20.631-643	Liu, Z., Liang, X., Huang, M., Ning, T. (2018). Optimization of over-modulation technology for traction inverters. European Journal of Electrical Engineering, Vol. 20, No. 5-6, pp. 631-643. https://doi.org/10.3166/EJEE.20.631-643
184	Abdelghafour, H., Abderrahmen, B., Samir, Z., Riyadh, R.	Backstepping control of a doubly-fed induction machine based on fuzzy controller	Doubly-Fed Induction Machine (DFIM), Backstepping Control, Theory of Lyapunov, Stator Flux Orientation, Fuzzy Logic, Hybrid Control, Robustness	20, 5-6, 645-657	https://doi.org/10.3166/EJEE.20.645-657	Abdelghafour, H., Abderrahmen, B., Samir, Z., Riyadh, R. (2018). Backstepping control of a doubly-fed induction machine based on fuzzy controller. European Journal of Electrical Engineering, Vol. 20, No. 5-6, pp. 645-657. https://doi.org/10.3166/EJEE.20.645-657
185	Choudhary, R., Jain, S.	Second order resistance with homogeneous-heterogeneous reactions for casson fluid in stagnation point flow and falkner-skan flow under presence of induced magnetic field	Homogeneous-heterogeneous, Falkner- Skan flow, Casson fluid, Induced magnetic field, Second order resistance	20, 5-6, 659-686	https://doi.org/10.3166/EJEE.20.659-686	Choudhary, R., Jain, S. (2018). Second order resistance with homogeneous-heterogeneous reactions for casson fluid in stagnation point flow and falkner-skan flow under presence of induced magnetic field. European Journal of Electrical Engineering, Vol. 20, No. 5-6, pp. 659-686.https://doi.org/10.3166/EJEE.20.659-686
186	Hadda, B., Larbi, C., Abdessalam, M.	A new technique of second order sliding mode control applied to induction motor	Induction Motor Control, Second Order Sliding Mode, Twisting Algorithm, Sliding Mode Observer, Robust Control	20, 4, 399-412	https://doi.org/10.3166/ EJEE.20.399-412	Hadda, B., Larbi, C., Abdessalam, M. (2018). A new technique of second order sliding mode control applied to induction motor. European Journal of Electrical Engineering, Vol. 20, No. 4, pp. 399-412. https://doi.org/10.3166/ EJEE.20.399-412
187	Shaik, K.P., Mohammad, M.H., Karimulla, S., Irshad, S.M.	Single stage boost inverter with low switching modulation technique	Single Stage Boost Inverter (SSBI), Low Switching Modulation (LSM), Voltage Stress, Current Stress	20, 4, 413-426	https://doi.org/10.3166/ EJEE.20.413-426	Shaik, K.P., Mohammad, M.H., Karimulla, S., Irshad, S.M. (2018). Single stage boost inverter with low switching modulation technique. European Journal of Electrical Engineering, Vol. 20, No. 4, pp. 413-426. https://doi.org/10.3166/ EJEE.20.413-426
188	Singhal, K., Goyal, G.R.	Comparative study of power consumption minimization in analog electronic circuit using AI techniques	Hybrid Algorithm, Power Consumption Minimization, Frequency Response Analysis, Ai Techniques	20, 4, 427-438	https://doi.org/10.3166/ EJEE.20.427-438	Singhal, K., Goyal, G.R. (2018). Comparative study of power consumption minimization in analog electronic circuit using AI techniques. European Journal of Electrical Engineering, Vol. 20, No. 4, pp. 427-438. https://doi.org/10.3166/ EJEE.20.427-438
189	Du, Y., Shi, F., Chen, Q.X., Wang, Y.Q., Zhao, J.Z., Li, Q.	An improved particle swarm scheduling algorithm based on batch changing production time	Multi-Time, Multi-Variety, Variable Batch, Parallel Machine Scheduling, Improved Particle Swarm Optimization Algorithm	20, 4, 439-453	https://doi.org/10.3166/ EJEE.20.439-453	Du, Y., Shi, F., Chen, Q.X., Wang, Y.Q., Zhao, J.Z., Li, Q. (2018). An improved particle swarm scheduling algorithm based on batch changing production time. European Journal of Electrical Engineering. Vol. 20, No. 4, pp. 439-453. https://doi.org/10.3166/ EJEE.20.439-453
190	Manikandan, P., Khan, F.A.	Analysis of multimode oscillations caused by subsynchronous resonance on generator shaft	Modal analysis, subsynchronous resonance, turbine-generator, finite element method	20, 4, 455-468	https://doi.org/10.3166/ EJEE.20.455-468	Manikandan, P., Khan, F.A. (2018). Analysis of multimode oscillations caused by subsynchronous resonance on generator shaft. European Journal of Electrical Engineering, Vol. 20, No. 4, pp. 455-468.https://doi.org/10.3166/
191	Rao, D.S.N.M., Kumar, N.	Optimal load dispatch solution of power system using enhanced harmony search algorithm	Non Convex, Economic Load Dispatch, Harmony Search Algorithm (HS), Enhanced Harmony Search Algorithm (EHS), Valve Point Loading	20, 4, 469-483	https://doi.org/10.3166/ EJEE.20.469-483	Rao, D.S.N.M., Kumar, N. (2018). Optimal load dispatch solution of power system using enhanced harmony search algorithm. European Journal of Electrical Engineering, Vol. 20, No. 4, pp. 469-483. https://doi.org/10.3166/
192	Liu, T.	Status analysis and development planning for the network of charging stations	Electric Vehicles, Network of Charging Stations, Convenience	20, 4, 485-498	https://doi.org/10.3166/EJEE.20.485-498	Liu, T. (2018). Status analysis and development planning for the network of charging stations. European Journal of Electrical Engineering, Vol. 20, No. 4, pp. 485-498. https://doi.org/10.3166/EJEE.20.485-498
193	Aboelazm, Y.M., Wahba, W.E., Moustafa Hassan, M.A.	Mitigation of voltage swells in IEEE 30 bus and IEEE 57 bus systems using evolutionary techniques	Advanced Flexible Ac Transmission System, Power Quality, Swarm Intelligence, Total Harmonic Distortion, Voltage Swell Mitigation	20, 4, 499-516	https://doi.org/10.3166/EJEE.20.499-516	Aboelazm, Y.M., Wahba, W.E., Moustafa Hassan, M.A. (2018). Mitigation of voltage swells in IEEE 30 bus and IEEE 57 bus systems using evolutionary techniques. European Journal of Electrical Engineering, Vol. 20, No. 4, pp. 499-516. https://doi.org/10.3166/EJEE.20.499-516
194	Ismail, G., Toufik, B.M., Said, B.	Real time implementation of feedback linearization control based three phase shunt active power filter	Harmonics, Shunt Active Filter, Feedback, Total Harmonic Distortion	20, 4, 517-532	https://doi.org/10.3166/EJEE.20.517-532	Ismail, G., Toufik, B.M., Said, B. (2018). Real time implementation of feedback linearization control based three phase shunt active power filter. European Journal of Electrical Engineering. Vol. 20, No. 4, pp. 517–532.https://doi.org/10.3166/EJEE.20.517-532
195	Aboelazm, Y.M., Wahba, W.E., Moustafa Hassan, M.A.	Simulation of advanced STATCOM for voltage swell mitigation in large-scale test system based on swarm intelligence algorithms	Advanced Flexible Ac Transmission System, Evolutionary Techniques, Power Quality, Total Harmonic Distortion, Voltage Swell Mitigation	20, 3, 253-266	https://doi.org/10.3166/EJEE.20.253-266	Aboelazm, Y.M., Wahba, W.E., Moustafa Hassan, M.A. (2018). Simulation of advanced STATCOM for voltage swell mitigation in large-scale test system based on swarm intelligence algorithms. European Journal of Electrical Engineering, Vol. 20, No. 3, pp. 253-266. https://doi.org/10.3166/EJEE.20.253-266
196	Venkatesh, P.M., Babu, A.R.V., Suresh, K.	Experimental investigations on modified Savonius wind turbine with curtain arrangements in the middle of the highway	Modified Savonius Wind Turbine, Boost Power Converter, Highway Wind Mill, Computational Fluid Dynamics, Curtain	20, 3, 267-278	https://doi.org/10.3166/EJEE.20.267-278	Venkatesh, P.M., Babu, A.R.V., Suresh, K. (2018). Experimental investigations on modified Savonius wind turbine with curtain arrangements in the middle of the highway. European Journal of Electrical Engineering, Vol. 20, No. 3, pp. 267-278. https://doi.org/10.3166/EJEE.20.267-278
197	Hu, W., Zhang, B.	Short-term wind power forecast based on back-propagation neural network corrected by Markov chain	Markov Chain, Bp Neural Network, Wind Power Forecast, Combined Forecast	20, 3, 279-293	https://doi.org/10.3166/EJEE.20.279-293	Hu, W., Zhang, B. (2018). Short-term wind power forecast based on back-propagation neural network corrected by Markov chain. European Journal of Electrical Engineering, Vol. 20, No. 3, pp. 279-293. https://doi.org/10.3166/EJEE.20.279-293
198	Shaik, K.P., Irshad, S.M., Mohammad, M.H., Karimulla, S.	A new AC – AC converter with buck and boost options	Commutation, AC-AC Converter, Buck- Boost Modes, Inverting and Non- Inverting	20, 3, 295-308	https://doi.org/10.3166/EJEE.20.295-308	Shaik, K.P., Irshad, S.M., Mohammad, M.H., Karimulla, S. (2018). A new AC – AC converter with buck and boost options. European Journal of Electrical Engineering, Vol. 20, No. 3, pp. 295-308. https://doi.org/10.3166/EJEE.20.295-308

				1		T
199	Luo, M.F., Lai, D.Y.	Distribution transformer monitoring and reactive power compensation	Transformer Terminal Unit (TTU), Central Processing Unit (CPU), Distribution Transformer, Digital Signal Processing (DSP), Reactive Power, Local Compensation	20, 3, 309-324	https://doi.org/10.3166/EJEE.20.309-324	Luo, M.F., Lai, D.Y. (2018). Distribution transformer monitoring and reactive power compensation. European Journal of Electrical Engineering. Vol. 20, No. 3, pp. 309-324. https://doi.org/10.3166/EJEE.20.309-324
200	Chatterjee, S., Acharya, J., Murari Pandey, K.	Degradation of aerodynamic performances of two typical aerofoils under heavy rain: A comparative study using CFD simulation	Angle of Attack, Lift, Drag, DPM, CFD	20, 3, 325-332	https://doi.org/10.3166/EJEE.20.325-332	Chatterjee, S., Acharya, J., Murari Pandey, K. (2018). Degradation of aerodynamic performances of two typical aerofoils under heavy rain: A comparative study using CFD strandlation. European Journal of Electrical Engineering, Vol. 20, No. 3, pp. 325-332. https://doi.org/10.3166/EJEE.20.325-332
201	Liu, P., Yue, J.H.	Comparison between Dirichlet boundary condition and mixed boundary condition in resistivity tomography through finite-element simulation	Resistivity Tomography (RT), Dirichlet Boundary Condition, Mixed Boundary Condition, 2D Geoelectric Field with A Point Power Source	20, 3, 333-345	https://doi.org/10.3166/EJEE.20.333-345	Liu, P., Yue, J.H. (2018). Comparison between Dirichlet boundary condition and mixed boundary condition in resistivity tomography through finite-element simulation. European Journal of Electrical Engineering, Vol. 20, No. 3, pp. 333-345. https://doi.org/10.3166/EJEE.20.333-345
202	Nuthalapati, B., Sinha, U.K.	Location and detection of downed power line fault not touching the ground	Power Line Communication (PLC), PLG (power line guardian), High Impedance Faults (HIF's), Active Smart Wires (ASW)	20, 3, 347-362	https://doi.org/10.3166/ EJEE.20.347-362	Nuthalapati, B., Sinha, U.K. (2018). Location and detection of downed power line fault not touching the ground. European Journal of Electrical Engineering, Vol. 20, No. 3, pp. 347-362. https://doi.org/10.3166/ EJEE.20.347-362
203	Minh, V. T., Moezzi, R., Owe, I.	Fuel economy regression analyses for hybrid electric vehicle	Regression Analyses, Fuel Consumption, Optimal Model, Hybrid Electric Vehicle, Drive Cycle	20, 3, 363-377	https://doi.org/10.3166/EJEE.20.363-377	Minh, V. T., Moezzi, R., Owe, I. (2018). Fuel economy regression analyses for hybrid electric vehicle. European Journal of Electrical Engineering. Vol. 20, No. 3, pp. 363-377. https://doi.org/10.3166/EJEE.20.363-377
204	Zhao, W., Li, Y.J., Ren, J.Y., Chen, S.G., Li, Y.Q.	A novel operation state prediction method for servers in smart grids	Data Monitoring, Chebyshev Inequality, Rayleigh Distribution, Back Propagation Neural Network (BPNN)	20, 3, 379-392	https://doi.org/10.3166/EJEE.20.379-392	Zhao, W., Li, Y.J., Ren, J.Y., Chen, S.G., Li, Y.Q. (2018). A novel operation state prediction method for servers in smart grids. European Journal of Electrical Engineering, Vol. 20, No. 3, pp. 379-392. https://doi.org/10.3166/EJEE.20.379-392
205	Venkatesh, P.M., Vijay Babu, A.R., Suresh, K.	Experimental investigations on modified savonius wind turbine with curtain arrangements in the middle of the highway	Modified Savonius Wind Turbine, Boost Power Converter, Highway Wind Mill, Computational Fluid Dynamics, Curtain	20, 2, 139-150	https://doi.org/10.3166/EJEE.20.139-150	Venkatesh, P.M., Vijay Babu, A.R., Suresh, K. (2018). Experimental investigations on modified savonius wind turbine with curtain arrangements in the middle of the highway. European Journal of Electrical Engineering, Vol. 20, No. 2, pp. 139-150. https://doi.org/10.3166/EJEE.20.139-150
206	Kezrane, C., Laouid, Y.A., Lasbet, Y., Habib, S.H.	Comparison of different Organic Rankine Cycle for power generation using waste heat	Organic Rankine Cycle, Internal Heat Exchanger, Working Fluid, Superheating, Waste Heat Source	20, 2, 151-169	https://doi.org/10.3166/EJEE.20.151-169	Kezrane, C., Laouid, Y.A., Lasbet, Y., Habib, S.H. (2018). Comparison of different Organic Rankine Cycle for power generation using waste heat. European Journal of Electrical Engineering, Vol. 20, No. 2, pp. 151-169. https://doi.org/10.3166/EJEE.20.151-169
	Zhang, S.H., Hou, L., Zou, L., Zhao, R., Ma, W.H.	Consistency check for secondary virtual terminals in smart substations	Standardization, Smart Substation, Virtual Terminal, Match	20, 2, 171-179	https://doi.org/10.3166/EJEE.20.171-179	Zhang, S.H., Hou, L., Zou, L., Zhao, R., Ma, W.H. (2018). Consistency check for secondary virtual terminals in smart substations. European Journal of Electrical Engineering, Vol. 20, No. 2, pp. 171-179. https://doi.org/10.3166/EJEE.20.171-179
208	Al-Shnynat, N.	Challenges of integrating a small hydropower plant at existing Mujib dam	Hydro-Power, Cross Flow Turbine, Renewable Energy	20, 2, 181-191	https://doi.org/10.3166/EJEE.20.181-191	Al-Shnynat, N. (2018). Challenges of integrating a small hydropower plant at existing Mujib dam. European Journal of Electrical Engineering, Vol. 20, No. 2, pp. 181-191. https://doi.org/10.3166/EJEE.20.181-191
209	Wang, J., Yuan, Z.J., Luo, X.B.	An intelligent control system for bladeless fans	Bladeless Fan, Distance Detection, Wind Speed Regulation	20, 2, 193-203	https://doi.org/10.3166/EJEE.20.193-203	Wang, J., Yuan, Z.J., Luo, X.B. (2018). An intelligent control system for bladeless fans. European Journal of Electrical Engineering. Vol. 20, No. 2, pp. 193-203. https://doi.org/10.3166/EJEE.20.193-203
210	Shaik, K. P., Karimulla, S., Mohammad Irshad, S., Mohammad, M. H.	Simulation of single phase buck boost matrix converter without commutation issues	Buck Boost Converter, Inverting, Non - Inverting, DVR, MATLAB/Simulink	20, 2, 205-214	https://doi.org/10.3166/EJEE.20.205-214	Shaik, K. P., Karimulla, S., Mohammad Irshad, S., Mohammad, M. H. (2018). Simulation of single phase buck boost matrix converter without commutation issues. European Journal of Electrical Engineering, Vol. 20, No. 2, pp. 205-214. DOI: 10.3166/EJEE.20.205-214
211	Swain, K., Parida, S.K., Dash, G.C.	Thermal slip effect on MHD convective nanofluid flow over a vertical plate embedded in a porous medium	MHD, Nanofluid, Joule Heating, Radiation, Viscous Dissipation, Porous Medium	20, 2, 215-223	https://doi.org/10.3166/EJEE.20.215-233	Swain, K., Parida, S.K., Dash, G.C. (2018). Thermal slip effect on MHD convective nanofluid flow over a vertical plate embedded in a porous medium. European Journal of Electrical Engineering, Vol. 20, No. 2, pp. 215-223.https://doi.org/10.3166/EJEE.20.215-233
212	Hou, Y.C.	Circuit design for electrohydraulic proportional amplifier	Pulse Width Modulation (PWM), Proportional Solenoid Coil, Proportional Amplifier, Simulation	20, 2, 235-245	https://doi.org/10.3166/EJEE.20.235-245	Hou, Y.C. (2018). Circuit design for electrohydraulic proportional amplifier. European Journal of Electrical Engineering, Vol. 20, No. 2, pp. 235-245. https://doi.org/10.3166/EJEE.20.235-245
213	Rao, C.N.N., Sukumar, G.	Design and analysis of torque ripple reduction in brushless DC motor using SPWM and SVPWM with PI control	BLDC Motor, PWM, SVPWM, MATLAB/Simulink	20, 1, 7-22	https://doi.org/10.3166/EJEE.20.7-22	Rao, C.N.N., Sukumar, G. (2018). Design and analysis of torque ripple reduction in brushless DC motor using SPWM and SVPWM with PI control. European Journal of Electrical Engineering, Vol. 20, No. 1, pp. 7-22. https://doi.org/10.3166/EJEE.20.7-22
214	Olugbenga, A. T., Nordiana, M. M.	Utilizing 2-D electrical resistivity imaging (ERI) to investigate groundwater potential	Aquifer, Groundwater Potential, Saturated Zone, Shale	20, 1, 23-34	https://doi.org/10.3166/EJEE.20.23-34	Olugbenga, A. T., Nordiana, M. M. (2018). Utilizing 2-D electrical resistivity imaging (ER) to investigate groundwater potential. European Journal of Electrical Engineering, Vol. 20, No. 1, pp. 23-34. https://doi.org/10.3166/EJEE.20.23-34
215	Wei, W., Chen, N., Xue, B.H., Zhang, X.Y.	Design of synchronous controller for intelligent locomotive wipers	Dual Motor Drive, Wiper, Hall Current Sensor, Synchronous Control	20, 1, 35-46	https://doi.org/10.3166/EJEE.20.35-46	Wei, W., Chen, N., Xue, B.H., Zhang, X.Y. (2018). Design of synchronous controller for intelligent locomotive wipers. European Journal of Electrical Engineering, Vol. 20, No. 1, pp. 35-46. https://doi.org/10.3166/EJEE.20.35-46
216	Katuril, R., Gorantla, S.	Comparative analysis of controllers for a smooth switching between battery and ultracapacitor applied to E-vehicle	Solar Power, Hybrid Electric Vehicles (HEVs), Bidirectional Converter (BDC), Unidirectional Converter (UDC), Battery, Ultracapacitor, Math Function Based (MFB) Controller, Proportional Integral Derivative (PID) Controller, ANN Controller	20, 1, 47-75	https://doi.org/10.3166/EJEE.20.47-75	Katuril, R., Gorantla, S. (2018). Comparative analysis of controllers for a smooth switching between battery and ultracapacitor applied to E-vehicle. European Journal of Electrical Engineering, Vol. 20, No. 1, pp. 47-75. https://doi.org/10.3166/EJEE.20.47-75

217	Qu, S.R., Wang, Z.M.	Fine-grained dynamic frequency modulation algorithm based on critical state points	Embedded Mobile Terminals (EMTs), Critical State Points (CSPs), Fine- Grained Dynamic Frequency Modulation Algorithm (FGDFMA), Power Management	20, 1, 77-88	https://doi.org/10.3166/EJEE.20.77-88	Qu, S.R., Wang, Z.M. (2018). Fine-grained dynamic frequency modulation algorithm based on critical state points. European Journal of Electrical Engineering, Vol. 20, No. 1, pp. 77-88. https://doi.org/10.3166/EJEE.20.77-88
218	Bedoui, M., Belarbi, A.W., Habibes, S.	Macroscopic modeling of the glow dielectric barrier discharge (GDBD) in helium	Dielectric Barrier Discharge (DBD), electric model, equivalent electric circuit, gas discharge, homogenous discharge, simulation	20, 1, 89-103	https://doi.org/10.3166/EJEE.20.89-103	Bedoui, M., Belarbi, A.W., Habibes, S. (2018). Macroscopic modeling of the glow dielectric barrier discharge (GDBD) in helium. European Journal of Electrical Engineering, Vol. 20, No. 1, pp. 89-103. https://doi.org/10.3166/EJEE.20.89-103
219	Kethineni, B.K., Rachananjali, K., Rao, Y.S., Reddy, A.N.	Voltage control of multiple feeders by voltage regulator and instant DG	Distribution Generation (DG), voltage control, distribution system, integer programming	20, 1, 105-113	https://doi.org/10.3166/EJEE.20.105-113	Kethineni, B.K., Rachananjali, K., Rao, Y.S., Reddy, A.N. (2018). Voltage control of multiple feeders by voltage regulator and instant DG. European Journal of Electrical Engineering, Vol. 20, No. 1, pp. 105-113. https://doi.org/10.3166/EJEE.20.105-113
220	Lu, M., Zhang, Y.F., Cai, X.H., Li, H.	Virtual synchronous control of brushless doubly-fed induction generator	Brushless Doubly-Fed Induction Generator (BDFIG), hidden inertia, Virtual Synchronous Control (VSC), wind turbine	20, 1, 115-132	https://doi.org/10.3166/EJEE.20.115-132	Lu, M., Zhang, Y.F., Cai, X.H., Li, H. (2018). Virtual synchronous control of brushless doubly-fed induction generator. European Journal of Electrical Engineering. Vol. 20, No. 1, pp. 115-132. https://doi.org/10.3166/EJEE.20.115-132
221	Samala, R.K., Kotaputi, M.R.	Multi distributed generation placement using ant-lion optimization	distributed generation, backward and forward sweep method, ant-loin optimization algorithm optimal capacity, optimal place, active power los	19, 5-6, 253-267	https://doi.org/10.3166/EJEE.19.253-267	Samala, R.K., Kotaputi, M.R. (2017). Multi distributed generation placement using ant-lion optimization. European Journal of Electrical Engineering. Vol. 19, No. 5-6, pp. 253-267. https://doi.org/10.3166/EJEE.19.253-267
222	Ravindrababu, M., Saraswathi, G., Sudha, K.R.	Design of firefly power system stabilizer for stability improvement of multi machine system under contingency	Power System Stabilizer (PSS), Firefly Algorithm (FFY), Genetic Algorithm (GA), pseudo spectrum analysis, contingency	19, 5-6, 269-292	https://doi.org/10.3166/EJEE.19.269-292	Ravindrababu, M., Saraswathi, G., Sudha, K.R. (2017). Design of firefly power system stabilizer for stability improvement of multi machine system under contingency. European Journal of Electrical Engineering, Vol. 19, No. 5-6, pp. 269-292. https://doi.org/10.3166/EJEE.19.269-292
223	Liu, L., Wang, S.T.	Performance improvement of wind turbine with squirrel-cage induction generator by static synchronous compensator and hybrid energy storage system	Low-Voltage Ride-Through (LVRT), Squirrel-Cage Induction Generator (SCIG), Static Synchronous Compensator (STATCOM), Series Dynamic Breaking Resistor (SDBR), Hybrid Energy Storage System (HESS)	19, 5-6, 293-312	https://doi.org/10.3166/EJEE.19.293-312	Liu, L., Wang, S.T. (2017). Performance improvement of wind turbine with squirrel-tage induction generator by static synchronous compensator and hybrid energy storage system. European Journal of Electrical Engineering, Vol. 19, No. 5-6, pp. 293-312. https://doi.org/10.3166/EJEE.19.293-312
224	Katuri, R., Gorantla, S.	Design and analysis of a control strategy approach for a smooth transition between battery and ultracapacitor	HESS, EVs, converters, MFB controller, fuzzy logic controller, solar power	19, 5-6, 313-339	https://doi.org/10.3166/EJEE.19.313-339	Katuri, R., Gorantla, S. (2017). Design and analysis of a control strategy approach for a smooth transition between battery and ultracapacitor. European Journal of Electrical Engineering, Vol. 19, No. 5-6, pp. 313-339. https://doi.org/10.3166/EJEE.19.313-339
225	Ai, X.Z., Yang, M.K., Liu, Z.D., Li, X.Q.	Modelling and control safety of digital push-pull switched mode power supply	push-pull, switched mode, power supply, Proportional-Integral-Derivative (PID) control, matlab	19, 5-6, 341-355	https://doi.org/10.3166/EJEE.19.341-355	Ai, X.Z., Yang, M.K., Liu, Z.D., Li, X.Q. (2017). Modelling and control safety of digital push-pull switched mode power supply. European Journal of Electrical Engineering, Vol. 19, No. 5-6, pp. 341-355. https://doi.org/10.3166/EJEE.19.341-355
226	Bala Krishna, K., Rosalina, K.M.	An optimal Phasor Measurement Unit placement techniques for achieving complete perceptibility of a network even when PMU failure	state estimation, observability, optimization, Phasor Measurement Unit (PMU), Binary Integer Programming (BIP), Pmu outage	19, 5-6, 357-366	https://doi.org/10.3166/EJEE.19.357-366	Bala Krishna, K., Rosalina, K.M. (2017). An optimal Phasor Measurement Unit placement techniques for achieving complete perceptibility of a network even when PMU failure. European Journal of Electrical Engineering, Vol. 19, No. 5-6, pp. 357-366. https://doi.org/10.3166/EJEE.19.357-366
227	Zeghoudi, A., Debbache, M., Hamidat, A.	Contribution to minimizing the cosine loss in a thermodynamic solar tower power plant by a change in the target position	heliostat, centrale solaire a tour, pertes cosinus, cible	19, 5-6, 367-374	https://doi.org/10.3166/EJEE.19.367-374	Zeghoudi, A., Debbache, M., Hamidat, A. (2017). Contribution to minimizing the cosine loss in a thermodynamic solar tower power plant by a change in the target position. European Journal of Electrical Engineering, Vol. 19, No. 5-6, pp. 367-374. https://doi.org/10.3166/EJEE.19.367-374
228	Chen, H.B., Chen, L., Han, W.	Short-term photovoltaic power forecasting based on human body amenity and least squares support vector machine with fruit fly optimization algorithm	photovoltaic power generation, human body amenity, least squares support vector machine, short-term forecasting, fruit fly optimization	19, 5-6, 375-390	https://doi.org/10.3166/EJEE.19.375-390	Chen, H.B., Chen, L., Han, W. (2017). Short-term photovoltaic power forecasting based on human body amenity and least squares support vector machine with fruit fly optimization algorithm. European Journal of Electrical Engineering, Vol. 19, No. 5-6, pp. 375-390. https://doi.org/10.3166/EJEE.19.375-390
229	Hajdidj, M.S., Bibi-Triki, N., Didi, F.	Study and optimization of a renewable system of small power generation	photovoltaic system, wind system, hybrid photovoltaic-wind-storage system, sizing, optimization	19, 3-4, 133-154	https://doi.org/10.3166/EJEE.19.133-154	Hajdidj, M.S., Bibi-Triki, N., Didi, F. (2017). Study and optimization of a renewable system of small power generation. European Journal of Electrical Engineering, Vol. 19, No. 3-4, pp. 133-154. https://doi.org/10.3166/EJEE.19.133-154
230	Sreedhar, T., Venkata, N.	Impact of distribution network reconfiguration under wheeling transactions	distribution systems, differential search algorithm, network reconfiguration, wheeling transactions	19, 3-4, 155-165	https://doi.org/10.3166/EJEE.19.155-165	Sreedhar, T., Venkata, N. (2017). Impact of distribution network reconfiguration under wheeling transactions. European Journal of Electrical Engineering, Vol. 19, No. 3-4, pp. 155-165. https://doi.org/10.3166/EJEE.19.155-165
231	Xu, Y.P.	A study of hydropower generation process control based on fuzzy control theory	hydropower unit control, fuzzy control, variable structure control, buffeting	19, 3-4, 167–179	https://doi.org/10.3166/EJEE.19.167-179	Xu, Y.P. (2017). A study of hydropower generation process control based on fuzzy control theory. European Journal of Electrical Engineering, Vol. 19, No. 3-4, pp. 167–179. https://doi.org/10.3166/EJEE.19.167–179
232	Uma Maheswara, Rao M., Mercy Rosalina, K.	Transient stability improvement of microgrids by using Resistive type SFCL and series active power filters	Distributed Generation (DG), Resistive Type Superconducting Fault Current Limiter (R-SFCL), Phase Locked Loop (PLL), Series Active Power Filter (SAPF)	19, 3-4, 181-195	https://doi.org/10.3166/EJEE.19.181-195	Uma Maheswara, Rao M., Mercy Rosalina, K. (2017). Transient stability improvement of microgrids by using Resistive type SFCL and series active power filters. European Journal of Electrical Engineering. Vol. 19, No. 34, pp. 181-195. https://doi.org/10.3166/EJEE.19.181-195
233	Hou, Y.C.	Design of conditioning circuit for weak signal in through-easing resistivity logging	extremely weak signals, through-casing resistivity logging, signal conditioning circuit, amplifier circuit, filter circuit	19, 3-4, 197-208	https://doi.org/10.3166/EJEE.19.197-208	Hou, Y.C. (2017). Design of conditioning circuit for weak signal in through-casing resistivity logging. European Journal of Electrical Engineering, Vol. 19, No. 3-4, pp. 197-208. https://doi.org/10.3166/EJEE.19.197-208
234	Karthik, G., Jayanthu, S.	Quantification of cable deformation using TDR-experiments	Time Domain Reflectometry (Tdr), coaxial cable, reflection coefficient, opencast model	19, 3-4, 209-219	https://doi.org/10.3166/EJEE.19.209-219	Karthik, G., Jayanthu, S. (2017). Quantification of cable deformation using TDR-experiments. European Journal of Electrical Engineering, Vol. 19, No. 3-4, pp. 209-219. https://doi.org/10.3166/EJEE.19.209-219

_						
235	Slimani, H., Bendaoud, A., Reguig, A.	Measuring and reducing of harmonic pollution using rapid prototyping	interference, pollution harmonique, simulation, prototypage rapide, DSP	19, 3-4, 221-234	https://doi.org/10.3166/EJEE.19.221-234	Slimani, H., Bendaoud, A., Reguig, A. (2017). Measuring and reducing of harmonic pollution using rapid prototyping. European Journal of Electrical Engineering. Vol. 19, No. 3-4, pp. 221-234. https://doi.org/10.3166/EJEE.19.221-234
236	Liu, Z.J., Wu, W.	A novel control method for five-level H- bridge/neutral point clamped inverter	multi-level, triangulation, Space Vector Pulse Width Modulation (SVPWM), H- Bridge/Neutral Point Clamped (H-NPC) inverter	19, 3-4, 235-245	https://doi.org/10.3166/EJEE.19.235-245	Liu, Z.J., Wu, W. (2017). A novel control method for five-level H- bridge/neutral point clamped inverter. European Journal of Electrical Engineering, Vol. 19, No. 3-4, pp. 235-245. https://doi.org/10.3166/EJEE.19.235-245
237	Adibi, T., Adibi, O., Amrikachi, A.	Investigation on the possibility of substituting compression cooling cycle with a solar absorption cooling cycle in tropical regions of Iran	cavity flow, forced convection, Reynolds number, complex boundary condition, Nusselt number	19, 1-2, 7-17	https://doi.org/10.3166/EJEE.19.7-17	Adibi, T., Adibi, O., Amrikachi, A. (2017). Investigation on the possibility of substituting compression cooling cycle with a solar absorption cooling cycle in tropical regions of Iran. European Journal of Electrical Engineering, Vol. 19, No. 1-2, pp. 7-17. http://doi.org/10.3166/EJEE.19.7-17
238	Kanagasabai, L.K.	Improved canis rufus floridanus optimization algorithm for reduction of real power loss & maximization of static voltage stability margin	optimal reactive power, transmission loss, canis rufus floridanus, particle swarm optimization	19, 1-2, 19-30	https://doi.org/10.3166/EJEE.19.19-30	Kanagasabai, L.K. (2017). Improved canis rufus floridanus optimization algorithm for reduction of real power loss & maximization of static voltage stability margin. European Journal of Electrical Engineering, Vol. 19, No. 1-2, pp. 19-30. https://doi.org/10.3166/EJEE.19.19-30
239	Kong, F., Shi, H.M., Wei, Z.Y., Liu, C.Y.	Life evaluation method for alternating current contactor of electrical multiple unit	electrical multiple unit (EMU), service life assessment, failure mechanism, weibull distribution; alternating current (AC) contactor	19, 1-2, 31-42	https://doi.org/10.3166/EJEE.19.31-42	Kong, F., Shi, H.M., Wei, Z.Y., Liu, C.Y. (2017). Life evaluation method for alternating current contactor of electrical multiple unit. European Journal of Electrical Engineering, Vol. 19, No. 1-2, pp. 31-42. https://doi.org/10.3166/EJEE.19.31-42
240	Kumar, D.A., Mishra S.R.	MHD stagnation point flow of micropolar fluid past on a vertical plate in the presence of porous medium	micropolar fluid, porous medium, assisting and opposing flow, stagnation point, numerical solution	19, 1-2, 43-57	https://doi.org/10.3166/EJEE.19.43-57	Kumar, D.A., Mishra S.R. (2017). MHD stagnation point flow of micropolar fluid past on a vertical plate in the presence of porous medium. European Journal of Electrical Engineering, Vol. 19, No. 1-2, pp. 43-57. https://doi.org/10.3166/EJEE.19.43-57
241	Shi, Y.G., Zhang, X.J., Li, J.X., Liu, L., Cui, Y.J.	Design of STM32-based hub motor controller	wheeled mobile robot, Brushless Direct Current (DC) Motor, Proportional— Integral—Derivative (PID) control, digital control system, three-phase full bridge inverter	19, 1-2, 59-73	https://doi.org/10.3166/EJEE.19.59-73	Shi, Y.G., Zhang, X.J., Li, J.X., Liu, L., Cui, Y.J. (2017). Design of STM32-based hub motor controller. European Journal of Electrical Engineering. Vol. 19, No. 1-2, pp. 59-73. https://doi.org/10.3166/EJEE.19.59-73
242	Evuri, G.R., Gorantla, S.R., Reddy, T.R.S.	Enhancing the efficiency of a DC-DC converter used for hybrid electrical vehicles to suit uphill and downhill terrains	DC-DC converter, hybrid electric vehicle, terrains, PI and PID	19, 1-2, 75-89	https://doi.org/10.3166/EJEE.19.75-89	Evuri, G.R., Gorantla, S.R., Reddy, T.R.S. (2017). Enhancing the efficiency of a DC-DC converter used for hybrid electrical vehicles to suit uphill and downhill terrains. European Journal of Electrical Engineering, Vol. 19, No. 1-2, pp. 75-89, https://doi.org/10.3166/EJEE.19.75-89
243	Enany, T.A., Hassan, M.A.M., Othman, E.S.	Induction motor temperature monitoring via signal injection enhanced with adaptive neuro-fuzzy inference system	temperature estimation, thermal protection, adaptive neuro-füzzy inference system, induction motor, signal injection, soft starter	19, 1-2, 91-109	https://doi.org/10.3166/EJEE.19.91-109	Enany, T.A., Hassan, M.A.M., Othman, E.S. (2017). Induction motor temperature monitoring via signal injection enhanced with adaptive neuro-fuzzy inference system. European Journal of Electrical Engineering, Vol. 19, No. 1-2, pp. 91-109. https://doi.org/10.3166/EJEE.19.91-109
244	Li, X., Liu, M.W., Feng, Y.L.	Bulk acoustic resonator devices using ZnO-based film and back cavity	back cavity, bulk silicon micromachining, film bulk acoustic resonator, ZnO piezoelectric film	19, 1-2, 111-125	https://doi.org/10.3166/EJEE.19.111-125	Li, X., Liu, M.W., Feng, Y.L. (2017). Bulk acoustic resonator devices using ZnO-based film and back cavity. European Journal of Electrical Engineering, Vol. 19, No. 1-2, pp. 111-125. https://doi.org/10.3166/EJEE.19.111-125