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Adaptive Thresholding by Variational Method

Francis H. Y. Chan, F. K. Lam, and Hui Zhu

Abstract—When using thresholding method to segment an image, a
fixed threshold is not suitable if the background is uneven. Here, we
propose a new adaptive thresholding method using variational theory.
The method requires only one parameter to be selected and the adaptive
threshold surface can be found automatically from the original image.

Index Terms—Adaptive thresholding, image segmentation, variational
method.

I. INTRODUCTION

Thresholding techniques are often used to segment images con-
sisting of bright objects against dark backgrounds orvice versa[3],
[9], [12]. When the background is uneven as a result of poor or
nonuniform illumination conditions, a fixed (or global) gray-level
threshold will not segment the image correctly. A way to deal
with such cases is to match the background gray-level variations
using a simple function such as a plane or biquadratic [4]. A more
sophisticated method is to create a threshold surface so that different
thresholds could be used for each individual pixel in the image [1].
In this method, first the image was divided into a regular grid of
nonoverlapping subregions and a threshold was assigned to the center
of each subregion which had bimodal histogram by a fixed threshold-
ing method. Then the threshold surface was interpolated from these
local threshold values. This method was further studied by Nakagawa
and Rosenfeld with some new experiments [7]. Milgramet al. [5]
considered using gradient or edge information to segment images and
proposed “superslice” method. They assumed an individual object had
a fixed threshold with respect to the background, but different objects
may have different thresholds. Various of gray-level thresholds were
tried to segment the image and the segmented objects were validated
by the gradients along their boundaries. Encompassing advantages of
both the “threshold surface” and the “superslice” methods, Yanowitz
and Bruckstein suggested using the gray-level values at high gradient
places as known data to interpolate the threshold surface of the
image [14]. Their method is a heuristic algorithm that consists of
the following seven steps.

1) Smooth the image by average filtering.
2) Derive the gray-level gradient magnitude.
3) Apply thresholding and a thinning algorithm to the gradient

magnitude to find the object boundary points.
4) Sample the smoothed image at the boundary points as the local

thresholds.
5) Interpolate the threshold surface by the sampled local thresh-

olds.
6) Segment the image by the threshold surface.
7) Remove the “ghost” objects by a validation process.
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Fig. 1. Adaptive threshold surface to segment an image.

Fig. 2. Relationships among�T; dI; and dT:

The third and fourth steps are the keys to this method. The choices of
the gradient magnitude threshold and thinning algorithms are difficult
to determine. These factors influence the positions of the boundary
point, and consequently affect the interpolation results.

Regularization approaches that use variational principles have
been widely used in image processing [10]. Morel and Solimini [6]
summarized that most of the heuristic segmentation algorithms can
be translated into variational theory. They favored the translation by
arguing that “the advantage of ana priori variational formulation is
to reduce the number of parameters and thresholds and to fix them
automatically.” But thresholding algorithms, an important class of
image segmentation methods, were not mentioned in their work.

In this work, we will propose a new adaptive thresholding method
by variational method. It can be viewed as a variational translation of
Yanowitz and Bruckstein’s algorithm. But our method can obtain the
threshold surface by deforming the original image gray-level surface
so that steps 3 and 4 of [14] are integrated and all the uncertain
decisions in step 3 are reduced to the choice of a regularization
parameter. In next section, we will give the model of the adaptive
threshold surface. In Section III, the implementation algorithm is
presented. Experimental results are shown with some discussions in
Section IV, and Section V is the conclusion.

II. V ARIATIONAL FORMULATION OF ADAPTIVE THRESHOLDING

Let I(x; y) be an image which is to be segmented by thresholding.
G(x; y) is the normalized gradient magnitude ofI(x; y):

G(x; y) =
jrI(x; y)j

max
x;y

(jrI(x; y)j)
(1)
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Fig. 3. (a) Simulated image background. (c) 16 objects being put on (a) by adding 20 gray levels to their local background. (f) Result of Otsu’s algorithm
to (c). (g) Result of our method to (c). (h) Adaptive thresholding surface found by our method.

T (x; y) is the adaptive threshold to be found by which the image is
segmented into a label image

L(x; y) =
1; if I(x; y)>T (x; y)

0; if I(x; y) � T (x; y)
(2)

I(x; y) and T (x; y) are two two-dimensional (2-D) surfaces
which intersect at positionsc = f(x; y)jI(x; y) = T (x; y)g:

According to [14], c should be where the object boundaries are
(see Fig. 1). That means ifT (x; y) is the right threshold surface,
s
c
G(x; y) dH1

(x; y)=C (H1 is the Hausdorff measure supported
by c [6], andC is the number of object boundary points) should be
a maximum. This necessitates in findingT in a function space
 to

min
T2


c

F (T ) dH
1
(x; y)=C (3)

in which, F (T ) is a functional ofT and has a first derivative
andF (T ) = �G(x; y); (x; y) 2 c: Obviously, this is an ill-posed
problem.

To solve the problem, a penalty term should be introduced into
the object function for regularization. Then the object function to be
minimized is

1

C
F (T ) dH

1
(x; y) + �

@T

@x

2

+
@T

@y

2

dx dy (4)

where� is the regularization parameter. Minimizing (4) is equal to
solving the following Poisson equation:

r2T (x; y) = �
�F (T )

�T
; if (x; y) 2 c

r2T (x; y) = 0; else
(5)
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Fig. 3. (Continued.) (b) 3-D plot of (a). (d) 3-D plot of (c). (e) Gray-level histogram of (c). (i) 3-D plot of (h).

Here,� = 1=2�: BecauseF (T ) relates toc; F (T ) can be written as
F (x(T ); y(T )): By the chain rule

�F

�T
= Fx �

@x

�T
+ Fy �

@y

�T
= Fx

�T

dx
+ Fy

�T

dy

Note that hereT is a function, �T is the variation ofT; and
�T = dI � dT (see Fig. 2). So we have

�F

�T
=

Fx=(Ix � Tx) + Fy=(Iy � Ty);

if (Ix 6= Tx) and(Iy 6= Ty)

Fx=(Ix � Tx); if (Ix 6= Tx) and(Iy = Ty)

Fy=(Iy � Ty); if (Ix = Tx) and(Iy 6= Ty)

0; if (Ix = Tx) and(Ix = Ty):

(6)

Now we have modeled the adaptive thresholding surface as the
solution of a Poisson equation (5). The next step is to solve this
equation. In next section, we will construct the numerical algorithm
to tackle this problem.

III. I MPLEMENTATION

Similar to [14], which used successive overrelaxation (SOR)
method [11] to solve Laplace equation for the interpolation, we use
SOR to solve our Poisson equation (5). The SOR method here can
be written as

T
n+1
i;j = T

n
i;j +

!

4
�i;j (7)

where �i;j = Ti;j�1 + Ti;j+1 + Ti�1;j + Ti+1;j �

4Ti;j � �(�F �T )ji;j ; ! is the overrelaxation parameter and
1<!< 2: Fx; Fy; Ix; Iy; Tx; andTy can be easily written in their
finite-difference representations [11], which we will not repeat here.
In order to keep track of the positions ofc; we extend the two-value
array L(x; y) to a three-value array, in which boundary points of
the segmented objects will be labeled as 2.

The first step in applying the iteration method to solve equations
is to choose an initial solution. The choice is very important to the

optimization problem with a nonconvex objective function. Actually,
our method tries to find the adaptive threshold surface from an
initial surface which has to be given first. In most cases, this is not
acceptable in thresholding algorithms; even if it can be accepted in
some cases, to interactively draw a three-dimensional (3-D) surface
on a computer is difficult. Fortunately, we find that the original image
gray-level surface is a good start point for the threshold surface. At
the first iteration, according to (2), allL(x; y) = 0; so c = �: The
right-hand side of (5) is zero. So the first iteration behaves like smooth
filtering which will let the threshold surface be smaller than the
original image surface at some places. Then in the second iteration,
c 6= �; and �F=�T begins to take part in the deforming process of
the threshold surface in the subsequent iterations.

If T changes,c is updated, and consequently�F=�T changes. So
the label array should be refreshed after each iteration. To arrive at
a convergent solution, the number of iterations should beO(J); if
the image size isJ � J [11]. We set a variablek to keep track of
the number of points switched in/out ofc between iterations. The
iteration progress will stop ifk<K (a small integer number such as
10) or the iteration times exceeds a certain number (for example,J):

IV. EXPERIMENTS AND DISCUSSION

In this section, we will demonstrate some experimental results of
our method. All these experiments are implemented on an SGI Indy
PC workstation using C language. The SOR overrelaxation parameter
we use is! = 1:5:

The first experiment is a simulated uneven background image.
Fig. 3(a) is a sloping gray level background image generated by
the computer. Fig. 3(b) is its 3-D plot. Sixteen objects are put on
the background by adding 20 gray levels to their local positions
[Fig. 3(c), (d)]. Fig. 3(e) shows Fig. 3(c)’s gray level histogram.
It is hard to select a threshold directly from the histogram. The
result of using Otsu’s [8] fixed thresholding algorithm to Fig. 3(c)
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Fig. 4. (a) Real image background. (c) 16 objects being put on (a) by adding 20 gray levels to their local background. (f) Result of Otsu’s algorithm to
(c). (g) Result of our method to (c). (h) Adaptive thresholding surface found by our method.

is in Fig. 3(f). Fig. 3(g) is our method’s result with� = 26: The
thresholding surface and its 3-D plot are shown in Fig. 3(h) and (i).

The next experiment (Fig. 4) is similar to the first one but the
background is a real image of a nonuniformly illuminated white wall
obtained from an Indycam of our workstation. The background has
been processed by a 5� 5 averaging filter to reduce noises. It can be
seen the result of our method is good on the whole. In this experiment,
� = 18:

In Fig. 5, we use our method to segment a handwriting image
in poorly illuminated environment. Also it is compared with fixed
thresholding by Otsu’s method.

The main difference between our method and [14] is that we embed
the process of finding boundary points into the interpolation process
so that the Laplace equation, when the right hand side of (5) is at

zero, used in [14] is changed to Poisson equation in our method. The
right-hand side of (5) can be viewed as an external force to push
the interactions of the threshold surface and the image surface to
high image gray-level gradient places. The left hand side of (5) is
an internal force which embodies suitablea priori knowledge of the
threshold surface. We have found the results are more satisfactory
when there are more objects in the image. Fig. 6 shows two images
that have the same backgrounds as Figs. 3 and 4, respectively,
but with fewer objects. There are more “unwanted objects” being
segmented out. This is because in those areas with no objects nearby,
no edge information is provided and the thresholding surface does not
know where to move. On the other hand, we have little information
about the background gray level surface. This is also the reason why
in Fig. 5, the handwriting can be segmented well near the characters
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Fig. 4 (Continued.) (b) 3-D plot of (a). (d) 3-D plot of (c). (e) Gray-level histogram of (c). (i) 3-D plot of (h).

(a) (b)

(c)

Fig. 5. (a) Poorly illuminated handwriting image. (b) Segmentation result by Otsu’s method. (c) Segmentation result by our method.

but not in the surrounding background areas. These “ghost objects”
were also be found in [14], and they can be eliminated by the step
7 of [14] using a validation process [5].

The size of all the images used above is 256� 256. The maximum
number of iterations we use is 256. We find this is enough for
convergence. It takes about 2 min for each image.
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Fig. 6. (a) Same background but fewer objects image of the Fig. 3. (b) Segmentation result by our method to (a). (c) Same background but fewer objects
image of the Fig. 4. (d) Segmentation result by our method to (c).

It should be pointed out that all variational methods in image
segmentation, including ours, can be viewed as specific formulations
from Mumford–Shah’s general model and its recent variants [6].
Besides image segmentation, this idea can be applied to other image
processing methods, such as histogram modification [13].

V. CONCLUSION

In this work, we have proposed a new adaptive thresholding
method for image segmentation. It can be viewed as a variational
translation of [14]. The main advantage of our method is that the
object boundary points selection which involves many parameter
decisions and interpolation by solving a Laplace equation are in-
tegrated by solving a Poisson equation, in which only one coefficient
� has to be set. Experimental results of simulated images and a
real poorly illuminated handwriting image show the capability of this
method. In our future work, the mathematical theory, the numerical
implementation, and other application fields of our model will be
further studied.
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